Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

A Unifying Statistical Framework to Discover Disease Genes from GWAS

View ORCID ProfileJustin N.J. McManus, Robert J. Lovelett, Daniel Lowengrub, Sarah Christensen
doi: https://doi.org/10.1101/2022.04.28.489887
Justin N.J. McManus
1Kallyope, Inc., New York, NY, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Justin N.J. McManus
  • For correspondence: justin@kallyope.com
Robert J. Lovelett
1Kallyope, Inc., New York, NY, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Daniel Lowengrub
1Kallyope, Inc., New York, NY, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Sarah Christensen
1Kallyope, Inc., New York, NY, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Supplementary material
  • Preview PDF
Loading

Article usage

Article usage: April 2022 to August 2022

AbstractFullPdf
Apr 20224740105
May 20221138133399
Jun 202231150104
Jul 20221723054
Aug 202222213
Back to top
PreviousNext
Posted April 29, 2022.
Download PDF

Supplementary Material

Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
A Unifying Statistical Framework to Discover Disease Genes from GWAS
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
A Unifying Statistical Framework to Discover Disease Genes from GWAS
Justin N.J. McManus, Robert J. Lovelett, Daniel Lowengrub, Sarah Christensen
bioRxiv 2022.04.28.489887; doi: https://doi.org/10.1101/2022.04.28.489887
Digg logo Reddit logo Twitter logo Facebook logo Google logo LinkedIn logo Mendeley logo
Citation Tools
A Unifying Statistical Framework to Discover Disease Genes from GWAS
Justin N.J. McManus, Robert J. Lovelett, Daniel Lowengrub, Sarah Christensen
bioRxiv 2022.04.28.489887; doi: https://doi.org/10.1101/2022.04.28.489887

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Genomics
Subject Areas
All Articles
  • Animal Behavior and Cognition (3686)
  • Biochemistry (7766)
  • Bioengineering (5664)
  • Bioinformatics (21228)
  • Biophysics (10551)
  • Cancer Biology (8156)
  • Cell Biology (11901)
  • Clinical Trials (138)
  • Developmental Biology (6733)
  • Ecology (10387)
  • Epidemiology (2065)
  • Evolutionary Biology (13836)
  • Genetics (9691)
  • Genomics (13051)
  • Immunology (8119)
  • Microbiology (19929)
  • Molecular Biology (7823)
  • Neuroscience (42947)
  • Paleontology (318)
  • Pathology (1276)
  • Pharmacology and Toxicology (2256)
  • Physiology (3349)
  • Plant Biology (7207)
  • Scientific Communication and Education (1309)
  • Synthetic Biology (1998)
  • Systems Biology (5527)
  • Zoology (1126)