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Figure 5: Measures of complexity.

A) Functional complexity as function of a global scaling coefficient W that multiplies the inter-
hemispheric synaptic weights.

B) Dynamic Complexity (DC), i.e. the number of stationary and oscillatory attractors, as a
function of W.

C) Normalized LZC of the spatio-temporal activity pattern. Since the magnitude of the LZC
depends on the level of noise, we plotted its dependency for several values of the noise
parameter o (including its best-fit value o = 1.56), and we normalized the LZC by its maximum
over W for each noise level.

D) Geometric mean of the measures of complexity shown in panels A-C, which exhibits a peak
for the value corresponding to the real mouse connectome (W ~1).

E) Number of stationary states as a function of the threshold value used for sparsifying the
anatomical connectivity, and number of structural connections stronger than a threshold T

F) Loss of dynamical and functional complexity and mean length of the structural connections,
as a function of the threshold T.
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Figure 6: Non-homotopic patterns of rsfMRI activity.

A) Number of non-homotopic attractors in the network mode, as a function of the global scaling
coefficient W.

B) Mean Hamming distance between the spiking activity patterns of the excitatory populations
in the L/R hemispheres.

C) Geometric mean of the non-homotopicity measures showed in panels A and B. Note that
the maximum mean non-homotopicity occurs for W =1, that is the empirical mouse
connectome value.

D) Probability distribution of the basins of attraction, calculated numerically from the spiking
activity of the model (red bars), and reconstructed by the mapping algorithm when applied to
the simulated rsfMRI signals (blue bars), using the attractor structure with homotopicity
enforced. Compare this result with Fig. 3F (obtained for mapping the data into the attractor
structure of the original model without enforcing homotopicity).

E) Difference between the CAPs of the model with non-homotopic attractors, and the
corresponding CAPs as obtained from the model with enforced homotopicity of attractors.
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Figure 7: Comparison with simpler models.

A) Pearson’s correlation between the cross-area mean rsfMRI activity (left) and the FC matrix
(right) of the empirical data, and the corresponding statistics calculated for three network
models: “our” model with directed connectivity and non-linear neural dynamics (red), the
“undirected” model but with non-linear dynamics but undirected structural connections
(green), and the “linear” model with directed structural connections, but with a linear neural
activation function (orange). Statistical comparisons were performed by running, for the three
network models, 100 groups of 100,000 repetitions each, and then by using a two-sample
Welch's t-test to compare these distributions.

B) Comparison between the probability distributions of the values of the FC matrices. Note
that, unlike our model, the undirected and linear models do not fit well the PDF of the
experimental datasets. Color coding as in panel A.

C) Number of stationary and oscillatory attractors of the undirected model, as a function of the
global scaling coefficient W. Note that the linear model has only one (stationary) attractor.

D) Measures of inter-hemispheric non-homotopicity for the spiking activity patterns of the
undirected model.

E) Probability distribution of the basins of attraction, calculated numerically from the
undirected model (red bars), and reconstructed by the mapping algorithm when applied to the
experimental rsfMRI signals (blue bars). The figure insert shows a zoom of the probability
distribution of the stationary attractors in the shaded grey area.

F) CAPs reconstructed from the rsfMRI attractors of the undirected model, and their Pearson’s
correlation with the corresponding empirical CAPs of Fig. 3H.
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Figure 8: Excitation-inhibition balance.

A) Fluctuations of the total (i.e. E plus I) input currents to each cortical population. Excitation
and inhibition balance each other, meaning that the E-1 currents sum up to produce total
currents fluctuating around the firing threshold (dashed horizontal line).

B) Mean spiking activity of the cortical populations.

C) Linear relationship between the total currents to the E-1 populations.

D) Ratio of the E-I components of the currents to each cortical population. The ratio is nearly
constant for the inhibitory populations (red curve), while the excitatory populations of the
DMN show a much larger ratio than the other excitatory subnetworks (blue curve).

E) Sensitivity of our model to external stimulation is maximum at rest, thereby suggesting a
functional benefit of the balanced state. To evaluate sensitivity, we first computed the response
to the perturbation, averaged over the 10 simulation time steps following the stimulus, as a
function of the perturbation strength, and then we quantified sensitivity as the derivative of the
response with respect to the strength of the applied input current.

F) E-I linear relationship and its functional benefit, as a function of a global scaling factor z,
which multiplies the synaptic weights between the E-I populations. Note that the sensitivity to
stimulation is almost maximum for our model (i.e. for z = 1), and that the linear relationship
between the total currents vanishes for large z.
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