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Abstract 

 

Neural network models have been instrumental in revealing the foundational principles of 

whole-brain dynamics. Here we describe a new whole-cortex model of mouse resting-state 

fMRI (rsfMRI) activity. Our model implements neural input-output nonlinearities and 

excitatory-inhibitory interactions within areas, as well as a directed connectome obtained with 

viral tracing to model interareal connections. Our model makes novel predictions about the 

dynamic organization of rsfMRI activity on a fast scale of seconds, and explains its relationship 

with the underlying axonal connectivity. Specifically, the simulated rsfMRI activity exhibits 

rich attractor dynamics, with multiple stationary and oscillatory attractors. Guided by these 

theoretical predictions, we find that empirical mouse rsfMRI time series exhibit analogous 

signatures of attractor dynamics, and that model attractors recapitulate the topographical 

organization and temporal structure of empirical rsfMRI co-activation patterns (CAPs). The 

richness and complexity of attractor dynamics, as well as its ability to explain CAPs, are lost 

when the directionality of underlying axonal connectivity is neglected. Finally, complexity of 

fast dynamics on the scale of seconds was maximal for the values of inter-hemispheric axonal 

connectivity strength and of inter-areal connectivity sparsity measured in real anatomical 

mouse data.  

 

 

Keywords: spontaneous activity; whole-cortex modeling; mesoscopic connectome; binary 

network model; resting-state fMRI; spontaneous symmetry breaking; complexity; directed 

connectivity; co-activation patterns. 
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Introduction 

 

Whole brain resting state fMRI (rsfMRI) has been widely used to map functional organization 

of spontaneous large-scale activity in the human brain [1-3]. These measures have been 

paralleled and informed by computational models of large-scale interactions between areas of 

the brain. Such network models typically incorporate anatomical connections as inferred by 

diffusion tensor imaging, and are used to understand and predict the principles and mechanisms 

of the ensuing collective neuronal dynamics [4-7]. Computational models  have first been 

employed to describe steady-state measures of functional connectivity averaged over many 

minutes of resting state activity [8-12], and more recently to characterize dynamical changes 

in network configuration occurring on the time scale of tens of seconds [13-17]. 

In recent years, studies of rsfMRI in humans have begun to be complemented by similar 

measures performed in preclinical species, including rodents. Mouse rsfMRI studies are 

emerging as important tools to understand the mechanisms and principles of resting state large 

scale brain activity because they can be accompanied by genetic manipulations and causal 

interventions aimed to mimic pathologies [18-20]. The use of physiologically accessible 

species can also crucially allow a more precise measure of the underlying axonal connectivity 

and its directionality [21-23], which cannot at present be estimated in humans with Diffusion 

Tensor Imaging (DTI), as this technique lacks information on fiber directionality, and does not 

allow to reliably resolve long axonal tracts [24]. rsfMRI studies in mice have revealed 

important principles in the organization of neuronal activity, such as the formation of large-

scale functional hubs and the relationship between the mouse axonal connectome and its 

functional connectivity [21,25-27]. Importantly, they have revealed a rich dynamics in mouse 

rsfMRI time series [28,29], which partly recapitulates that seen in humans [30-33] and that is 

governed by a few dominant co-activation patterns of synchronous fMRI activity across areas 

on a time scale of seconds, termed fMRI co-activation patterns (CAPs) [33,34]. 

Because of the growing importance of rsfMRI studies in the mouse, theoretical research 

has begun to extend to network models of large-scale rodent brain activity [35-38]. These 

models of the mouse brain can help resolving many of the still unknown complex 

neurophysiological processes and principles that shape spontaneous rsfMRI activity in the 

mammalian brain. For example, we know little about the mechanisms and neural principles 

leading to the emergence and significance of the infraslow fMRI CAPs. Addressing this issue 

also from a computational standpoint is of crucial importance given the emerging contribution 

of these fluctuating patterns in shaping rsfMRI dynamics in human and animals, and also the 

numerous and conflicting theories related to their origin and relationship with underlying 

cortico-cortical connectivity or modulatory input [28,29,39-41]. Importantly, mouse brain 

models can also crucially complement those in humans because the high resolution directed 

connectomes in this species [23] allows to address the role of fiber directionality in contributing 

to brain dynamics, something which is elusive with human brain modeling. 

To fill this knowledge gap, here we developed a whole-cortex neural network model that 

combines realistic directional anatomical connectivity of the mouse neocortex [21,22,42] with 

simple non-linear firing rate dynamics in each area. The model allows to simulate emergent 

neuronal phenomena elicited by the collective dynamics of the interconnected brain regions. 

We first fitted the model parameters to match the time-averaged pattern of relative activation 

across areas and the time-averaged (static) functional connectivity matrix. Departing from prior 

models, we next used our ability to study in detail the moment-to-moment dynamics of these 

networks to make several novel predictions about the seconds-scale dynamics of the whole-

cortex rsfMRI recordings and its relationship with the underlying anatomy of inter-areal 

connections. Specifically, we succeeded in computing the attractor dynamics generated by the 

model, revealing a rich structure of oscillatory and stationary attractors. Importantly, 
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computational analysis of real-world empirical rsfMRI data revealed that analogous signatures 

of attractor dynamics are present in real data. We also found that features of real CAPs seen in 

mice can be explained by the model attractor dynamics, but only when considering directed 

structural connectivity. The richness and complexity of attractor dynamics was maximal for 

values of the inter-hemispheric connection strength and of inter-areal connectivity sparsity 

found in real anatomical mouse data. 

 

2 Results 

 

We designed a novel large-scale neural network model of the whole mouse cortex and tested 

its predictive value. The model was endowed with a directed matrix of the structural 

connectivity between cortical areas taken from mouse data, generating neural and rsfMRI 

dynamics of each area that are biologically plausible, yet simple enough to allow for a thorough 

numerical and analytical study of their dynamics. The model parameters were selected to fit 

“static” (i.e. averaged over time scales of minutes) rsfMRI activity and functional connectivity 

of real mouse data. The model was then used to make novel predictions about the role of 

specific elements of the structural connectivity in generating whole-cortex attractor dynamics. 

These model predictions were tested on real mouse rsfMRI time series by comparing the 

predictions against “dynamic” (i.e. defined on faster time scales of one or few seconds) features 

of rsfMRI functional connectivity such as CAPs. 

 

2.1 Fitting a large-scale neural model of mouse cortex to time-averaged activity and 

functional connectivity of rsfMRI data 

 

We designed a large-scale neural network model (Fig. 1A) including 34 cortical areas of the 

mouse brain (17 per hemisphere). The chosen number of areas allowed us to study attractor 

dynamics with state-of-the art numerical techniques [43] and reduce rsfMRI data overfitting 

by the model. Each area was modelled to comprise one excitatory (E) and one inhibitory (I) 

mutually interacting neural populations. Each population was described as a threshold logic 

unit [44-46] whose states, representing the spiking activity of each cortical area, were updated 

synchronously at discrete time steps. The total input to each excitatory population included 

excitatory and inhibitory activity from the same area, and the excitatory activity from other 

cortical areas, weighted with the structural connectivity matrix. The total input terms to each 

inhibitory population included instead inhibition and excitation from the same area. Further, a 

noise term was added as input to both inhibitory and excitatory neurons, to express the net 

effect of stochastic components of neural activity. 

The cortico-cortical structural connectivity inserted in the model was derived by the 

mouse axonal connectome [23] by estimating the number of connections from the entire 

cortical source region to the unit volume of the cortical target region [21,22,47]. The structural 

connectivity was multiplied by a global scaling factor (a free parameter determined by best fit 

which was the same for all the connections in the model), which represents the average synaptic 

efficacy per unit of structural connectivity strength. In keeping with previous investigations, 

inter-areal E to E connectivity within and across hemispheres was assumed to be symmetric 

across the sagittal plane – that is, the R to R and R to L connections originating from the R 

hemisphere are respectively identical to the L to L and L to R connections originating from the 

L hemisphere [21,23,47]. rsfMRI BOLD activity in each area resulting from the underlying 

neural activity was modeled as the total input current to the excitatory population in each area 

(Fig. 1B). This assumption is supported by the finding that BOLD correlates best with the local 
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field potential (LFP) [48,49], and that the LFP reflects the synaptic inputs to excitatory neurons 

[48,50]. 

The free parameters of our network model were the global scaling coefficient of the 

structural connectivity (𝐺𝐸,𝐸), the strength of the I to E, E to I and I to I connections (𝐽𝐸,𝐼, 𝐽𝐼,𝐸, 

𝐽𝐼,𝐼, respectively), the membrane potential firing threshold (𝑉thr), and the standard deviation of 

the noise sources (𝜎). We chose the values of these parameters so that they provided the best 

fit of the time-averaged mean of the rsfMRI signal in each area and the subject-averaged cross 

correlation (termed Functional Connectivity, FC) between all pairs of areas that were computed 

from the experimental mouse data (see Methods, SubSec. 4.5). We report the best-fit values of 

these parameters in Tab. S1. 

The experimental rsfMRI data used for model fitting and model validation were collected 

from 15 C57BL/6J wild type mice in the same 34 cortical regions used for the axonal 

connectome [21]  (Fig. 1A). 

To test how well our model reproduced empirical rsfMRI time series, we first compared 

the values of the time-averaged rsfMRI activity in the model (Fig. 2A) and in the empirical 

data (Fig. 2B).  The pattern across areas of rsfMRI activity of the model reproduced remarkably 

well that of the data ( = 0.85, p < 10-5). Importantly, the model also closely reproduced two 

hallmark features of rsfMRI organization in the mouse brain, namely a highly synchronous 

rsfMRI activity within the Default Mode Network (DMN) and the Lateral Cortical Network 

(LCN) [42] and the presence of a robust inter-hemispheric homotopicity exemplified by the 

symmetry of the time-averaged rsfMRI activity between left and right hemispheres [51]. 

We next considered how well our model reproduced static Functional Connectivity (FC). 

We found that the topography of the model’s rsfMRI static FC (Fig. 2D) resembles well ( = 

0.55, p < 10-5) that of the empirical FC (Fig. 2E). Importantly, modelled rsfMRI activity closely 

reconstituted the actual values of FC of the real data. This was apparent in the probability 

distribution of FC matrix entries (Fig. 2F) which was remarkably similar between model and 

real data, with very high overlap of 0.88 between distributions, and almost coincident mean 

values (0.28 vs 0.27 for the model and the experimental datasets, respectively, p = 0.22, two-

sample Welch's t-test). 

To further demonstrate that modelled rsfMRI activity closely reproduced hallmark 

features of static FC inferred from empirical mouse data, we focused on the FC between the 

regions showing the highest average resting state mean activity (Figs. 2G, H for model and 

data, respectively). Our model reconstituted three main cortical subnetworks characterized by 

higher activity, namely the posterior (VIS, RSP, ACA, PTLp) and anterior DMN (PL, ILA, 

ORB, AI), and motor areas (MO, SS) belonging to the LCN. This division into subnetworks 

was further confirmed quantitatively by applying the leading eigenvector method [52] (see 

SubSec. 4.7) to determine the community structure of the subnetworks. The resulting 

architecture of the functional subnetworks is schematized in Fig. 2I. 

To probe whether the model explained features of the FC that go beyond its similarity 

with the structural connectivity matrix, following methods reported in [13], we calculated the 

partial correlation between the theoretical FC matrix of the model and the empirical FC matrix, 

partialized on their common structural connectivity matrix. We found that the resulting partial 

correlation values were 0.47 and 0.40 (p < 10-4), when evaluated on the upper and lower 

triangular parts of the matrices, respectively. This finding implies that our model explains 

genuine functional interactions among areas, beyond what is simply induced by their common 

anatomical matrix. 

Collectively, these results show that our model closely recapitulates key foundational 

properties of static cortical rsfMRI activity and connectivity in the mouse brain. 

We finally compared the model’s spiking activity with the real and model rsfMRI. We 

found a very good agreement between interareal patterns of averaged activity (cf. Fig. 2C with 
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Figs. 2A, B): the correlation between the patterns of time-averaged spiking activity and rsfMRI 

data was  = 0.84 (95% CI [0.69, 0.92], p < 10-5) when considering real rsfMRI data and  = 

0.97 (95% CI [0.95, 0.99], p < 10-5) with modeled rsfMRI time series. The Pearson’s correlation 

between the FC matrix of spiking activity (Fig. S1A) and the FC matrix from empirical rsfMRI 

data (Fig. 2E) was similarly very robust ( = 0.45, p < 10-5) suggesting that spiking activity 

predicted reasonably well the topography of rsfMRI FC. However, the modeled spiking activity 

did not reproduce well the average value of empirical FC (0.04 vs 0.27, p < 10-5, Welch's t-

test), a finding consistent with the temporally sparser nature of spiking activity. 

 

2.2 Attractor dynamics in the network model explains rsfMRI co-activation patterns 
 

Prior investigations of empirical rsfMRI time series revealed the formation of time-averaged 

patterns of functional connectivity such as those described by static resting-state networks, but 

also uncovered a rich temporal organization of resting-state activity. One prominent feature of 

this temporal structure is a dynamic reconfiguration, on the timescale of seconds, into transient 

brain-wide network states, known as rsfMRI co-activation patterns (CAPs), which have been 

consistently found in both humans [33,53]  and mice [28,29]. However, our theoretical 

understanding of how CAPs emerge and are shaped by the concerted interaction of brain areas 

at rest remains unclear. To address this question, we thus used our network model to relate 

CAPs measured from empirical rsfMRI mouse data to the underlying collective dynamics of 

cortical areas. 

In absence of noise, networks tend to evolve into a limited set of patterns of activity, each 

of which is termed an attractor. It is well known that models of recurrently connected neural 

networks like the one we employed here exhibit attractor dynamics [45,46,54]. For each 

attractor, its basin of attraction represents the set of initial activity patterns that eventually end 

up into that attractor in absence of noise (see Figs. S2A and S2B). In the presence of noise, the 

dynamics of such networks wanders between attractors. We thus hypothesized that attractor 

dynamics may also exist in mouse rsfMRI dynamics, and that the emergence and features of 

CAPs may be related to those of attractors. 

To probe this hypothesis, we analyzed the dynamics of our model numerically (see Ref. 

[43] and Methods, SubSec. 4.8). We found that the spiking activity of our whole-brain model 

featured transitions, over a few-seconds-timescale, between two kinds of attractors: stationary 

states and neural oscillations. That is, in the absence of noise, our network converged either to 

a fixed point where the spiking activity is constant over time (similarly to the Hopfield network 

[54]), or to a periodic oscillatory sequence of activity patterns.  Importantly, our model 

predicted a one-to-one mapping between the attractors (and their basins) expressed in terms of 

spiking activity and attractors expressed in terms of rsfMRI activity. This implies that we can 

show model attractors as patterns of rsfMRI activation, and that evidence of attractors in 

rsfMRI time series can be taken as evidence of attractors in neural activity dynamics (see 

SubSec. S3). 

Specifically, we found that our network model with the best-fit parameters had 31 

stationary states and several thousand oscillatory states (Tab. S2). Our network visited the 

basins of the stationary attractors for approximately half of the time, and the basins of the 

oscillatory attractors in the remaining time (Fig. S3C). To illustrate the topography of stationary 

states, for each of the 31 stationary attractors we computed the mean z-score vectors of the 

model’s rsfMRI. We report examples of a representative homotopic (#17) and non-homotopic 

(#13) attractor in Figs. 3A and 3B, respectively. 

Interestingly, our model predicted that 7 out of 31 stationary attractors (1, 7, 11, 17, 23, 

30, 31, plotted in Fig. 3G) were homotopic, and the remaining stationary attractors were non-

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 29, 2022. ; https://doi.org/10.1101/2022.04.28.489908doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.28.489908
http://creativecommons.org/licenses/by-nc-nd/4.0/


 7 

homotopic, and occurred in pairs with spatially opposed configurations ((2, 6), (3, 14), (4, 20), 

(5, 25), (8, 15), (9, 21), (10, 26), (12, 16), (13, 27), (18, 22), (19, 28), (24, 29), plotted in Fig. 

S3F). The fact that the non-homotopic attractors occurred in pairs of spatially opposed 

configurations suggests that the average symmetry of rsfMRI activity may actually mask the 

presence of strong inter-hemispheric asymmetry in moment-to-moment activity. We plotted 

the probability that each attractor occurred in the model in Fig. 3C (red bars), showing that 

some attractors (i.e. 1, 11, 12, 13, 16, 17, 19, 27, 28, 30, 31) were far more likely than others. 

To understand if empirical rsfMRI time series showed signatures of dynamical attractors 

similar to those predicted by our model, we developed an algorithm that maps each point of a 

rsfMRI time series into one of the attractors predicted by the model (see Methods and Figs. 

S2C,D). By averaging over the rsfMRI time points assigned to each attractor, we could estimate 

the typical spatial rsfMRI activation pattern of each putative attractor. By counting the number 

of time points assigned to each attractor, the algorithm next computes the probability with 

which each attractor is visited over time. Since the probability of each oscillation basin is 

typically very low (< 10-5 on average), it would be unrealistic to reconstruct them with a limited 

number of experimental samples. For this reason, we opted to map only the stationary 

attractors, while we collapsed the basins of the oscillatory attractors into a single macroscopic 

basin. By comparing the topography of the attractors and the occupation time predicted by the 

model and estimated from the rsfMRI time series, we could quantify how much the rsfMRI 

time series were compatible with the given attractor dynamics. 

We first validated the performance of the attractor mapping algorithm on the rsfMRI time 

series simulated from our whole-cortex network model with the best-fit parameters. We found 

that the mapping algorithm could reconstruct very well the topography of each attractor (mean 

correlation across all attractors:  = 0.94, p < 10-5). Importantly, also the probability distribution 

of the basins of attraction reconstructed algorithmically from the simulated time series (Fig. 

3C, blue bars) matched very well the one computed by the theoretical analysis of the model 

(Fig. 3C, rs = 0.95, p < 10-5, overlap area 0.81). We next generalized these results by considering 

degrees of inter-hemispheric connectivity different than the best-fit one. As expected, the 

mapping algorithm applied to the rsfMRI time series simulated with the model always 

reconstituted well the attractors computed theoretically by the model itself (Figs. S3A, C). 

Thus, our empirical attractor mapping algorithm recovers with high precision both the 

topography and the temporal occurrence probability of the model attractors. 

To investigate whether the experimental time series of rsfMRI activity showed a temporal 

structure compatible with the attractor dynamics of the best-fit network model, we next applied 

the attractor mapping algorithm to empirical rsfMRI data. When we used the algorithm to map 

the experimental time series into the attractors of the model with the best-fit parameters, we 

found that the rsfMRI time series mapped very well into these attractors. Specifically, a 

comparison of z-score vector plots of empirical rsfMRI signal averaged over all the states the 

algorithm assigned to basins of attractors 17 and 13 (Figs. 3D, E) with their theoretical 

counterparts (reported in Figs. 3A, B), revealed a strong similarity, corroborating the goodness 

of the mapping algorithm ( = 0.78, all attractors, p < 10-3, see Fig. S3D). The probability of 

time occupancy of the basins of attraction estimated from real data also matched remarkably 

well that obtained from a theoretical analysis of the best-fit model (rs= 0.93, p < 10-5, overlap 

area, 0.81, Fig. 3F). These results show that the experimental rsfMRI time series are compatible 

with a structure of attractor dynamics similar to the one generated by our best-fit model. 

Importantly, the match between empirical rsfMRI time series and the model’s attractor 

structure was maximal when comparing the empirical data with the model attractors 

specifically produced when using as model parameters those determined by best fit of the time-

averaged activity and functional connectivity. Computing this match with a different set of 

model parameter values produced a weaker match between rsfMRI and model attractors (Fig. 
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S3C). Thus, the second-scale dynamics of the empirical rsfMRI time series is compatible with 

attractor dynamics of the specific form generated by the best-fit model, despite the parameters 

of our model not being optimized to fit seconds-scale dynamics. 

We next asked whether the model’s attractor dynamics could explain the emergence of 

CAPs in real data. For each time frame of empirical mouse rsfMRI activity, we compared the 

CAP it was assigned to (by the empirical clustering of the whole brain data done in Ref. [28]) 

to the cortical model’s attractor it was mapped into (by the attractor mapping algorithm). CAP 

mapping in the mouse was made by clustering all the whole-brain empirical rsfMRI time series 

conservatively into 6 different clusters, each representing a recurring pattern of rsfMRI co-

activation. Such a relatively small number of different clusters (and thus of different CAPs) 

was chosen to ensure a high reproducibility of the procedure across datasets [28]. This revealed 

three distinct CAPs each with a complementary anti-CAP state, i.e. a mirror motif exhibiting a 

strongly negative spatial similarity to its corresponding CAP (Fig. 3H). Each imaging time 

frame was mapped to a single CAP and a single attractor. Given that there are more model 

attractors than empirically determined CAPs, each of the 6 CAPs could potentially capture the 

contribution of several attractors. We thus reconstructed each CAP from the model’s attractor 

dynamics as a sum of the spatial activation of each attractor, weighted by the empirical 

probability that a data point assigned to a CAP was assigned to any given attractor (Fig. S3E). 

We found an excellent match between empirically determined and model-predicted CAPs, with 

Pearson’s correlation between the two ranging between 0.45 and 0.73 (p < 10-2) across CAPs 

(Fig. 3I). This result shows that the attractor dynamics of our model predicts well the 

topography of empirical CAPs. For each reconstructed CAP, the empirical probability that a 

data point assigned to a CAP was assigned to any given attractor strongly correlated with the 

model’s prediction of the probability of occupancy of each basin of attraction (Fig. 3C, 0.61< 

rs < 0.90, for all CAPs, p < 10-3). Thus, the model predictions of the topography of the attractors 

and the probability with which the attractors are visited over time allowed us to predict the 

topography of the empirical CAPs. Importantly, this correspondence between the moment-to-

moment dynamics of the model and that of the real data was obtained despite the model’s 

parameters being not fitted to replicate empirical CAPs. 

Together, these findings suggest that CAPs are, at least in part, an observable 

manifestation of a whole-cortex attractor dynamics of the type observed in our network model. 

 

 

2.3 The model explains correlation and anti-correlation patterns in functional connectivity 

after global signal regression 

 

Our results above show that our model can predict the occurrence of attractors resembling 

features of CAPs observed in empirical mouse rsfMRI data. A prominent feature of both 

attractors in the model and CAPs is that they show concurrent occurrence of peaks and troughs 

of rsfMRI activity across cortical regions. For example, in several of the model’s attractors and 

in the experimentally obtained CAPs we observed a negative correlation of ACA and RSP in 

the DMN network with the SS area in the LCN network (Fig. 3). These patterns of 

instantaneous antagonist activity may appear at odds with the fact that, when time-averaging 

data over several minutes, the functional correlation between cortical areas is largely composed 

of positive entries [51]. We asked whether our model could reconcile these observations. 

Specifically, we hypothesized that large-scale networks could generate global fluctuations of 

overall mean activity, which would in turn push the time-averaged FC matrix toward positive 

values, and partly obscure more nuanced short scale interactions between areas that depend on 

the structural interactions between areas. 
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To test this hypothesis, we computed, both in the best-fit model and in the experimental 

rsfMRI data, the FC matrix after regressing the global signal. Note that, although this 

computation was made using all experimental data collected over minutes, the FC computed 

after regressing the global signal is a measure capturing also shorter time-scale interactions 

(because it uses the instantaneous relationship between the global signal and the values of 

activation of each area). 

We report in Figs. 4 the FC matrices obtained from the model and experimental rsfMRI 

time series, after global signal regression [55]. A strong similarity between these two matrices 

was apparent when plotting results across all pairs of areas (Fig. 4A vs Fig. 4B,  = 0.57, p < 

10-5) or when zoomed in across the subset of 10 areas with stronger mean activity, including 

both intra- and inter-hemispheric FC (Figs. 4D-G). The global-signal regressed FC of the model 

and the data were also similar in terms of the distribution of the values across entries (Fig. 4C, 

overlap of 0.82). It is important to note that in our fitting procedure we did not attempt to 

maximize the similarity of the FC matrices obtained after the global signal regression. For this 

reason, the strong similarity between empirical and model matrices does not trivially reflect 

the similarity of the matrices obtained without global signal regression, but additionally reflects 

the model’s ability to correctly capture the relevant statistics of the global signal, even when 

not fitted to do so. 

Importantly, our model also predicts the formation of robust anti-correlations between 

specific brain areas after global signal regression, a hallmark of this preprocessing step in 

human and animal rsfMRI [55-58]. Specifically, in the mouse brain, global signal regression 

has been shown to promote negative correlations between associative and unimodal sensory-

motor regions of the DMN and LCN respectively [30]. This is shown in the empirical and 

model FC matrices of Fig. 4, showing prominent positive correlations between DMN regions 

ACA and RSP, while these having negative FC with SS from the LCN. The antagonistic 

interaction between DMN and LCN network hubs is also observed in the transient, opposite 

co-activation of empirical CAPs (Fig. 3H), which were well predicted by the reconstructed 

CAPs through the model attractor dynamics (Fig. 3I, CAPs 2 and 3). Other CAPs with more 

global cortical synchrony (CAPs  4 and 5) show transient co-activations between regions from 

both DMN and LCN, corroborating the contribution of CAPs to FC structure as a weighted 

sum of transient correlations that add up to the observed FC matrices. These observations 

suggest that the ability of our model to predict CAP through attractor dynamics is related to its 

ability to predict anti-correlations in global signal regressed rsfMRI data. In summary, these 

results show that our model of interactions between cortical areas can reproduce the 

instantaneous pattern of interactions observed upon regression of the global signal. Together 

with the CAP results described in the previous section, these findings support the notion that 

the rich dynamics of instantaneous co-activation observed in rsfMRI data arise from the 

interaction between cortical areas, and that our model can accurately explain and reproduce 

them.  

 

 

2.4 Relationship between complexity of cortical activity, inter-hemispheric coupling 

strength and sparseness of the structural connectivity 

 

We showed above that our model predicts how interactions between structurally connected 

brain regions lead to a rich repertoire of attractor dynamics and network states. Here, we use 

this model to explore the functional implications of the network structure. In particular, we 

focus on how the interactions between the cortical areas give rise to complexity of collective 

behavior. We used our model to investigate what may be the key structural features critical for 

generating complexity in large-scale cortical activity. 
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To do so, we quantified several forms of complexity of the mouse cortex, as a function 

of key network connectivity parameters. Specifically, we assessed how the functional 

complexity, the dynamical connectivity (DC) and Lempel-Ziv complexity (LZC) [59] depend 

on connectivity properties such as the strength of the inter-hemispheric pathways and the 

sparseness of the long-range connections. 
We simulated our network model after systematically modifying the structural 

connections between cortical populations in two distinct ways. First, we modify the inter-

hemispheric connectivity by means of a global inter-hemispheric scaling coefficient 𝑊, which 

multiplies the synaptic weights of all the inter-hemispheric structural connections. 𝑊 = 0 

corresponds to the case when the two hemispheres are structurally disconnected, while 𝑊 = 1 

corresponds to the original experimentally measured values for the connectome. Second, we 

perturbed the structural connections between the excitatory populations by removing all the 

links below a structural threshold 𝑇. The case 𝑇 = 0 corresponds to the original connectome, 

while larger values of 𝑇 produce sparser versions of the connectome containing only the 

strongest connections. 

Functional complexity [60] quantifies the element-wise variability of the FC matrix, and 

high values of functional complexity are thought to reflect an efficient, spatially distributed 

information processing capability of the neural network under study. The LZC measures the 

regularity of spatio-temporal activity. A more random and diverse set of activity patterns would 

therefore have higher LZC values. A limitation of functional and Lempel-Ziv complexities is 

that they are measures reflecting dynamics time-averaged over long time scales. Thus, we 

accompanied these two measures with an additional one that truly captures the moment-to-

moment dynamics. We term this measure Dynamical Complexity (DC), and we quantify it as 

the number of accessible dynamic attractors during spontaneous activity. This measure is of 

interest because the number of different attractors corresponds to the number of different 

dynamical regimes that the network can reliably sustain. This is unlike the LZC, which 

measures the state space that the network can span. 

In principle these measures can be computed both on simulated rsfMRI and spiking 

activity. Given that we found in both cases essentially identical patterns of dependency of the 

complexity on the network parameters for DC and LZC, and very comparable dependencies 

for Functional Complexity, we report only the values of complexity obtained for spiking 

activity. 

The dependence of these measures of complexity on the inter-hemispheric connectivity 

scaling parameter 𝑊 is shown in Figs. 5A-C. All three measures showed a decrease of 

complexity for high values of 𝑊, meaning that abnormally strong inter-hemispheric 

connectivity would actually reduce activity complexity. An intuitive explanation for this is that 

excessively strong inter-hemispheric connectivity would increase the overall input current to 

each cortical area, thereby increasing their firing probability. This results in the formation of a 

single stationary attractor, where all the areas fire synchronously, and therefore in a strong 

decrease of the overall complexity of network activity. 
Both functional complexity (Fig. 5A) and DC (Fig. 5B) decreased when we used inter-

hemispheric connectivity values smaller than the one of real data (𝑊 < 1). In this case inter-

hemispheric input adds only marginal variability to the total input to each area. As a result, the 

network accesses fewer attractors and therefore produces a lower DC. Moreover, in the limit 

𝑊 → 0, the two hemispheres become more and more functionally disconnected. In turn, this 

less rich set of functional connections results in a decreased functional complexity. Functional 

and dynamical complexity peak for intermediate values of 𝑊. The number of oscillatory 

attractors, which dominates the total number of attractors, has a local peak for the original 

model of the mouse brain (𝑊 = 1), see Fig. 5B. 
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Unlike the other two measures, LZC (Fig. 5C) did not show a drop at small values of 𝑊, 

but it plateaued over a wide range of 𝑊 values. Like functional and dynamical complexity, 

LZC decreased for large values of 𝑊. The reason why LZC does not decrease for small values 

of 𝑊 is that this measure of complexity reflects variability and diversity of all activity patterns 

expressed by the network, rather than (as for DC) its ability to generate patterns that can be 

robustly retrieved through attractor dynamics. When the inter-hemispheric connectivity is very 

low, activity patterns are highly irregular in both space and time (because the decoupling 

between hemispheres does not force homologous areas across the hemispheres to synchronize), 

but the variability of the activity patterns is not sufficient to let the network access a large 

number of attractors. To summarize these results, in Fig. 5D we plot the geometric mean of the 

different measures of complexity described so far. The curve shows that the original model 

(𝑊 = 1) features the best trade-off between these measures, therefore suggesting that the 

mouse brain operates at an optimal working point that maximizes the network variability and 

versatility. 
We next investigated the role of the weakest structural connections in determining the 

network dynamics. We run the model after thresholding the structural connections with a 

threshold value 𝑇  that was systematically varied. The number of structural connections of the 

mouse cortex with values above 𝑇 are plotted in Fig. 5E. We studied how the number of 

stationary (Fig. 5E) and oscillatory (Fig. 5F) model attractors varied with 𝑇. The number of 

stationary attractors was stable until 𝑇 = 0.2 and then dropped dramatically, suggesting that 

stationary states are mainly created by a “skeleton” of stronger connections. The number of 

oscillatory attractors declined steadily and strongly with increasing 𝑇, starting from very low 

𝑇 values. This suggests that the weaker anatomical connections create oscillatory attractors, 

and therefore cover a distinct dynamical role with respect to the stronger connections which 

regulate the number of stationary attractors (see SI Sec. S4, where we explain analytically this 

phenomenon). As a result of the decrease in the number of oscillatory attractors, the functional 

complexity of the network also strongly and steadily decreases with 𝑇 (Fig. 5F). The weakest 

links are also the longest, because the mean length of the connections in the network decreases 

with 𝑇 (Fig. 5F). Thus, our results support recent suggestions [61] of a possible role of the 

longest connections in adding variability to network dynamics and FC. 

While the functional complexity and the overall DC decrease monotonically with 𝑇, LZC 

was not affected by the removal of structural connections and it has a constant value when T 

was varied between 0 and 0.3 (not shown). Thus, LZC is less sensitive in detecting the 

variations of complexity elicited by the variations in the network structural connections. 

 

 

2.5 Inter-hemispheric non-homotopic attractor dynamics due to inter-hemispheric 

structural coupling 

 

We next considered the inter-hemispheric topography of the attractor dynamics of the model. 

Given that excitatory inter-hemispheric coupling should intuitively synchronize homologous 

areas across the hemispheres, we investigated how the strength of inter-hemispheric structural 

coupling affects the homotopicity of the attractors. We found (Fig. 6A) that the number of non-

homotopic attractors (with mirror-asymmetric activity across the sagittal plane) was small for 

large values of 𝑊, as expected by the simple intuition that strong inter-hemispheric coupling 

leads to strong inter-hemispheric synchronization. Surprisingly, the number of non-homotopic 

attractors peaked at intermediate values of inter-hemispheric connection strengths (𝑊~1) 

rather than at null inter-hemispheric strength (Fig. 6A). This result was confirmed by 

computing (Fig. 6B), as function of 𝑊, the inter-hemispheric Hamming distance between 

spiking activity of homologous excitatory populations across the hemispheres, a measure of 
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non-homotopicity that does not rely on computing attractors. The geometric mean of these 

quantities, which recapitulates the tendency of all these properties, also peaked for 𝑊~1 (Fig. 

6C). 

Thus, although our best-fit model exhibited dynamics that was homotopic when averaged 

over long-time scales of minutes, it does instead predict, for realistic values of inter-

hemispheric connectivity (𝑊 ~1), the presence of non-homotopic stationary and oscillatory 

attractors at the time scale of seconds. This suggests that the dynamics of the mouse rsfMRI 

may have significant moments of non-homotopic activity originating from its attractor 

dynamics even if its overall static average is homotopic. 

To assess whether the non-homotopicity in the model attractors had a counterpart in the 

empirical rsfMRI data, we used our algorithm to map the data into either the attractor structure 

of the original model (as done above in Fig. 3) or to an attractor structure obtained by artificially 

enforcing homotopicity (see Methods). We found that mapping the empirical data into 

homotopic model attractors predicted less well attractor occupancy probability than mapping 

into the original model with non-homotopic attractors (rs = 0.83 vs rs = 0.93, Fig. 6D). This 

suggests that the non-homotopicity of the attractors space is important to describe the moment-

to-moment dynamics of the empirical data. 

Furthermore, the importance of non-homotopic moment-to-moment dynamics is also 

reflected in the reconstruction of the topography of empirical CAPs from the attractors. In Fig. 

6E we report the differences between the CAPs of the original model with non-homotopic 

attractors, and the corresponding CAPs as obtained from the model with enforced homotopic 

attractor structure. Model CAPs 1 and 6 exhibited significant decrease in the correlation with 

the corresponding empirical CAPs when using homotopic attractors (see SubSec 4.11). 

Specifically, the correlation for CAP 1 decreased from 0.59 to 0.56, while for CAP 6 it 

decreased from 0.56 to 0.51. Thus, the non-homotopicity of attractors explains features of the 

empirical data that are lost when artificially making them homotopic. 

The formation of non-homotopic activity in the presence of inter-hemispheric excitatory 

coupling is counterintuitive but can be explained within the mechanism, well-established in 

theoretical physics of interacting systems, of Spontaneous Symmetry Breaking [62]. We report 

in SI, Sec. S2, an explanation of this mechanism for neural networks. 

Together, these results suggest that, while allowing an inter-hemispheric exchange of 

information through the corpus callosum and the anterior commissure pathways, the cortex can 

dynamically circumvent structural constraints to process information in parallel between 

hemispheres. 

 

 

2.6 Importance of directionality of connectivity and non-linearities in rsfMRI neural 

dynamics 

 

Our network model included two important aspects of biological plausibility not always present 

in standard large-scale rsfMRI modelling: directed structural connections and threshold-based 

non-linear neural dynamics. To test the relative contribution of these features, we compared 

our whole-brain model to two simpler models obtained either by symmetrizing the structural 

connections between the excitatory populations (thus making the connectivity un-directed), or 

by linearizing the network equations. In both cases, we derived a new set of best-fit parameters 

(Tab. S1), following the same fitting procedure that we used for the original model (SubSec. 

4.5). 

We first considered how the models reproduced static properties of the empirical rsfMRI 

data. The Pearson’s correlation between the static across-area distribution of the rsfMRI signals 

obtained from data and the models (Fig. 7A) was similar across different models, but was 
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higher for our model (p < 10-5, two-sample Welch's t-test). Moreover, our model was 

considerably better than the linear one at reproducing the topography of the static FC matrix 

(Fig. 7A), although it did not outperform the undirected model. However, unlike our model, 

the undirected and the linear models failed to accurately reproduce the values of the empirical 

rsfMRI static FC (Fig. 7B). The overlap between the three theoretical FC values distributions 

and the empirical one was 0.88, 0.55, 0.72 for our model, the undirected and linear models, 

respectively (Fig. 7B). Thus, directionality of structural connectivity and neural non-linearities 

help reproducing static aspects of the empirical rsfMRI data. 

We next considered how different models accounted for the empirical rsfMRI moment-

to-moment dynamics. We found a major reduction in the number of attractors, and thus of the 

dynamical complexity, generated by the undirected and the linear model compared to our 

model (Fig. 7C).  The undirected model generated much fewer attractors than the original 

model. For 𝑊 = 1, we found only 6 stationary states in the undirected model, compared to 31 

stationary states in our model (Tabs. S2 and S3), and 8,958 rather than 34,877 oscillations.  

Moreover, while our model exhibited the largest number of attractors at 𝑊~1 (Fig. 5B), the 

dynamical complexity and attractor numbers of the undirected model peaked at 𝑊 = 0.5 (Fig. 

7C). Thus, the undirected model exhibits poorer attractor dynamics, which would not be 

maximized by values of inter-hemispheric anatomical connection strength equal to those of the 

mouse brain. Similarly, indices of non-homotopic activity (i.e. diverging activity across some 

of the homologous areas in the two hemispheres) similar to those considered in Figs. 6A, B did 

not peak (Fig. 7D) at 𝑊~1 for the undirected model, as it happened for our model (Fig. 6). 

Importantly, we found that the empirical rsfMRI time series did not map well into the 

attractors of the undirected model. The Spearman correlation between the probability of 

occupancy of the attractors predicted by the model and the distribution reconstructed by the 

mapping algorithm was not significant (rs = 0.43, p = 0.34, Fig. 7E), and the undirected model 

was particularly bad at describing the relative probability of stationary attractors (insert of Fig. 

7E). The impoverishment of attractor dynamics in the undirected model led also to a much 

poorer reconstruction of the topography of the empirical CAPs from its attractor basins (cf. 

Fig. 3I with Fig. 7F). Thus, the undirected model lacks the ability to predict, from attractor 

dynamics, the features of most experimentally observed CAPs. 

The attractor dynamics of the linear model was even poorer, as it exhibited only one 

stationary attractor (which is always stable for 𝑊 ∈ [0, 16.4]). Given that there was only one 

attractor, we did not attempt to map CAPs and attractors in this model. 

In sum, the neural non-linearities and the directionality of the anatomical connectivity 

inserted in our model only marginally increased the accuracy of model predictions of the static 

properties of empirical rsfMRI data. However, the non-linearities and the directionality 

information of the connectome deeply affected the fast network dynamics on the scale of 

seconds. Specifically, they were crucial to create richer attractor dynamics in the model, which 

ultimately allowed the model to better explain moment-to-moment CAPs of empirical data. 

 

 

2.7 Model-based estimation of excitation-inhibition balance in cortical resting-state 

dynamics 

 

Given that our model included excitatory (E) and inhibitory (I) populations in each area, we 

finally examined which local E-I interaction patterns emerged from the best-fit model. We first 

investigated the balance between E and I currents received by either E or I populations in each 

area. The model predicts that during resting state activity this balance is such that the total input 

current to each population (the signed sum of the E and I input currents) fluctuates relatively 

close to the threshold for firing (Fig. 8A). Consequently, the time-averaged spiking activity in 
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both the E and I populations in each area (Fig. 8B) was at an intermediate level of 0.4 to 0.7, 

measured in a normalized scale in which zero indicates total silence and 1 indicates continuous 

firing always saturated at the maximal level. The overall E-I balance is further highlighted by 

the finding of a linear relationship between the total input current to the I population and the 

total input current to the E population in each cortical area (Fig. 8C), meaning that the areas 

with higher total input current to the I population have also a proportionally higher input current 

to the E population, which maintains E-I interactions balanced. 

While there was a proportionality of the total currents received by E and I populations in 

the same area, some areas had a higher ratio of E/I input currents. In particular, areas in the 

DMN, which had high activity both in empirical and model rsfMRI time series, and whose total 

currents to E neurons fluctuated slightly above the threshold in the model (Fig. 8A), received 

a higher proportion of E input currents to the E population (Fig. 8D). The ratio of E/I input 

currents received by the I populations remained relatively stable across areas (Fig. 8D). Note 

that during the fitting procedure we did not attempt to achieve neither the linear relationship 

between the total input currents to the E-I populations, nor the balance of the mean firing rates 

described above. These properties emerged in the dynamics of our best-fit network. 

We next investigated the functional consequence of the locally balanced nature of the E-

I interactions predicted by our model. We computed the sensitivity of the response of the whole 

cortex to the application of an external perturbation current to all the populations. Results (Fig. 

8E) indicate that the sensitivity is maximal around the value of 0 (unperturbed resting state 

activity) for the input current. This is because in the resting configuration the total input 

currents on each cortical area fluctuate around the firing threshold (see Fig. 8A), where weak 

perturbations in the stimulus intensity elicit the largest variations in activity. In sum these 

results suggest the presence of a balanced nature of E-I local interactions in resting state 

activity, and a possible advantage of high sensitivity to perturbation (and thus high stimulus 

information coding capabilities) of the resting state configuration. 

To highlight the importance of the E-I interactions predicted by the parameters of the 

best-fit model, we multiplied the synaptic weights of the local E to I and I to E structural 

connections by a global scaling coefficient 𝑧, so that the E-I populations are structurally 

disconnected when 𝑧 = 0, while they are connected by the best-fit weights when 𝑧 = 1. We 

then studied the network dynamics as a function of the rescaling parameter 𝑧. We found that 

both the linear relationship between total input currents to E and I populations and the 

sensitivity of cortical activity to the application of an external input current peaked at the 𝑧 ~ 1 

value, corresponding to the parameter values estimated by the model best fit to the empirical 

rsfMRI data. This suggests that the mouse brain at rest not only keeps E and I interactions 

balanced, but also that this balance is optimal for encoding of external stimuli. 

 

 

3 Discussion  

 

Recent years are witnessing a growing interest in modelling and understanding the dynamics 

of rsfMRI activity, not only in the human brain but also across species. This work has 

prominently included measuring and modelling the rsfMRI of the mouse brain [35-38]. The 

mouse has the unique advantage of the availability of a precise measure of the whole-brain 

axonal connectivity and its directionality [21-23,42]. Here we contributed to this endeavor by 

developing a novel whole-brain model of the resting state activity of the mouse cortex. 

Our work adds novel concepts and predictions to both existing mouse whole-brain 

modelling and other similar models developed for humans [6,8-10,13]. Specifically, our model 

made new predictions about the dynamics of resting mouse cortex in terms of attractor 

dynamics over fast time scales of seconds, which we successfully validated against several key 
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findings in the empirical data. We also manipulated the model’s structural connectivity to make 

novel predictions about how its structure generates complexity of dynamics and inter-

hemispheric non-homotopic activity.  

 

 

3.1 Progress with respect to previous rsfMRI models in studying whole-brain attractor 

dynamics 

 

Most whole-brain models simulate the rsfMRI signals either by modeling neurovascular 

coupling with a synaptic gating variable  [9-11,13,63], or by employing neural mass models 

[6,12,14,15,64]. Our model instead uses a binary non-linearity for describing neural spiking 

activity. Such binary firing rate models have been rarely used for whole-brain networks [5,7], 

but are of great interest because they generate attractor dynamics in finite configurations space, 

which can be studied by combining analytical methods with state-of-the-art numerical 

techniques [43]. Attractor dynamics is a major theoretical feature of recurrently connected 

neural networks, yet its presence in large-scale brain dynamics has been only seldomly 

investigated (see e.g. Refs. [7,13] modelling the human brain). Our work adds to and expands 

previous attempts to predict attractor dynamics from large scale models in several ways. 

First, the numerical formalism we used allows an exhaustive coverage of attractor states 

including stationary and periodic attractors. For example, in our model with a parcellation into 

34 areas we could map 31 stationary attractors and thousands of oscillatory attractors, whereas 

previous work mapped no oscillatory attractors in humans [7,13] and investigated simple 

oscillatory dynamics in a mouse model with binary structural connections [38]. The ability to 

map extensively attractors was an advance of technical nature, but it was essential to 

characterize the properties of moment-to-moment, fast scale dynamics of the model and to 

compare it with the dynamics of empirical rsfMRI data on a time scale of seconds. This allowed 

us to provide predictions and mechanistic hypotheses about possible novel dynamic features 

such as inter-hemispheric non-homotopicity and aspects of dynamic complexity imputable to 

attractor dynamics. These predictions go beyond previous seminal work on attractor dynamics 

in humans, which was primarily focused in relating attractor dynamics to time-varying FC 

[7,13]. 

Second, our study extended previous work on attractors in the human brain to the mouse 

brain. This allowed us to investigate the role of the directionality of anatomical fibers, a feature 

not available to a comparable extent for the human brain, in shaping attractor dynamics. We 

found that the richness of attractor dynamics and the good match between empirically rsfMRI 

dynamics and attractor properties was found only when considering the directionality of the 

anatomical connectivity of the real mouse brain. Using an undirected version of the anatomical 

connectivity matrix (conceptually similar to that measured with DTI) led to an impoverishment 

of the model’s attractor landscape and of the ability to predict real rsfMRI dynamics. 

Third, our study of empirical mouse rsfMRI time series with an attractor mapping 

algorithm found a topography of putative attractors and a dynamics of attractor basin 

occupancy compatible with that predicted by the model. These results suggest that attractors 

dynamics explains some features of resting state activity. The evaluation of plausibility of 

attractor dynamics on empirical rsfMRI data was facilitated by the fact that in our model the 

structure of the basins of attraction and the probability with which each basin is visited over 

time during spontaneous dynamics was the same both for spiking activity and for the rsfMRI 

activity, or, in other words, attractor dynamics in the model was invariant to transformations 

of neural activity into rsfMRI. This property held also for the relative distribution of activity 

over areas, but did not hold for the static FC metric [65], which was similar in shape but had 

different distribution of values when comparing spiking and rsfMRI activity in the model. 
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Finally, we were able to relate quantitatively attractor dynamics to CAP dynamics found 

on the scale of seconds in empirical data. The possible origin of these CAPs in terms of neural 

processes has been debated. CAPs may reflect a variety of neural phenomena, including inter-

areal connectivity, widespread cortical changes associated with changes in brain state, and 

brief, event-like activity rather than sustained and possibly oscillatory interactions [33]. 

However, there is still relatively little understanding in terms of models of how CAPs may 

originate. Importantly, our model also provides a possible mechanistic explanation that relates 

the emergence of CAPs to anatomical cortico-cortical connectivity. Since attractor dynamics 

originates from the underlying anatomical inter-areal connections, our work provides model-

based evidence that CAPs reflect at least in part the result of neural interactions across areas, 

and it explains how they may mechanistically arise from generating attractors. Because 

attractors represent minima in the energy landscape of the network, our work also suggests that 

changes in CAPs can be taken as indicators of changes in the energy landscape of the brain, a 

topic of current active research [40].  Future studies will determine how the interaction between 

such attractor cortical dynamics and neuromodulatory systems such as the ascending arousal 

system may shape the energy landscape of the cortex [40]. The ability of the model’s attractors 

to explain empirical CAPs emerged even though the model was fitted only to maximize static 

features of rsfMRI activity, not its seconds-scale dynamics. Thus, the insurgence of network 

states reminiscent of empirical co-activation patterns represent a genuine prediction of the 

model. 

By enabling to relate anatomical connectivity, attractors and rsfMRI CAPs our formalism 

might be crucially employed in future studies to make empirically testable predictions about 

how alterations of the connectome resulting from injury or neurodegenerative disorders may 

alter seconds-scale brain dynamics.  

 

 

3.2 Model predictions of rsfMRI functional connectivity properties 

 

It has been long established that network models with realistic anatomical connectivity can fit 

well the static long-time rsfMRI FC. Our model confirms this finding. In this respect, it was 

notable that our model predicted the presence of relatively strong inter-hemispheric FC 

between homologous areas across hemispheres. This strong FC is present in empirical data, but 

has not been robustly attained in previous models [9,10,36]. 

Importantly, our model predicted well the empirical FC obtained after regressing out the 

global signal, even if its parameters were not fitted to predict it, thereby reinforcing the power 

of our model to capture real-data dynamic features beyond what it was optimized to reproduce. 

While static FC had all positive entries, the regressed FC showed interesting patterns of anti-

correlations across areas that were also visible in CAPs and were predicted well by the model. 

These results contribute to the ongoing debate about the validity and significance of global 

signal regression in rsfMRI [66]. While some studies consider the global signal as source of 

noise, promoting global signal regression as a crucial preprocessing step for removing residual 

head motion [67], other studies provided robust evidence for considering the global signal a 

real neural phenomenon, highlighting how it relates to FC topography [68-70], and to CAPs 

topography and dynamics [28,29]. The observation that our model predicts features of 

regressed signals only from modelling how interactions between cortical areas shape whole 

cortex dynamics, supports the notion that the global rsfMRI signal potentially carries important 

information about how different areas interact to produce brain dynamics.   
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3.3 Model predictions on the relationship between anatomical connectivity and seconds-

scale whole-brain dynamics 

 

Our work explored the role of inter-hemispheric anatomical connectivity by rescaling in the 

model its strength with respect to the original structural connectivity matrix, and by studying 

how inter-hemispheric connectivity strength variations affect the seconds-scale rsfMRI 

dynamics. By doing so we obtained notable predictions. First, values of inter-hemispheric 

connectivity similar to those found in the real mouse brain maximize the number of attractors, 

and thus dynamic complexity of the moment-to-moment activity. Larger or smaller values of 

inter-hemispheric connectivity would generate much smaller values of attractors numbers and 

dynamic complexity. We speculate that dynamic complexity may have an impact on the 

function of the brain because it represents the repertoire of brain states that can be reliably and 

dynamically generated starting from arbitrary initial conditions. Therefore, larger values of this 

complexity may enable a larger repertoire of information processing capabilities. Fitting our 

model to rsfMRI activity under different behavioral states could help validating empirically a 

possible role in brain function of the dynamic complexity we evaluated here. 

Second, values of inter-hemispheric connectivity similar to those of the real mouse brain 

not only led to higher dynamic complexity, but also to higher values of inter-hemispheric non-

homotopicity in seconds-scale cortical activity. Despite our model included an inter-

hemispheric homotopic axonal connectivity matrix, it predicted the formation of significant 

differences between the dynamics of the two hemispheres. This inter-hemispheric non-

homotopicity was predicted by the model to happen only over fast timescales (of the order of 

seconds), and was averaged away when static activity and FC were computed over the several 

minutes of a whole rsfMRI time series. Our model predicts that this phenomenon arises from 

spontaneous symmetry breaking originating as a consequence of the strong difference between 

the strength of the intra and inter-hemispheric structural connections. This functional symmetry 

breaking may provide the brain with the possibility to exhibit some degree of parallelization 

between information processing across hemispheres. With this mechanism, the mouse brain 

might efficiently partition the computational load between its hemispheres, so that one can 

work independently from the other, while allowing at the same time inter-hemispheric 

information transfer.  These model predictions suggest that the observed levels of inter-

hemispheric connectivity may provide a good trade-off between dynamic complexity and 

parallel information processing. The predictions could be further tested in future investigations 

by fitting our model to rsfMRI activity in animals with impaired inter-hemispheric 

connectivity, to evaluate how the number of attractors and the structure of attractor dynamics 

may vary under these conditions. 

Finally, by studying the model’s dynamics after thresholding the weakest connections, 

we predicted that the number of stationary attractors is more sensitive to the strongest 

anatomical connections (which on average select shorter connections, see Figs. 5F and S1B), 

while the number of oscillatory attractors, which exceed the stationary ones by at least three 

orders of magnitude, is highly sensitive to the presence of the weaker connections (which are 

also on average the longer-distance ones). These model predictions suggest a possible role of 

long-distance pathways in shaping dynamics, compatible with model predictions obtained 

recently based on very different analysis formalisms [61]. Under the assumption that larger 

attractor numbers and higher dynamical complexity help information processing, these results 

are also compatible with other recent model-based proposals that long-range connections 

enhance information processing in the brain [15]. 
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4 Materials and methods 

 

 

4.1 Resting state fMRI data acquisition 

 

The rsfMRI dataset used in this work consists of N = 15 scans in adult male C57Bl6/J mice. 

These datasets were published previously[28]. The full rsfMRI time series were made publicly 

available in these previous  publications. As described in the original publications, all in vivo 

experiments were conducted in accordance with the Italian law (DL 26/214, EU 63/2010, 

Ministero della Sanità, Roma) and the recommendations in the Guide for the Care and Use of 

Laboratory Animals of the NIH. Animal research protocols were reviewed and consented by 

the animal care committee of the Italian Institute of Technology, and Italian Ministry of Health. 

Animal preparation, image data acquisition, and image data preprocessing for rsfMRI 

data have been described in full detail elsewhere [28,30,31]. Briefly, rsMRI data were acquired 

with a 7.0 Tesla scanner (Bruker Biospin, Ettlingen) using a 72 mm birdcage transmit coil, and 

a four-channel solenoid coil for signal reception. Single-shot EPI time series were acquired 

using the following parameters: TR/TE 1200/15 ms, flip angle 30°, matrix 100 × 100, field of 

view 2 × 2 cm2, 18 coronal slices, slice thickness 0.50 mm, 500 (n = 15) volumes and a total 

rsfMRI acquisition time of 10 minutes, respectively. As in [28], rsfMRI time series 

preprocessing included: removal of the first 50 frames (1 minute), despiking, motion 

correction, and spatial normalization to an in-house mouse brain template with the same native 

resolution as raw EPI volumes. Head motion traces and the mean ventricular signal (average 

rsfMRI time series within a manually-drawn ventricle mask from the template) were regressed 

out. The resulting images were band-pass filtered using a 0.01 – 0.1 Hz band, spatially 

smoothed using a Gaussian kernel of 0.5 mm FWHM, and z-scored voxel-wise. 

 

 

4.2 Parcellation 

 

We employed the coarsest parcellation (i.e. highest hierarchical level) available in the Allen 

Mouse Brain Atlas to extract resting-state time series from 34 cortical regions (17 for each 

hemisphere) as described in [21].  

 

 

4.3 CAPs 

 

To identify CAPs in empirical rsfMRI data we used the mean CAP map templates derived in 

[28]. Briefly, these CAPs were identified by clustering the concatenated rsfMRI frames of N = 

15 subjects using the k-means++ algorithm [71], with 15 replicates, 500 iterations, and 

Pearson’s correlation as distance metric. Previous work [28,29]  defined k = 6 as an optimal 

number of clusters satisfying criteria of algorithm stability, high variance-explained, and 

reproducibility between independent datasets. The clustered rsfMRI frames were voxel-wise 

averaged into CAP maps, and these were then parcellated using the above-mentioned regions 

by averaging the rsfMRI activity of the voxels within the region of interest in each CAP map. 

 

 

4.4 Neural network model 

 

Our network model of the mouse cortex is composed of 34 areas (17 for each hemisphere), 

labelled in Fig. 1A. In turn, each of these areas is composed of one excitatory (E) and one 
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inhibitory (I) population. The excitatory populations are recurrently connected by the 34 × 34 

directed structural connectivity matrix 𝐽𝐸,𝐸. Each entry of  𝐽𝐸,𝐸 was estimated from the mouse 

connectome [22] as the number of connections from the entire cortical source region to the unit 

volume of the cortical target region [47], multiplied by a global scaling coefficient 𝐺𝐸,𝐸, which 

represents the average synaptic efficacy per unit of structural connectivity strength and is 

assumed to be constant across all pairs of areas. Note that, in keeping with previous 

investigations [21], the matrix 𝐽𝐸,𝐸 is structured such that the R to R and R to L connections 

originating from the R hemisphere are respectively identical to the L to L and L to R 

connections originating from the L hemisphere. 

Each excitatory population was connected locally to its corresponding inhibitory 

population. The weights of the I to E, E to I and I to I connections were collected in the matrices 

𝐽𝐸,𝐼, 𝐽𝐼,𝐸 and 𝐽𝐼,𝐼. The values of the entries of these matrices were determined by best fit. The 

matrices  𝐽𝐼,𝐸 and 𝐽𝐼,𝐼 were constructed to have the same value across all areas, whereas the 

matrix 𝐽𝐸,𝐼 had values that could be different across areas. This was because in preliminary runs 

of the model we verified that having area-dependent  𝐽𝐸,𝐼 seemed to improve the fit quality, 

whereas having entries of 𝐽𝐼,𝐸 and 𝐽𝐼,𝐼 that were area-dependent seemed not to improve fit 

quality (see also [9]). Since the values of 𝐽𝐸,𝐼, 𝐽𝐼,𝐸 and 𝐽𝐼,𝐼 were determined by best fit rather 

than by anatomical measures, it was not necessary to include a scaling coefficient representing 

synaptic efficacy, because this scaling was effectively determined by the best fit. 

The mean firing rate of the 𝑖-th population in the time interval [𝑡, 𝑡 + 1) is described by 

the binary variable 𝐴𝑖(𝑡), so that 𝐴𝑖(𝑡) = 0 if the population is silent at time 𝑡, while  𝐴𝑖(𝑡) =
1 if it is firing. The spiking activity vector collecting the firing rates of the 68 cortical 

populations, can switch over time among a set of 268 ≈ 3 × 1020 distinct activity patterns. The 

spiking activity evolves at discrete time instants, where the time step corresponds to the 

repetition time TR = 1.2𝑠. It should be noted that the variations of the model’s spiking 

activities that are updated from frame to frame should not be interpreted as variations of firing 

within an integration time constant of the neurons, but rather as time-averaged variations in 

neural activity on the time scales of the rsfMRI frame rates. 

In each population, the incoming synaptic weights are multiplied by the presynaptic 

activities at time 𝑡, to produce the total postsynaptic current. Then, by adding this current to a 

noise term expressing the net effect of stochastic components of neural activity, we get the 

mean membrane potential of that population (see Fig. 1B). The membrane potential is passed 

through a threshold-based activation function, whose output 𝐴𝑖(𝑡 + 1) represents the mean 

activity of that population at the next time instant. If the membrane potential is below a firing 

threshold 𝑉thr, then 𝐴𝑖(𝑡 + 1) = 0, otherwise 𝐴𝑖(𝑡 + 1) = 1. Note that the cortical 

populations do not receive any afferent currents from subcortical regions. 

The noise sources in the model are independent and normally distributed, with standard 

deviation 𝜎, as typically used in whole-brain models (e.g. [5,10]). These noise sources include 

all sources that could make neural activity stochastic [72].  

To summarize the above with a compact set of equations, we sorted the 68 network nodes 

so that the excitatory (𝐸) populations are labelled by the indexes 𝑖 ∈ {1, ⋯ ,34}, while the 

inhibitory (𝐼) populations by the indexes 𝑖 ∈ {35, ⋯ ,68}. The mean firing rate of the 𝑖-th 

population at time instant 𝑡, namely 𝐴𝑖(𝑡) ∈ {0, 1}, is updated at discrete time instants as 

follows: 
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𝐴𝑖(𝑡 + 1) = 𝒜(𝑉𝑖(𝑡) − 𝑉thr) 

 

𝑉𝑖(𝑡) = ∑ 𝐽𝑖,𝑗𝐴𝑗(𝑡)

68

𝑗=1

+ ℑsub + 𝒩𝑖(𝑡), (1) 

 

for 𝑖 ∈ {1, ⋯ ,68}. The matrix 𝐽𝑖,𝑗 has entries from 𝐽𝐸,𝐸, 𝐽𝐸,𝐼, 𝐽𝐼,𝐸 or 𝐽𝐼,𝐼 depending on the index 

value. In Eq. (1), 𝑉𝑖 is the mean membrane potential of the 𝑖-th population, and 𝑉thr is the 

threshold for firing. 𝒜(⋅) represents the activation function of the network. For our model 

and for the undirected model discussed in SubSec. 2.6, 𝒜(⋅) is the Heaviside step function: 

 

𝐻(𝑥) = {
0,   if  𝑥 < 0 

1,   if  𝑥 ≥ 0.
(2) 

 

In the linear model reported in the SubSec. 2.6, 𝒜(𝑥) = 𝑥. Moreover, 𝓝(𝑡) ≝
(𝒩1(𝑡), ⋯ , 𝒩68(𝑡)) is a set of normally distributed sources of neuronal noise, with mean zero 

and standard deviation 𝜎. The noise terms are spatially and temporally independent, namely 

Corr (𝒩𝑖(𝑡), 𝒩𝑗(𝑠)) = 0 ∀𝑖, 𝑗, 𝑡, 𝑠 when 𝑖 ≠ 𝑗 and/or 𝑡 ≠ 𝑠. In Eq. (1), ℑsub represents the 

total afferent current originating from subcortical regions. Since we assume that subcortical 

currents (in particular sensory stimuli from the thalamus) are negligible at rest, in this paper 

we set ℑsub = 0, with the only exception being the study in SubSec. S4 of the stability of the 

network attractors as a function of ℑsub. 

We modeled the rsfMRI activity in each cortical area as the total postsynaptic currents 

on the corresponding excitatory populations. This model seemed in our attempts to provide 

better fits to the data (especially on the FC values, see SubSec. 2.1) than using the spiking 

activity. 

The model has a set of free parameters, namely 𝐺𝐸,𝐸, 𝐽𝐸,𝐼, 𝐽𝐼,𝐸, 𝐽𝐼,𝐼, 𝑉
thr, 𝜎. Their values, 

which are reported in Tab. S1 of the Supplementary File, have been obtained by fitting the 

model to the static values of mean activity and FC of real mouse rsfMRI data, as detailed in 

SubSec. 4.5. 

 

 

4.5 Fitting procedure 

 

In this section we describe how we calculated the values of the free network parameters 

introduced in SubSec. 4.4, namely the global scaling coefficient of the structural connectivity 

(𝐺𝐸,𝐸), the strengths of the I to E, E to I, I to I connections (𝐽𝐸,𝐼, 𝐽𝐼,𝐸, 𝐽𝐼,𝐼, respectively), the 

membrane potential firing threshold (𝑉thr), and the standard deviation of the noise sources (𝜎). 

We derived the best estimates of these parameters through a random grid search, by finding the 

values that could describe reasonably well the time-averaged first- and most second-order 

statistics of the mouse rsfMRI activity. Specifically, the first-order statistic that we considered 

in the fitting procedure is the relative across-area distribution of the time-averaged rsfMRI 

activity (see SubSec. 4.5.1), while the second-order statistics are several properties of the 

across-subject averaged functional connectivity matrix (see SubSec. 4.5.2). We calculated the 

first- and second-order statistics over the whole time series, which comprise 450 time points 

each. Moreover, the experimental statistics have been averaged over 15 mice, while the 

theoretical statistics over 100 repetitions of the network. 
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Then, we used the best-fit parameters to test if the model could predict and explain not 

only the rest of second-order statistics that were not used to set the parameters (specifically, 

the functional connectivity matrix obtained after global signal regression, see Fig. 4), but 

importantly also finer time-dependent features of the dynamical organization of the mouse 

rsfMRI activity (namely the probability with which the basins of attraction are visited over 

time, and the spatial similarity between them and CAPs, see Fig. 3). 

In what follows, we describe in detail the statistics that we used for linking the model to 

the experimental datasets. The values of the best-fit parameters so obtained are listed in Tab. 

S1. 

 

 

4.5.1 Relative across-area distribution of the time-averaged rsfMRI 

 

The time-averaged mean of the rsfMRI signals is a first-order statistic that has been typically 

employed in functional neuroimaging studies to measure the central tendency of the activity 

[73]. Here, we calculated the relative across-area distribution of the time-averaged rsfMRI 

across the 34 cortical areas of the mouse cortex, and normalized it by subtracting the value of 

the global signal (that is, the average over all cortical areas of the rsfMRI signal [9]) from the 

mean signals of each area and finally dividing the resulting values by the maximum absolute 

value across all areas, obtaining a normalized vector whose entries lie in the range [-1, 1]. 

During the fitting procedure, we maximized the spatial similarity between the 

distributions obtained from the empirical and model rsfMRI signals, see Figs. 2A and 2B. This 

similarity is measured by the Pearson’s correlation coefficient across their 34 entries, which is 

calculated as reported in SubSec. 4.6. 

 

 

4.5.2 Static Functional Connectivity matrix 

 

The static Functional Connectivity (FC) matrix was computed as the cross-area Pearson’s 

correlation estimated over the whole time series and calculated without global signal regression 

(see Figs. 2D and 2E). To select the best-fit values that maximize the similarity between the 

rsfMRI FC matrices of the empirical mouse data and of the model, we minimized the mean 

absolute difference between the two FC matrices. We verified that the fine-tuned best-fit 

parameters maximized also the overlap [74] of the probability distributions of the entries of the 

FC matrices. As a consequence, this also minimized the difference between the mean values of 

the FC matrices. These parameters also maximized the Pearson’s correlation and the Lin’s 

concordance correlation coefficient (CCC) [75] between the empirical and model FC matrices. 

Note that, while the Pearson’s correlation captures similarity in the shapes of the FC matrices 

regardless of the actual values, the Lin’s coefficient captures also the similarity of the values 

and thus is high when the two matrices are similar both in shape and distribution of values. 

Often model parameters in whole brain modelling are chosen to maximize only the similarity 

between model and data of the Pearson’s correlation of the FC matrices, but giving an overall 

distribution of actual values which may differ substantially between model and data. Here we 

succeed in explaining well both the shape of the FC matrix and the distribution of its values. 

We also verified that the best-fit parameters maximized the Lin’s CCC between the 

model and data FC matrices computed when focusing only on the regions in the L/R 

hemispheres with the highest average resting state mean activity, (VIS, RSP, PTLp, ACA, PL, 

ORB, ILA, AI, MO, SS). 

Finally, following [9,10], we also calculated the dominant spatial mode or first principal 

component of the rsfMRI signals, namely the first eigenvector of their covariance matrix. Then 
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we verified that our best-fit parameters also maximized the similarity between the normalized 

dominant modes of the empirical and model signals, which was quantified by their vector 

projection or dot product. 

Overall, the set of chosen best-fit parameters accounted well for many properties of the 

static FC of the empirical rsfMRI data. 

 

 

4.6 Calculation of the correlation coefficients 

 

We calculated numerically the Pearson’s correlation and its p-value through the function 

stats.pearsonr() of the Python library Scipy [76] (source code available for download at 
https://www.scipy.org/), and we computed its 95% confidence interval from the Fisher’s 

transformation. We calculated the Lin’s correlation from the Pearson’s correlation, the mean 

and the standard deviation of the matrix entries, as reported in [75]. 

As is common practice (see e.g. [9,36]), when evaluating the similarity between the 

model and empirical FC matrices, we calculated the Pearson’s and Lin’s correlation 

coefficients between the full (i.e. 34×34) matrices, or between symmetric partitions of those 

matrices (e.g. Figs. 4D and 4E), by arranging the entries above their main diagonals as vectors, 

and then by applying the measures of correlation/concordance to the resulting vectors. For 

asymmetric partitions (e.g. Figs. 4F and 4G), we used the whole set of entries to construct the 

vectors. 

In SubSecs. 2.2 and S3, we evaluated numerically the similarity between the occupancy 

probabilities of the basins of attraction by their Spearman’s correlation, through the function 

stats.spearmanr() of Scipy [76]. The reason for preferring the Spearman’s correlation over other 

measures of similarity in our analysis of SubSecs. 2.2 and S3, is that it is less sensitive to 

outliers, and therefore it allows us to better discriminate the differences in the similarity 

between the probability distributions, when varying the coefficient 𝑊 (see Figs. 3C, F and 

S3A-C). Note indeed that the probability distributions in Figs. 3C, F all had one outlier, namely 

the probability to observe the network state in any oscillatory basin, which is considerably 

larger than the occupancy probabilities of each of the 31 stationary attractors. 

 

 

4.7 Community detection 

 

The community structure of the functional network shown in Fig. 2I was derived using the 

leading eigenvector method [52], implemented in the function 

community_leading_eigenvector() of the Python library igraph [77]. Source code available for 

download at https://igraph.org/python/. 

 

 

4.8 Attractors detection 

 

We detected the spiking activity attractors by initializing the network model with a random 

activity pattern. Then we allowed the pattern to evolve stochastically under the effect of noise 

for a given number 𝑛 of time steps (typically 𝑛 = 100, so that the network statistics become 

stationary). At every time step, the spiking activity pattern was updated by solving iteratively 

Eq. (1) of Methods. After 𝑛 time steps we turned off the noise sources, so that the spiking 

activity could converge to an attractor of the network without jumping randomly between 

several attractors. This procedure was then repeated 100,000 times starting from distinct initial 

patterns, in order to detect the largest number of attractors. 
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Note that the above algorithm is not guaranteed to find the whole set of attractors, 

especially when the number of network repetitions is small compared to the total number of 

attractors. While this algorithm can fully detect the relatively small set of stationary attractors 

in a few thousands of network repetitions, typically it can reconstruct the prohibitively large 

set of oscillatory attractors only partially. 

To cross-validate our results, we calculated the number of stationary states in a second, 

alternative way, which relies on the optimized brute-force algorithm introduced in [43]. We 

used an improved version of that algorithm (described in SubSec. S1), which allowed us to find 

the stationary attractors of the network in the set of 268 ≈ 3 × 1020 activity patterns. Unlike 

the algorithm described at the beginning of this section, this other algorithm is guaranteed to 

reconstruct the whole set of stationary states, but in [43] it was optimized specifically for 

networks with sparse structural connections. For this reason, the brute-force algorithm proved 

useful in the validation of the red curve in Fig. 5E (which shows the variation in the number of 

stationary attractors as a function of the network sparseness, see SubSec. 2.4 for more details) 

for 𝑇 ≥ 0.05. Reassuringly, the two algorithms provided the same number of stationary 

attractors. 

 

 

4.9 Attractor mapping algorithm 

 

In Fig. S2C we sketch the logic of our mapping algorithm. Its main ingredient is a classifier, 

which labels each time frame of the to-be-analyzed (empirical or model) rsfMRI time series 

with the index of the attractor that is more likely to having generated it. The algorithm takes 

the z-score of the to-be-analyzed 34-dimensional rsfMRI signal (which is calculated in the 

preprocessing block of Fig. S2C at every time instant), and compares it (by computing 

Euclidean distance) with the z-score of the 34-dimensional model rsfMRI activity, averaged 

over the basins of each attractor. This provides a measure of distance between rsfMRI activity 

at each time point and each attractor. At every time instant, the classifier labels each time point 

of the to-be-analyzed rsfMRI times series with the index of the attractor exhibiting the shortest 

Euclidean distance (see Fig. S2D). By counting the number of data points across the time series 

that are assigned to each attractor, we infer the probability of occupation of the basin of each 

attractor (blue bars in Figs. 3C, F). To provide a measure of the topography of each estimated 

basin of attraction that can be compared with the topography of the basins of the network 

model, the mapping algorithm calculates the mean of the z-score of the to-be-analyzed   rsfMRI 

signal on all the time points that the classifier assigned to each attractor. Example comparisons 

are shown in Figs. 3A, D for attractor #17, and in Figs. 3B, E for attractor #13. 

 

 

4.10 Calculation of Lempel-Ziv complexity 

 

We calculated the Lempel-Ziv complexity (LZC) of the matrix of the model’s spiking activity 

of all areas concatenated over all simulated time points by applying the algorithm introduced 

in [78]. To make the complexity measure minimally dependent on the total amount of activity 

and maximally dependent on the formation of spatial patterns in the data, LZC was normalized 

by LH(L)/log_2(L), where L is the total number of spatio-temporal spiking activity samples, 

while H(L) is the entropy of the 34 cortical regions. The normalized LZC increases with the 

number of distinct spatial patterns of spiking activity occurring at a given time instant, and not 

occuring at previous instants [79].  
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4.11 Methods to assess non-homotopicity in attractor structures 

 

To assess whether the non-homotopicity in the model attractors had a counterpart in the 

empirical rsfMRI data, we mapped the empirical rsfMRI data either by respecting the 

differences between non-homotopic attractors (that is, as in Fig. 3F we mapped each rsfMRI 

data point into the basins of each of the 32 attractors) or by artificially eliminating the 

differences between the non-homotopic attractor pairs (this was made by pooling the two basins 

of attraction of two mirror-symmetric attractors (e.g. attractors #2,6)  into only one basin prior 

to the attractor mapping). To compute the effect of enforcing homotopicity on the 

reconstruction of the CAP topography from the model’s attractors, we run the mapping 

algorithm 100 times, for both the original model with non-homotopic attractors and the model 

with enforced homotopic attractor structure, and in each run we evaluated against real data the 

accuracy of the CAP reconstructed topography through 100,000 repetitions of the network 

models. In each of the 100 runs we calculated the Pearson’s correlation between the empirical 

CAPs and the reconstructed CAPs. We performed a Welch's t-test to assess whether the sets of 

correlations generated by the two models had equal means. Moreover, we checked that these 

two significantly different sets of correlations have non-overlapping ranges of one standard 

deviation from their means.  
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Figures and Figure Captions 

 

 
 

Figure 1: Model architecture. 

A) Our model incorporates 34 (17 per hemisphere) cortical areas (listed on the left), each with 

an excitatory (E) and an inhibitory (I) population. The excitatory populations are connected to 

each other through a structural connectivity matrix taken from the mouse connectome 

(multiplied by a global scaling coefficient 𝐺𝐸,𝐸), and are also connected locally to the 

corresponding inhibitory population. 

B) Mathematical model that describes the temporal evolution of the spiking activity in each 

area. In each population, the incoming synaptic weights are multiplied by the presynaptic 

activities, to produce the total postsynaptic current. In turn, this current is summed to a noise 

term and passed through a threshold-based activation function, to produce a binary activity: 0 

if the cortical population is silent, and 1 if it is firing. We derived the rsfMRI signal from each 

area as the total postsynaptic current of the corresponding excitatory population. 
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Figure 2: Long-time network statistics. 

A) Relative across-area distribution of the time-averaged rsfMRI predicted by the model. For 

this calculation, the time-averaged rsfMRI values were normalized between -1 and +1 as 

explained in Methods. 

B) As in A, but obtained from the empirical mouse rsfMRI data. 

C) Relative across-area distribution of the time-averaged spiking activity of the model.  

D) Static FC matrix of model rsfMRI time series. 

E) Static FC matrix of the empirical mouse rsfMRI data. 

F) Comparison between the probability distributions of the values of the entries of the FC 

matrices, obtained from panels D, E. 

G) Model FC matrix between the regions in the right hemisphere with the highest average 

resting state mean activity. To highlight the most functionally connected areas, the FC matrix 

was thresholded to 0.6 of the maximum off-diagonal entry. 

H) As in G, but for the empirical FC matrix. In panels G, H, for simplicity, we showed only 

the reduced FC matrices in the right hemisphere, while the same results are obtained for the 

left hemisphere. 

I) Architecture of the functional subnetwork shown in panel H. 
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Figure 3: Instantaneous co-activation cortical states in cortical rsfMRI networks.  

A) Mean z-score vector of model rsfMRI activity classified into an attractor (#17) by the 

mapping algorithm. This attractor is homotopic.  

B) As in A, but for attractor 13. This attractor is non-homotopic. 

C) Probability distribution of the basins of attraction, calculated numerically from the spiking 

activity of the model (red bars), and reconstructed by the mapping algorithm when applied to 

the model rsfMRI activity (blue bars). 

D-E) As in A-B, but in this case the z-scores have been averaged over the empirical rsfMRI 

states that the mapping algorithm associated to the basins 17 and 13, respectively. 

F) As in C, but now the blue bars represent the probability distribution of the basins of attraction 

reconstructed from the empirical rsfMRI activity. 

G) Model-generated rsfMRI activity maps of the neural attractors. In this panel we report only 

the homotopic attractors, while the non-homotopic attractor pairs are shown in Fig. S3F.  

H) CAPs obtained from the empirical rsfMRI time series. Red-yellow indicates co-activation, 

while blue indicates co-deactivation. 

I) CAPs reconstructed from the model attractors and their Pearson’s correlation with the 

corresponding empirical CAPs. 
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Figure 4: Functional connectivity after global signal regression.  

A) Static FC matrix obtained from the model rsfMRI activity. 

B) As in A, but for the empirical rsfMRI activity. 

C) Comparison between the probability distributions of the entries of the FC matrices, obtained 

from panels A and B. 

D-E) Intra-hemispheric FC matrices obtained by restricting, respectively, panels A and B to 

the 10 areas with strongest BOLD signals in the right hemisphere (similar results are obtained 

for the L to L connections, not shown). 

F-G) As in D-E, but for the R to L inter-hemispheric connections (similar results are obtained 

for the L to R connections, results not shown). 

 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 29, 2022. ; https://doi.org/10.1101/2022.04.28.489908doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.28.489908
http://creativecommons.org/licenses/by-nc-nd/4.0/


 29 

 
 

Figure 5: Measures of complexity. 

A) Functional complexity as function of a global scaling coefficient 𝑊 that multiplies the inter-

hemispheric synaptic weights. 

B) Dynamic Complexity (DC), i.e. the number of stationary and oscillatory attractors, as a 

function of 𝑊. 

C) Normalized LZC of the spatio-temporal activity pattern. Since the magnitude of the LZC 

depends on the level of noise, we plotted its dependency for several values of the noise 

parameter σ (including its best-fit value σ = 1.56), and we normalized the LZC by its maximum 

over 𝑊 for each noise level. 

D) Geometric mean of the measures of complexity shown in panels A-C, which exhibits a peak 

for the value corresponding to the real mouse connectome (𝑊~1). 

E) Number of stationary states as a function of the threshold value used for sparsifying the 

anatomical connectivity, and number of structural connections stronger than a threshold 𝑇.  

F) Loss of dynamical and functional complexity and mean length of the structural connections, 

as a function of the threshold 𝑇. 
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Figure 6: Non-homotopic patterns of rsfMRI activity. 

A) Number of non-homotopic attractors in the network mode, as a function of the global scaling 

coefficient 𝑊. 

B) Mean Hamming distance between the spiking activity patterns of the excitatory populations 

in the L/R hemispheres. 

C) Geometric mean of the non-homotopicity measures showed in panels A and B. Note that 

the maximum mean non-homotopicity occurs for 𝑊 = 1, that is the empirical mouse 

connectome value. 

D) Probability distribution of the basins of attraction, calculated numerically from the spiking 

activity of the model (red bars), and reconstructed by the mapping algorithm when applied to 

the simulated rsfMRI signals (blue bars), using the attractor structure with homotopicity 

enforced. Compare this result with Fig. 3F (obtained for mapping the data into the attractor 

structure of the original model without enforcing homotopicity). 

E) Difference between the CAPs of the model with non-homotopic attractors, and the 

corresponding CAPs as obtained from the model with enforced homotopicity of attractors. 
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Figure 7: Comparison with simpler models. 

A) Pearson’s correlation between the cross-area mean rsfMRI activity (left) and the FC matrix 

(right) of the empirical data, and the corresponding statistics calculated for three network 

models: “our” model with directed connectivity and non-linear neural dynamics (red), the 

“undirected” model but with non-linear dynamics but undirected structural connections 

(green), and the “linear” model with directed structural connections, but with a linear neural 

activation function (orange). Statistical comparisons were performed by running, for the three 

network models, 100 groups of 100,000 repetitions each, and then by using a two-sample 

Welch's t-test to compare these distributions. 

B) Comparison between the probability distributions of the values of the FC matrices. Note 

that, unlike our model, the undirected and linear models do not fit well the PDF of the 

experimental datasets. Color coding as in panel A. 

C) Number of stationary and oscillatory attractors of the undirected model, as a function of the 

global scaling coefficient 𝑊. Note that the linear model has only one (stationary) attractor. 

D) Measures of inter-hemispheric non-homotopicity for the spiking activity patterns of the 

undirected model. 

E) Probability distribution of the basins of attraction, calculated numerically from the 

undirected model (red bars), and reconstructed by the mapping algorithm when applied to the 

experimental rsfMRI signals (blue bars). The figure insert shows a zoom of the probability 

distribution of the stationary attractors in the shaded grey area. 

F) CAPs reconstructed from the rsfMRI attractors of the undirected model, and their Pearson’s 

correlation with the corresponding empirical CAPs of Fig. 3H. 
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Figure 8: Excitation-inhibition balance. 

A) Fluctuations of the total (i.e. E plus I) input currents to each cortical population. Excitation 

and inhibition balance each other, meaning that the E-I currents sum up to produce total 

currents fluctuating around the firing threshold (dashed horizontal line). 

B) Mean spiking activity of the cortical populations. 

C) Linear relationship between the total currents to the E-I populations. 

D) Ratio of the E-I components of the currents to each cortical population. The ratio is nearly 

constant for the inhibitory populations (red curve), while the excitatory populations of the 

DMN show a much larger ratio than the other excitatory subnetworks (blue curve). 

E) Sensitivity of our model to external stimulation is maximum at rest, thereby suggesting a 

functional benefit of the balanced state. To evaluate sensitivity, we first computed the response 

to the perturbation, averaged over the 10 simulation time steps following the stimulus, as a 

function of the perturbation strength, and then we quantified sensitivity as the derivative of the 

response with respect to the strength of the applied input current. 

F) E-I linear relationship and its functional benefit, as a function of a global scaling factor 𝑧, 

which multiplies the synaptic weights between the E-I populations. Note that the sensitivity to 

stimulation is almost maximum for our model (i.e. for 𝑧 = 1), and that the linear relationship 

between the total currents vanishes for large 𝑧. 
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