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Abstract

Next-generation sequencing technologies have facilitated data-driven identification of gene sets
with different features including genes with stable expression, cell-type specific expression, or
spatially variable expression. Here, we aimed to define and identify a new class of "control"
genes called Total RNA Expression Genes (TREGs), which correlate with total RNA abundance
in heterogeneous cell types of different sizes and transcriptional activity. We provide a
data-driven method to identify TREGs from single cell RNA-sequencing (RNA-seq) data,
available as an R/Bioconductor package at https://bioconductor.org/packages/TREG. We
demonstrated the utility of our method in the postmortem human brain using multiplex single
molecule fluorescent in situ hybridization (smFISH) and compared candidate TREGs against
classic housekeeping genes. We identified AKT3 as a top TREG across five brain regions,
especially in the dorsolateral prefrontal cortex.
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Background

In genomic analyses, researchers frequently face the decision on whether to use a list of genes
identified a priori for an analysis or to identify new genes in a data-driven manner that have
specific desirable qualities to answer a biological question. This duality reflects the nature of
how our knowledge evolves as experimental assays generate more data and provide further
insight into our understanding of biological systems. This expansion of knowledge is reflected in
approaches such as single cell or nucleus RNA sequencing (sc/snRNA-seq) where known cell
type marker genes are used to annotate cells, and the annotations are used to find new cell
type marker genes [1–3]. Similarly, in spatially-resolved transcriptomics, previous knowledge of
genes with distinct spatial expression can be used to annotate cells in situ, but also identify
anatomical domains leading to identification of new spatially variable gene sets [4, 5].

Methods for gene selection, either data-driven or based on previous knowledge from the
literature [6], are not only relevant to genes with high variability, but also to identify “control”
genes with stable levels of expression used, for example, in normalization, such as microarray
channel [7] or quantitative PCR normalization [8]. One data-driven approach to identify control
genes for these assays when samples contain different amounts of RNA is to rely on a
rank-invariant approach [9].

Different cell types contain variable amounts of RNA due to differences in cell size and
transcriptional activity. In brain tissue, this variation in cell size and RNA abundance can
negatively impact the accuracy of bulk RNA-seq deconvolution methods, which aim to identify
cell type proportions in homogenate tissue by using sc/snRNA-seq reference profiles [10]. For
example, neurons are larger and more transcriptionally active than glia and therefore have more
RNA content and more genes detected per nucleus in snRNA-seq data [11]. With the exception
of one method [12], the majority of existing bulk RNA-seq deconvolution methods [10] fail to
incorporate this variation and hence report potentially biased estimates of the relative fraction of
RNA attributable to each cell type rather than the true proportion of cell types [13]. However,
methods to robustly estimate cell or nuclear size and total RNA abundance in the same assay
are limited as approaches that capture global RNA expression, such as snRNA-seq, require
tissue homogenization preventing the acquisition of cell size measurements.

One approach to measure nuclear size and relative RNA abundance in the same assay is to
use multiplex single-molecule fluorescent in situ hybridization (smFISH) using the RNAscope
technology [14], which allows quantification of both cell morphology and gene expression for a
small number of target genes. Specifically, RNAscope fluorescently labels individual RNA
transcripts, which are represented as ‘dots’ or puncta in the image that can be segmented and
used to quantify gene expression per nucleus [15]. In parallel, these images can be used to
estimate spatially-resolved nuclear size across heterogenous cell types in situ. However, there
are no rigorous and data-driven approaches to identify candidate target genes to estimate total
RNA abundance compatible with smFISH.
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Here, we propose a data-driven approach using sc/snRNA-seq data to identify a class of genes
we  refer to as Total RNA Expression Genes (TREGs) to estimate total RNA abundance in
heterogeneous cell types. These genes should ideally be highly correlated with total RNA
abundance and predictive of transcriptional activity (Figure 1a).  In the postmortem human
brain, single unit measurements are limited to the nucleus, but it has been established that
nuclear RNA content is representative of the whole cell [16]. In other research settings, single
unit measurements could encompass the whole cell using scRNA-seq.  When TREGs are
applied in smFISH using RNAscope, they can be used to link spatially-resolved size and total
RNA expression in different cells.

Using sc/snRNA-seq data, we define a candidate TREG as a gene that (1) has non-zero
expression in most cells/nuclei across groups of interest, such as tissue-specific cell types, and
(2) is expressed at a constant level with respect to other genes across different cell types of a
given tissue. To be compatible with RNAscope, candidate TREGs also meet the following
criteria: (3) expressed in the top 50% of genes for easy detection, (4) have a dynamic range of
puncta to provide a continuous metric, (5) expressed at a level that individual puncta can be
accurately counted.

While TREGs theoretically share some similarities with classical housekeeping (HK) genes,
such as being expressed in every cell, they have other distinct properties. By definition, TREGs
are tissue specific and are associated with total RNA expression. In other words, TREGs are
identified in one reference dataset specific to an experimental condition; therefore TREGs are
not necessarily generalizable to other experimental conditions. Furthermore, they are not
defined by the function of the protein they encode. In contrast, classic HK genes are associated
with cell maintenance, tissue agnostic, and expressed at a constant level regardless of cell type
and condition [17].

While TREG is a general method, our research focus is motivated by understanding the
transcriptional landscape in the human brain and identifying changes associated with psychiatric
disorders [18]. We are interested in identifying a TREG that could be used in multiple cortical
and subcortical brain regions linked to psychiatric disorders [18]. We focused on broad cell type
categories that are diverse across size and expression levels, and are frequently present in
these brain regions [18, 19]. With this in mind, we demonstrated the use of TREGs by applying
our approach to snRNA-seq data from five brain regions, with focused RNAscope analyses in
the dorsolateral prefrontal cortex (DLPFC). We compared candidate TREGs against classic HK
genes and identified AKT3 as the best performing TREG in the DLPFC. To identify candidate
TREGs in other tissues, we provide open-source software available as an R/Bioconductor
package at https://bioconductor.org/packages/TREG.

Results

Overview of method to identify TREGs
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Our approach to identify Total RNA Expression Genes (TREGs) was inspired by rank-invariance
methods originally developed for microarrays that were used to identify stably expressed genes
within normalization methods applied to unbalanced transcriptome data (or containing different
amounts of RNA) [7–9]. Briefly, after applying a filter to remove lowly expressed genes in a
given sc/snRNA-seq reference dataset, our approach compares the ranks of expression across
cells/nuclei (rather than comparing the gene expression values themselves across cells of
different sizes) and identifies genes that are consistently ranked (or high ‘Rank Invariance’)
(Figure 1b). In our algorithm, to identify a TREG, we compared the stability of each gene’s
Expression Rank within and across cell types to identify high Rank Invariant genes (Figure 1c,
Methods: Rank Invariance calculation). Genes consistently expressed in all cells/nuclei across
all cell types were identified by high Rank Invariance values, and were considered TREG
candidates. We implemented our data-driven method in an open-source R/Bioconductor
package (https://bioconductor.org/packages/TREG) [20] to identify candidate TREGs in any
sc/snRNA-seq dataset. The package includes functionality for both gene filtering and Rank
Invariance methods.

Datasets and TREG Experiment Overview
We applied our method to identify TREGs in a publicly available snRNA-seq dataset from the
human postmortem brain. Specifically, the dataset included 70,527 nuclei from eight donors
across five brain regions [18]. We identified candidate TREGs among 10 broad cell types across
these brain regions: amygdala (AMY), dorsolateral prefrontal cortex (DLPFC), hippocampus
(HPC), nucleus accumbens (NAc), and subgenual anterior cingulate cortex (sACC) (Methods:
snRNA-seq reference data, Supplementary Table 1). Gene expression from top candidate
TREGs was measured with smFISH using RNAscope technology and compared to a classic
housekeeping gene, POLR2A [21], to evaluate TREG predictiveness of total RNA expression.

Filtering genes from the snRNA-seq data in the postmortem human brain
To maximize detection compatibility with the RNAscope assay, the expression data was filtered
for highly expressed genes, specifically the top 50% of the 23,038 genes in the snRNA-seq
dataset, retaining 11,519 genes. Genes were also filtered to remove those with a high maximum
Proportion Zero (ranges between 0 and 1) expression across all cell type and brain region
combinations (Methods: Expression and Proportion Zero filtering). The Proportion Zero filtering
process avoids rank ties in the downstream steps due to the high number of genes with no
expression. A high Proportion Zero also suggested that a gene may not be observable in most
nuclei in that population using RNAscope. Frequently, nuclei from a specific cell type and brain
region combination had a high frequency of genes whose Proportion Zero exceeded 0.75 for
common cell types including astrocytes, microglia, oligodendrocytes, oligodendrocyte precursor
cells, excitatory and inhibitory neurons (Figure 2a) and for more rare cell types including
endothelial, macrophages, mural, and T-cells (Supplementary Figure 1). After filtering the
genes for a maximum Proportion Zero of less than 0.75 across all cell types and region
combinations, 877 genes remained (3.8% out of the initial 23,038 genes). The classic
housekeeping gene POLR2A showed a high Proportion Zero in many cell types across brain
regions and did not pass this filtering step unlike AKT3, ARID1B, MALAT1 (Figure 2b,
Supplementary Figure 2a).
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Identification of TREG candidates in the postmortem human brain
After applying the filtering steps, the Rank Invariance workflow (Figure 1c) was applied to the
five brain regions in the postmortem human brain to identify candidate TREGs (Methods: Rank
Invariance calculation). From the top ten Rank Invariance values, we selected three candidate
TREGs (AKT3, ARID1B, and MALAT1) for further evaluation based on the commercial
availability of RNAscope probes. MALAT1 was the top Rank Invariance gene, and also the gene
with the highest mean expression. The Expression Rank of these TREGs has a small variance
across 70k nuclei (Figure 3a), as well as within different cell types (Figure 3b). This is in
contrast to the HK gene POLR2A, which shows a more variable Expression Rank distribution
(Figure 3b). We note that this same relationship holds if we compare the distribution of
log-transformed gene expression across cell types, which is more variable than using the
Expression Rank distribution (Supplementary Figure 3).

By definition, the expression of a TREG should be predictive of the total expression of RNA in a
cell(or nuclear expression when limited to snRNA-seq data). We compared the relationship
between the gene expression of a TREG and the total expression of RNA in a nucleus
(estimated by the log2 sum of all counts) and quantified the strength of the association by fitting
a linear model for all nuclei within each cell type. We found a strong linear relationship for
MALAT1 (Figure 3c), AKT3 and ARID1B (Figure 3, Supplementary Figure 4,
Supplementary Table 2, Methods: Total RNA linear regression). Among the genes passing the
Proportion Zero filter, the strength of their association with total RNA expression generally
increased as their Rank Invariance increased (Supplementary Figure 2b). Furthermore, gene
ontology enrichment analysis with the top 10% candidate TREGs showed that these genes are
enriched for key biological processes such as RNA splicing and cellular components related to
transcription (Supplementary Figure 5, Methods: Gene ontology enrichment analysis).

We ran the filtering process and TREG candidate identification independently for each of the
five brain regions and identified the top 50 Rank Invariance genes (Supplementary Table 2).
We identified 13 TREGs common across all five brain regions, therefore for the main analysis
we used the combined dataset (Supplementary Figure 6). The top 13 TREGs across brain
regions included, AKT3, ARID1B, and MALAT1.

Validation of TREGs with smFISH using RNAscope technology
Next, we chose to further evaluate TREGs in DLPFC tissue given its implication in several
psychiatric disorders. We used multiplex fluorescent smFISH with RNAscope technology to
label candidate TREGs AKT3, ARID1B, and MALAT1 as well as HK gene POLR2A in different
cell types in DLPFC tissue sections from an independent brain donor (n=9 tissue sections with 3
tissue sections per gene, Figure 4a, Methods: Postmortem human tissue). We performed
RNAscope with three probe combinations (Supplementary Table 3-5, Methods: RNAscope
multiplex single molecule fluorescent in situ hybridization [smFISH]). Each combination probed a
TREG with a panel of cell type marker genes including SLC17A7, GAD1, and MBP (labeling
excitatory neurons, inhibitory neurons, and oligodendrocytes, respectively). POLR2A and
MALAT1 were hybridized in the same experiment, and due to limitations in multiplexing, GAD1
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was omitted. Following high magnification imaging, AKT3, ARID1B, and POLR2A transcripts
were detected as discrete puncta (white dots) within individual nuclei (Figure 5a-c, Methods:
Image acquisition). However, due to high expression, individual puncta could not be observed
for MALAT1 and fluorescent signals were too saturated for quantification (Figure 5d).

For TREGs showing discrete puncta, image segmentation and transcript quantification was
performed using HALO software (Methods: Image analysis with HALO). HALO identified
1,099,931 individual nuclei across the nine DLPFC tissue sections, with 80k-109k nuclei
segmented per tissue section (Supplementary Table 6). After quality control for poorly
segmented regions (Methods: Quality control and spatial quantification of HALO data,
Supplementary Figure 7) the number of nuclei per section was reduced to 68k-106k
(Supplementary Table 6). We show accurate segmentation of fluorescent signals in a
representative DLPFC tissue section including neuron-enriched gray matter and glial-enriched
white matter (Figure 4b-c, Figure 6). As expected, quantification of nuclear area based on
DAPI signal confirmed that neurons located in the gray matter have a larger nuclear area than
glia located in the white matter (Figure 6a, Supplementary Figure 7). Quantification of AKT3
puncta within nuclei confirmed higher expression of AKT3 in neuron-enriched gray matter, which
is consistent with higher transcriptional activity in neurons compared to glia (Figure 6b).
ARID1B and POLR2A also showed elevated expression in neurons located in the gray matter
across the 3 different tissue sections (Supplementary Figure 8). Segmentation of SLC17A7
(excitatory neurons), GAD1 (inhibitory neurons), and MBP (oligodendrocytes) fluorescent
signals revealed the expected spatial distribution of these cell types within the gray and white
matter (Figure 6c).

Image segmentation and transcript quantification revealed that candidate TREGs were
consistently expressed in the majority of nuclei across cell types. Specifically, TREG expression
was recorded in over 86% of nuclei (Table 1). The HK gene POLR2A had puncta that could be
quantified in 78% of nuclei with RNAscope, which was unexpected given that only 30% of nuclei
had non-zero expression values in snRNA-seq. Additionally, AKT3 and ARID1B provided a
larger dynamic measurement range given that the mean puncta per nucleus is 4.09 and 2.08
respectively, compared to 2.75 for POLR2A (Table 1).

Next, we evaluated how the number of measured puncta (for each TREG) in a nucleus related
to total nuclear RNA expression measured by snRNA-seq for excitatory neurons, inhibitory
neurons, and oligodendrocytes in the DLPFC. DLPFC snRNA-seq data showed that excitatory
neurons have the highest total nuclear RNA expression (estimated with the sum of total UMI
counts per nucleus), followed by inhibitory neurons, and then oligodendrocytes (Figure 7a). We
quantified this pattern using the standardized regression coefficient for total nuclear RNA
expression vs. cell types, which is -1.33 (95% CI = -1.35,-1.31, Table 1, Methods: Linear
regression of puncta across cell types). For candidate TREGS AKT3 and ARID1B, we
measured the number of puncta per nucleus across cell types and found that AKT3 tracks the
closest with the pattern of total RNA expression measured by snRNA-seq and has a more
symmetric distribution than POLR2A, particularly for oligodendrocytes (Figure 7b). Excitatory
neurons contain the most puncta, followed by inhibitory neurons, and then oligodendrocytes.
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ARID1B breaks from the expression pattern shown in the reference snRNA-seq data, given that
inhibitory neurons are higher than excitatory neurons, although neurons still show more
expression than the oligodendrocytes. POLR2A was only measured in two cell types, excitatory
neurons and oligodendrocytes, but also follows this pattern with higher expression in neurons
compared to glia. The standardized regression coefficient for number of puncta vs. cell types for
AKT3 is -1.07 (95% CI = -1.07,-1.06) and is the closest to the snRNA-seq coefficient (-1.33,
95% CI = -1.35,-1.31) of the experimentally validated genes (Table 1). This pattern is also
consistent when considering other cell types (Supplementary Figure 9). By measuring total
nuclear RNA abundance and nuclear area across cell types in the same experiment, we
demonstrate that the relationship between RNA content and nuclear area changes across cell
types (Supplementary Figure 10).

Discussion

In this work, we showed that our new data-driven Rank Invariance method successfully
determines candidate total RNA expression genes (TREGs) from snRNA-seq data that can be
used in combination with smFISH to accurately estimate relative RNA abundance in distinct cell
types of varying sizes and transcriptional activity. We investigated the properties of TREGs by
evaluating the consistency of the Expression Ranks and relationship with total RNA expression
in snRNA-seq data. We further validated TREG candidates by quantifying puncta with smFISH
using RNAscope, which found that ATK3 best reconstructed the pattern between cell type and
total RNA expression observed in human DLPFC snRNA-seq data. While the Rank Invariance
method was successful, it cannot guarantee that candidate TREGs will be experimentally
compatible for downstream needs. For example, MALAT1 was the top candidate TREG in our
study, but MALAT1 was incompatible with resolving individual puncta by RNAscope because of
its extremely high expression. 10x Genomics advises users that independent of protocol
MALAT1 is frequently observed in poly-A captured RNA-seq data [22], which is consistent with
comparisons between polyA selection versus rRNA depletion protocols [23] and could be due its
structure [24]. Furthermore, MALAT1 has been used as a proxy for nuclear expression linked to
damaged cells in scRNA-seq data [25]. We thus recommend that TREGs be evaluated in the
assay or experimental setting of choice before implementing experiments using rare and
valuable samples.

To identify relevant TREGs for a particular study, it is important to use sc/snRNA-seq data that is
compatible with the experimental design. That is, sc/snRNA-seq data should contain the tissue
and cell types combinations of interest, as well as match the experimental conditions for which
the TREG will be used, such as age, sex, diagnosis, and experimental exposure. Otherwise
candidate TREGs might be less reliable for quantifying total RNA as they could be specific to an
organism, tissue, cell type, or experimental condition. As more snRNA-seq datasets come
online across tissues and experimental organisms, our Rank Invariance methodology can be
used to identify TREGs in different experimental settings. Furthermore, the mean absolute
differences (Figure 1c arrow v.) will be more stable when larger numbers of cells/nuclei are
present per cell type. Thus, the Rank Invariance process might be less reliable for datasets with
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rare cell types, for which it might be best to perform a sensitivity analysis without the rare cell
types to compare resulting TREGs and ultimately identify reliable TREGs.

While TREGs share some similarities with housekeeping (HK) genes, they are by definition
different. A HK gene typically has a defined central molecular function and is expected to be
expressed at a constant level across multiple tissues [17]; for example the GTEx Portal [26]
shows less variable expression across tissues for POLR2A than AKT3
(https://gtexportal.org/home/gene/POLR2A vs https://gtexportal.org/home/gene/AKT3). In
contrast, the RNA level of a TREG should be quantifiable in most cells among all cell types in a
particular experimental setting, and most importantly, it should be highly predictive of the total
RNA expression of those cells or nuclei. In our snRNA-seq data, POLR2A and other HK genes
had high Proportion Zero and were not as strongly predictive of total nuclear RNA expression as
other candidate TREGs. Interestingly, by RNAscope, POLR2A could be measured in a larger
percent of nuclei compared to snRNA-seq (78% vs 30%, Table 1). We note that TREGs were
detected in the majority of nuclei by RNAscope as expected, but we did observe some nuclei
lacking expression. This could be due to only a fraction of the nucleus being present in the
10um tissue section plane or technical limitations in multiplex fluorescent slide scanning with
spectral imaging, including low resolution and image acquisition in only the x and y dimensions,
with no z axis component [27]. However, AKT3 was present in 88% of nuclei by RNAscope and
had a higher mean number of puncta compared to POLR2A (4.09 vs 2.75). AKT3 best
recapitulated the observed trend in snRNA-seq data (Figure 7b). Thus while POLR2A
performed better than expected on RNAscope, ATK3 still outperformed POLR2A across
different metrics.

The protein encoded by AKT3 is a member of the AKT/protein kinase B family of
serine/threonine protein kinases. AKT plays a key role in the phosphatidylinositol 3-kinase
(PI3K)-Akt-mTOR signaling cascade, which regulates numerous biological processes such as
cell proliferation, growth, apoptosis, and metabolism [28]. AKT3 is one isoform of AKT that is
predominantly expressed in the human and mouse brain and plays a significant role in brain
development [29]. Dysfunction of AKT3 is implicated in a variety of neurodevelopmental and
neurodegenerative brain disorders and tumors, such as glioma [29, 30]. The AKT3 gene has
also been associated with risk for neuropsychiatric disorders [31]. AKT3 is an important enzyme
whose function needs to be carefully regulated at the protein level. Thus, AKT3 gene expression
is likely highly regulated across cell types, which is consistent with its dynamic expression in
neurons and glia (Supplementary Figure 3). While candidate TREGs, such as AKT3 and
ARID1B, are clinically-relevant [27, 29–34], the snRNA-seq data used in this study is from
neurotypical control subjects. As more snRNA-seq datasets are generated from subjects with
neuropsychiatric and neurological disorders, it will be important to assess candidate TREGs in
the context of brain disorders. More generally, other candidate TREGs identified in our
neurotypical control tissue are functionally implicated in transcription (Supplementary Figure
5), which is consistent with the notion that a TREG should be predictive of total RNA
expression.
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In contrast to rank-invariant methods [7–9], the method we developed here is not a
normalization method, but a method for gene selection that is specific to the desired properties
of a TREG, namely correlation with total RNA expression. Our implementation is thoroughly
tested with 100% code coverage [35] and available via Bioconductor at
https://bioconductor.org/packages/TREG [20]. While our list of candidate TREGs could be valid
for other DLPFC studies (Supplementary Table 2), we recommend that you use our R package
with your own sc/snRNA-seq data. TREGs could be useful for other research purposes and
other contexts than the ones envisioned here.

We used smFISH with RNAscope technology to validate candidate TREGs across three major
cell types in the human DLPFC: oligodendrocytes, excitatory neurons, and inhibitory neurons.
We selected only 3 cell types due limitations in multiplexing with RNAscope (the V2 assay
supports a maximum of 4 targets). In the future, we plan to expand our experimental design to
include other major cell types captured in snRNA-seq data, such as astrocytes, microglia, and
oligodendrocyte progenitor cells. Another limitation of our study is that we focused only on
TREG expression in the nucleus, but many TREGs are also expressed in the cytoplasm.
Currently, the HALO FISH-IF module will only quantify puncta within a nucleus or a dilated area
around the nucleus, which is a limitation when working with cell types that are not oval in shape,
such as neurons and glia. While our analysis was focused only in the nucleus, previous work
suggests that gene-level expression between the nucleus and cytoplasmic compartments are
comparable [16, 36]. In future studies, we aim to improve cell segmentation to be able to
estimate cell size and RNA content instead of restricting analyses to the nucleus.

While sc/snRNA-seq and bulk RNA-seq data is commonly derived from pulverized tissue, our
work suggests considering a different experimental design. In particular, if you are designing a
paired sc/snRNA-seq and bulk RNA-seq study where you will use the snRNA-seq data as a
reference for deconvolution of bulk RNA-seq, generating spatially-adjacent dissections in order
to use them for RNAscope experiments could be useful to “future-proof” your datasets. With this
experimental design, you could identify cell types in the sc/snRNA-seq data, then identify
candidate TREGs based on those cell types, and use these candidate TREGs with smFISH to
quantify size and total RNA content for the cell types of interest (Supplementary Figure 10).
These cell metrics could improve the precision of deconvolution algorithms and generate a
potential gold standard dataset to evaluate the performance of the deconvolution methods.

Conclusion

Through the data-driven Rank Invariance process, we have identified several candidate genes
as Total RNA Expression Genes (TREGs) in five postmortem human brain regions. RNAscope
validation experiments revealed that AKT3 is a strong proxy for total nuclear RNA expression in
the DLPFC. Future work will use individual TREGs to estimate total RNA abundance in
differently sized cell types of the DLPFC to bolster deconvolution approaches. As more
snRNA-seq data comes online, this Rank Invariance methodology could facilitate identification
of TREGs in other experimental settings with differences in donor demographics, brain regions,
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tissues, or species. Similar to highly variable genes or housekeeping genes, TREGs represent
an important class of genes that could be used for a variety of assays and downstream
analyses. Our method for identifying TREGs is accessible, integrated with the Bioconductor
ecosystem [37], and available at https://bioconductor.org/packages/TREG [20].
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Methods

R [38] and HALO (version 3.3.2541.383, Indica Labs) was used for the data analysis, and
plotting was done with the ggplot2 [39] and UpSetR [40] packages.

snRNA-seq reference data
The single nucleus RNA-sequencing (snRNA-seq) reference data used for the Rank Invariance
process is a publicly available dataset (10x Genomics, single cell 3’ gene expression) from
postmortem human brain, which includes tissue from eight donors and five brain regions,
including the amygdala (AMY), dorsolateral prefrontal cortex (DLPFC), hippocampus (HPC),
nucleus accumbens (NAc), and subgenual anterior cingulate cortex (sACC) [18]. The original
study classifies many region-specific subtypes of inhibitory and excitatory neurons, however for
the purpose of this study, a lower resolution of broad cell types was used: astrocytes (Astro),
endothelial cells (Endo), microglia, mural cells, oligodendrocytes (Oligo), oligodendrocyte
precursor cells (OPC), T-cells, excitatory (Excit) and inhibitory neurons (Inhib). Specialized
medium spiny neurons found exclusively in the NAc were classified as Inhib
(Supplementary Table 1).

Expression and Proportion Zero filtering
In R [38], by default, the rank() function returns high ranks for high values, where equivalent
values or ties are given an average value. To reduce the occurence of ties, we removed genes
that would introduce many low-value ties. The data was first filtered to the top 50% of expressed
genes. The nuclei were grouped by cell type and brain region, the Proportion Zero counts was

calculated for each gene in each group, and is defined as where ci,j,k,z is the
number of snRNA-seq counts for cell/nucleus z for gene i, cell type j, and brain region k, and nj,k

is the number of cells/nuclei for cell type j and brain region k. In our dataset, if the cell type was
rare (less than or equal to 100 total nuclei, as was the case for Endo, Macro, Mural, and T-Cells)
the nuclei from different regions were combined into one group, effectively ignoring the brain
region from which the cell type was derived (Supplementary Figure 1). The distribution of
Proportion Zeros for each group was visualized and used to select a cutoff value of 0.75, which
included the peak of the Proportion Zero distributions (Figure 2a). Then for each gene, the
maximum Proportion Zero across groups was required to be less than the cutoff (i.e. < 0.75) to
pass the filtering step (Figure 2b).

Rank Invariance calculation
After Proportion Zero filtering, the remaining genes were evaluated for Rank Invariance jointly
across all five brain regions, thus the nuclei were grouped only by cell type. The normalized
expression (logcounts) of each gene was ranked for each nucleus, and the result was a
matrix of Expression Rank values (the number of nuclei * number of genes). Within each cell
type, the mean expression for each gene was ranked, and the result was a vector called mean
Expression Rank (length is the number of genes). Then, the absolute difference between the
Expression Rank of each nucleus and the mean Expression Rank was found. From here, the
mean of the differences for each gene was calculated and then ranked. These steps were
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repeated for each cell type, and the result was a matrix of ranks, (number of cell types * number
of genes). From here, the sum of the ranks for each gene were reverse ranked such that low
values were given a high rank. This process resulted in the final value for each gene called the
Rank Invariance value (Figure 1b). The genes with the highest Rank Invariance were
considered as candidate TREGs. Classic housekeeping (HK) genes [41, 42] and brain
data-driven HK genes [6] that fail these filtering steps are shown in Supplementary Figure 2.

Total RNA linear regression
We tested for an association between the expression of each gene and the overall RNA
expression of each nucleus using a linear regression model log2(counts + 1) ~
log2(sum) + cellType with limma package version 3.48 and “voom” [43, 44].
(Figure 3c-d). The t-statistics from this analysis are plotted in Supplementary Figure 2. The
combination of the Rank Invariance values and the rank of the t-statistics from this linear model
were used to help identify the best candidate TREGs.

Gene ontology enrichment analysis
Of the 877 of genes evaluated for Rank Invariance, the top 10% were evaluated for gene
ontology enrichment. Of the 23,038 genes in the snRNA-seq dataset, 18,296 have entrez ids
and were used as the universe, of the 87 top RI genes 86 have entrez ids and were provided as
the sole gene cluster. The enrichment analysis was performed with the compareCluster()
function from clusterProfiler package version 4.2 [45, 46]. Ontologies biological processes (BP),
cellular components (CC), and molecular function (MF), were all tested.

Postmortem human tissue
The human postmortem brain used in this study for RNAscope was obtained by autopsy from
the Offices of the Chief Medical Examiner of the District of Columbia and of the Commonwealth
of Virginia, Northern District, with informed consent from the legal next of kin (protocol
90-M-0142 approved by the NIMH/NIH Institutional Review Board). Details regarding curation,
diagnosis, tissue handling, processing, and quality control measures have been described
previously [47]. The study included a single neurotypical control adult donor (Br1531). A small
piece of frozen DLPFC was dissected under visual guidance with a handheld dental drill on dry
ice by a neuroanatomist. Gray and white matter tissue from the crown of the middle frontal gyrus
was obtained from the coronal slab corresponding to the middle one-third of the DLPFC (along
its rostral-caudal axis) immediately anterior to the genu of the corpus callosum. Microdissected
DLPFC tissue was stored at -80℃ until cryosectioning.

RNAscope multiplex single molecule fluorescent in situ hybridization (smFISH)
DLPFC tissue was cryo-sectioned at 10μm on a Leica cryostat. Three tissue sections were
collected per slide. Prior to use, the slides were stored at -80℃. Using RNAscope technology
(RNAscope Multiplex Kit V2 and 4-plex Ancillary Kit: Cat # 323100, 323120, Advanced Cell
Diagnostics, Newark California), probe hybridization and labeling was completed following the
manufacturer's instructions. Briefly, the protocol includes fixing the tissue sections in 10%
neutral buffered formalin solution (Cat # HT501128-4L, Sigma-Aldrich, St. Louis, Missouri),
dehydration in a series of ethanol solutions, pretreatment with hydrogen peroxide, and
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permeabilizing with proteases. Each slide was then incubated with one of the following probe
combinations: AKT3/GAD1/SLC17A7/MBP; ARID1B/GAD1/SLC17A7/MBP;
POLR2A/MALAT1/SLC17A7/MBP (Supplementary Table 3). These combinations were named
according to the candidate TREGs or housekeeping (HK) gene included (i.e. AKT3, or ARID1B,
or POLR2A/MALAT1) (Cat # 434211, 404031-C2, 415611-C3, 411051-C4, 551721, 310451,
400811-C2, Advanced Cell Diagnostics, Newark California). After washing briefly, slides were
stored in 4X saline-sodium citrate (Cat # 351-003-101, Quality Biological, Gaithersburg
Maryland) overnight at 4℃ . Probes were then fluorescently labeled using opal dyes (Opal 520,
Opal 570, Opal 620, and Opal 690, Perkin Elmer, Waltham, MA). Dyes were assigned to probes
and diluted in concentration as described in Supplementary Table 3 and
Supplementary Table 4. Nuclei were labeled with DAPI (4′,6-diamidino-2-phenylindole) and
coverslipped with fluoromount-G mounting media.

Image acquisition
Slides were imaged at 20x magnification using a Vectra Polaris Automated Quantitative
Pathology Imaging System (Akoya Biosciences), which performs multi-spectral imaging. For
each probe combination a scanning protocol was created. Each protocol optimized the
exposure time for a given opal dye in each probe combination as listed in
Supplementary Table 5. Scanning generated a large .qptiff image file, which was then
pre-processed in Phenochart (Akoya Biosciences). Briefly, the boundary of each slide (including
the 3 tissue sections) was traced, and the individual .tiff tiles making up the scan area (1141-
1489 tiles per slide) were extracted. These tiles were then subjected to linear unmixing in
InForm (Akoya Biosciences). Unmixed .tiff tiles were then fused in HALO (version
3.3.2541.383, Indica Labs).

Image analysis with HALO
Fused images from each scanned slide were annotated in HALO by drawing a boundary around
each tissue section. The annotated areas across tissue sections ranged from 156716789.46µm2

to 162640367.42µm2 and annotations were consistent among the tissue sections on each slide.
The FISH-IF module (version 2.1.5) was then used to segment cells and assign phenotype (i.e.
cell type). Briefly, we first assigned dyes to either FISH or immunofluorescence (IF). While these
experiments were exclusively FISH, the distinction between FISH and IF dyes allow for
visualization and segmentation of diffuse staining vs. individual puncta. DAPI, GAD1, SLC17A7,
and MBP were assigned IF values given their strong signals resembling diffuse labeling. The
FISH dye assignment changed for each experiment (AKT3, ARID1B, POLR2A/MALAT1).
Segmentation was optimized for each dye for each tissue section by adjusting several values
with reference to manufacturer’s guidelines: HALO 3.3 FISH-IF Step-by-Step guide (Indica labs,
Version 2.1.4 July 2021) and Quantitative RNAscope Image Analysis Guide (Indica labs). Size
thresholds for nuclei, cytoplasm, cells, and FISH probe puncta were held constant across all
tissue sections. Once the puncta counting was completed, the object data and settings were
exported as .csv files (available via Globus at ‘jhpce#TREG_paper’) and .txt files (available
on Github), respectively.

Quality control and spatial quantification of HALO data
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Visual inspection of the images revealed some technical artifacts related to cryosectioning and
slide scanning (Supplementary Figure 7), including tissue tears/shredding, small bubbles, and
out of focus fields. Out of focus fields caused nuclei to appear bigger and blurred together
multiple puncta so they were not clearly resolved. Nuclei from these regions were excluded from
the data analysis during these quality control steps.

Nuclei with only MBP expression were classified as oligodendrocytes (Oligo), with only
SLC17A7 expression as excitatory neurons (Excit), and with only GAD1 expression as inhibitory
neurons (Inhib). Nuclei with expression of multiple marker genes that could not definitively be
assigned a cell type were classified as “Multi”. Nuclei with no markers were classified as “Other”
and likely represent other non-neuronal cell types in the brain that were not labeled, including
astrocytes and microglia. As the MALAT1/POLAR2A samples were not labeled with GAD1 due
to technical limitations in multiplexing (Supplementary Table 3), the number of Inhib nuclei
could not be determined for these samples (Supplementary Table 6).

Linear regression of puncta across cell types
TREG candidates were evaluated by the proportion of cells where any puncta were recorded in
the HALO segmented nuclear area, as well as the mean number of puncta recorded (Table 1).
The pattern of expression across cell types was compared to the sum of total counts of that cell
type in the reference snRNA-seq data (Figure 7). To quantify this relationship we estimated the
regression coefficient of total RNA over the three cell types that were sampled (Excit, Inhib,
Oligo), for the snRNA-seq total RNA of a nucleus was estimated by the sum of UMIs. For the
RNAscope data, total nuclear RNA is estimated by the number of segmented puncta. To
compare these different data types, the standardized regression coefficient was calculated by
dividing by the standard deviation of the total UMIs and number of puncta respectively.

Abbreviations

AMY - amygdala
Astro - astrocytes
DLPFC - dorsolateral prefrontal cortex
Excit - excitatory neurons
Expression Rank - rank of the log normalized counts expression values for a given gene and
nucleus, with high expression values translating into high rank values
HPC - hippocampus
HK - housekeeping
Inhib - inhibitory neurons
Micro - microglia
NAc - nucleus accumbens
Oligo - oligodendrocytes
OPC - oligodendrocyte progenitor cells
Proportion Zero - defined in Methods: Expression and Proportion Zero filtering
RI - Rank Invariance
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sACC - subgenual anterior cingulate cortex
smFISH - single-molecule fluorescent in situ hybridization
TREG - total RNA expression gene
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Figure Legends

Figure 1: Overview of TREG motivation and methodology. a. Illustration of the relationship
between the expression of a TREG and the total RNA expression of a nucleus. TREG
expression can be quantified with puncta (white dots) in a nucleus (blue area), where the
nucleus is identified with DAPI. b. Illustration of the distribution of Expression Rank, which is the
rank of the expression of a given gene among all genes, computed individually for each
cell/nucleus, depending on the measurement technology used: sc or snRNA-seq. Two
theoretical genes are shown, Gene 1 with high Rank Invariance and Gene 2 with low Rank
Invariance across cells/nuclei. c. Rank Invariance workflow to identify a TREG (Methods: Rank
invariance calculation), with a gene expression matrix with genes on the rows and cells/nuclei
on the columns. i. Filter for low expressed genes (Methods: Expression and Proportion Zero
filtering). Onward working with one cell type at time: ii. Compute Expression Rank of each
cell/nucleus for each gene (example distribution in b), iii. Calculate mean gene expression
across all cells/nuclei for one cell type and then its Rank Expression. iv. Per gene, find the
difference of the Rank Expression against the mean Rank Expression for each cell/nucleus in a
given cell type. v. Calculate the mean of the absolute Expression Rank differences for each
gene. vi. Rank the mean absolute Expression Rank differences. vii. Repeat steps ii-vi for each
cell type. viii. Per gene, compute the sum of the previous ranks across all cell types, and then
rank these sums across genes such that the highest rank is given to the gene with the smallest
sum. This is the final Rank Invariance value.
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Figure 2: Overview of Proportion Zero filtering process. a. Histogram frequency of
Proportion Zeros for each nuclei population for a given cell type and brain region combination.
These combinations are arranged with cell types along the rows [astrocytes (Astro), microglia
(Micro), oligodendrocytes (Oligo), oligodendrocyte precursor cells (OPC), excitatory (Excit) and
inhibitory neurons (Inhib)] and by brain region along the columns [amygdala (AMY), dorsolateral
prefrontal cortex (DLPFC), hippocampus (HPC), nucleus accumbens (NAc), and subgenual
anterior cingulate cortex (sACC)]. Consistent with the inhibitory neuron-rich cell type
composition of the NAc, there were no excitatory neurons found in this region and therefore no
data to report. The red dashed line represents the 0.75 cutoff for filtering. b. Proportion Zero
filtering process detailed for AKT3, ARID1B, MALAT1 compared to the classic HK gene
POLR2A. If any cell type and brain region combination (individual colored points), has a
Proportion Zero > 0.75, then the gene fails the filtering step. Unlike AKT3, ARID1B, and
MALAT1, POLR2A fails Proportion Zero filtering.
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Figure 3: Distribution of ranks and relationship between total nuclear expression and
expression of candidate TREGs. a. Distribution of the Expression Rank (y-axis) over all nuclei
for genes AKT3, ARID1B, MALAT1 (three candidate TREGs) and POLR2A (a known HK gene).
The candidate TREGs show higher Rank Invariance compared to POLR2A (related to
Figure 1b). b. The distribution of the Expression Ranks (y-axis) over all cell types (x-axis) for
the three candidate TREGs shows less Expression Rank variability across most cell types
compared to POLR2A. c. Scatter plot of the total RNA expression (estimated by the nuclei log2
sum of all counts) against the nuclei gene expression (log2 of the count plus one) for MALAT1,
overlaid with the linear fit for each cell type and colored by cell type. d. Linear fits of total nuclear
RNA expression against gene expression in the nuclei, similar to c. for POLR2A, AKT3, and
AR1D1B. The expression of candidate TREGs show consistent positive linear relationships with
total RNA expression in each nucleus across all cell types, unlike POLR2A where the neurons
have a different pattern than other cell types.
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Figure 4: Overview of smFISH RNAscope experiment and DLPFC anatomy. a. Illustration of
RNAscope experimental design where a single DLPFC tissue block was used to generate 9
spatially-adjacent slices. These 9 slices were hybridized with 3 RNAscope probe combinations
noted as the AKT3, ARID1B, and MALAT1/POLR2A experiments (related to
Supplementary Table 3-5). Candidate TREGs and POLR2A are shown in black, while GAD1,
SLC17A7, and MBP are cell type marker genes for inhibitory neurons (red), excitatory neurons
(blue), and oligodendrocytes (orange), respectively. b. Annotated image of DLPFC tissue, noting
the location of gray matter (GM), white matter (WM), and sulcus. c. Spatial distribution of cells
expressing MBP for each sample. MBP is an oligodendrocyte cell type marker gene enriched in
white matter.
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Figure 5: Expression of TREGs in individual nuclei using smFISH with RNAscope.
Representative high magnification images showing expression of candidate TREGs a. AKT3, b.
ARID1B, c. HK gene POLR2A, and d. MALAT1 and in human DLPFC. Insets show individual
nuclei with high expression (yellow arrow), low expression (green arrow), or in rare cases
(<=14% for candidate TREGs and 22% for POLR2A, Table 1), no expression (purple arrow).
Each puncta represents a single transcript, as illustrated in Figure 1a. MALAT1 shows
=extremely high expression in the majority of nuclei such that individual puncta cannot be
quantified (yellow arrow). Scale bar is 20 um.

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 29, 2022. ; https://doi.org/10.1101/2022.04.28.489923doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.28.489923
http://creativecommons.org/licenses/by/4.0/


Figure 6: Quantification of candidate TREG AKT3 in differently sized cell types in human
DLPFC. Representative tissue section showing: a. Raw fluorescence for nuclear DAPI signals
and a’. corresponding mean nuclear area size. Nuclear area based on DAPI signal shows larger
excitatory neuron nuclei in gray matter from smaller glial nuclei in the white matter, related to
Figure 4b. b. Raw fluorescence for DAPI and AKT3 and b’ corresponding quantification of
mean number of AKT3 puncta per nucleus. c. Raw fluorescence for DAPI and one of the
following (SLC17A7, GAD1, and MBP) compared to c’ the quantified distribution of the number
of SLC17A7+ excitatory neurons (Excit), GAD1+ inhibitory neurons (Inhib), and MBP+
oligodendrocytes (Oligo), respectively. Scale bar in a for a-c is 1 mm.
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Figure 7: Boxplots of total RNA nuclear expression in the nucleus across cell types. a.
Distribution of total nuclear RNA expression (estimated with the sum of total UMIs per nucleus)
in DLPFC snRNA-seq data across excitatory neurons (Excit), inhibitory neurons (Inhib), and
oligodendrocytes (Oligo). b. Distribution of the number of puncta quantified by RNAscope for
each observed gene across the same cell types as in a. The number of puncta by RNAscope
estimates the total RNA expression by snRNA-seq (Figure 1a). POLR2A was only evaluated in
excitatory neurons and oligodendrocytes as it was multiplexed with MALAT1 and and GAD1 was
omitted.
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Table Legends

Table 1: Proportion of nuclei that displayed any TREG candidate or POLR2A puncta.
Proportion of nuclei with a non-zero count in the DLPFC snRNA-seq data compared against the
mean proportion of non-zero puncta in the nucleus and mean number of puncta observed in the
RNAscope data for the candidate TREGs and POLR2A. Beta values are the slope of the linear
fit of the number of puncta over ordered cell types and the 95% confidence interval. The
standardized beta is the slope of the linear fit of the number of puncta divided by the standard
deviation of the number of puncta for each gene. Standardized betas enable the comparison
between snRNA-seq and RNAscope data. The standardized beta in snRNA-seq is -1.33
(-1.35,-1.31). With RNAscope, AKT3 is the TREG that most similarly follows the trend across all
genes in snRNA-seq (see also Figure 7). Due to the inability to resolve individual punca for
MALAT1, the observed trend (Supplementary Figure 9) is unreliable.

Gene

Prop.

non-zero

in DLPFC

snRNA

Mean

prop.

non-zero

puncta in

the

nucleus

Mean n

puncta β (95% CI)

Standard

deviation

Standardized

β (95% CI)

AKT3 0.92 0.88 4.09

-5.52

(-5.55,-5.49) 5.18

-1.07

(-1.07,-1.06)

ARID1B 0.94 0.86 3.08 -2.63 (-2.65,-2.6) 3.42

-0.77

(-0.77,-0.76)

MALAT1 1.00 0.98 2.07

-1.22

(-1.24,-1.21) 1.53

-0.8

(-0.81,-0.79)

POLR2A 0.30 0.78 2.75

-3.49

(-3.51,-3.47) 3.34

-1.05

(-1.05,-1.04)

All genes in

snRNA-seq NA NA NA

-21844.07

(-22172.45,-2151

5.68) 15560.76

-1.33

(-1.35,-1.31)
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Supplementary Material

Supplementary Figures

Supplementary Figure 1: Distribution of Proportion Zero for rare cell types. Endothelial cell
(Endo), Macrophage (Macro), Mural cell (Mural), and T-cell are cell types that have 100 (0.14%)
or fewer nuclei in the snRNA-seq dataset used in this study (Supplementary Table 1). Given
they are present in at most three of five brain regions, we did not include brain regions when
grouping nuclei for the Proportion Zero filter calculation. Related to Figure 2a, Methods:
Expression and Proportion Zero Filtering.
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Supplementary Figure 2: Relationship between Gene Properties and total RNA
t-statistics. t-statistics are calculated for the relationship between total RNA expression
(explanatory variable) and gene expression (response variable), adjusted for cell type (Methods:
Total RNA linear regression) for all 23,038 genes in the reference snRNA-seq data set. a. The
distribution of total RNA t-statistics for genes that failed either the top 50% filter (left panel) or
the Proportion Zero filtering process (right panel). The genes are annotated by color for classic
housekeeping (HK) genes [41, 42], brain data-driven housekeeping (HK) genes [6], or belonging
to none of those three groups. b. Scatterplot of the relationship between the Rank Invariance
and the total RNA t-statistic for the 877 genes that pass all the filtering steps. Candidate TREGs
explored with RNAscope are highlighted in red and labeled. A loess regression line with span =
0.3 is shown. All three panels are mutually exclusive categories of genes based on the filtering
processes. Related to Figure 2b and Figure 3c-d.
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Supplementary Figure 3: snRNA-seq expression plots. Distribution of the normalized
log2-transformed expression over cell types for AKT3, ARID1B, MALAT1, and POLR2A.
Candidate TREGs show less expression variability across most cell types compared to
POLR2A. Expression Ranks (Figure 3b) are less variable than measured expression values
since the Expression Rank takes into consideration the context of the expression levels of other
genes in a given cell.
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Supplementary Figure 4: Relationship between total nuclear expression and expression
of candidate TREGs. Scatter plot of the total RNA expression (estimated by the nuclei log2
sum of all counts) against the nuclei gene expression (log2 of the count plus one), and AKT3,
ARID1B, and POLR2A; related to Figure 3d. The scatter plots are overlaid with the linear fit for
each cell type and colored by cell type. See Figure 3c for MALAT1.
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Supplementary Figure 5: Gene ontology dotplots. Gene ontology enrichment results for the
top 10% candidate TREGs found using snRNA-seq data from 5 human brain regions across
ontologies for biological processes (BP), cellular components (CC), and molecular function
(MF). The top 10% candidate TREGs are enriched for functions related to RNA transcription,
namely RNA splicing and histone modification, as well as related cellular components and
molecular functions. This finding is consistent with the TREG property that its expression is
associated with transcriptional activity. Related to Figure 3c-d.
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Supplementary Figure 6: Upset plot for top 50 RI genes. The Proportion Zero filtering and
Rank Invariance calculation was performed on each of five brain regions and across all brain
regions. The overlap of the sets of the top 50 Rank Invariance genes from each analysis is
shown in this “UpSetR” plot [40]. An “UpSetR” plot is similar to a Venn diagram as it shows bars
denoting the intersection size (top) for different types of intersections (bottom right) based on
sets of features (in this case gene IDs) that could have different sizes (bottom left, in this case
all six sets are of equal size: 50 genes). “UpSetR” plots can include more sets than Venn
diagrams. The intersections are ordered by decreasing intersection size, and here the fifth
largest intersection corresponds to the intersection across all six sets (shown in orange). The
genes AKT3, ARID1B, and MALAT1 are part of the set of 13 genes that are present in each set
of top 50 Rank Invariance genes (Supplementary Table 2).
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Supplementary Figure 7: Spatial distribution of mean nuclear area across all n = 9 tissue
sections. To visualize the nuclear area spatially, we used hex bins to compute the mean
nuclear area per hex bin. The regions inside of the red boxes were flagged during quality control
for unusually high nuclear size, and the enclosed nuclei were excluded from the analysis for
technical artifacts due to sampling and imaging. Related to Figure 6a, Methods: Quality control
and spatial quantification of HALO data.
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Supplementary Figure 8: Spatial distribution of mean number of puncta across all n = 9
tissue sections, post quality control. Similar to Supplementary Figure 7, but for the mean
number of puncta for each gene after performing quality control. Given that MALAT1 and
POLR2A were multiplexed in the same experiment on a single slide, (Figure 4a,
Supplementary Table 3), their spatial shapes are identical. Related to Figure 6b.
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Supplementary Figure 9: Boxplots of total nuclear RNA expression across all cell types.
a. Total nuclear RNA expression summed from snRNA-seq data. Nuclei not classified as Excit,
Inhib, or Oligo were classified as “Other'' and likely represent other non-neuronal cell types
located in the brain, such as astrocytes and microglia. b. Total nuclear RNA expression
estimated by the number of puncta measured by RNAscope for each observed gene. Nuclei
expressing more than one cell type marker (Excit, Inhib, or Oligo) are classified as “Multi” as
they cannot be definitively assigned a cell type phenotype due to overlapping fluorescent
signals. Related to Figure 7 and Table 1.
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Supplementary Figure 10: Nuclear puncta versus nuclear area across cell types. Given
the paired nuclear size (area in µm2), RNA abundance (number of puncta), and cell type
assignment data from  RNAscope experiments, we can examine the relationship between
puncta and area across all cell types. The relationship between nuclear area and puncta is
different across cell types, for example excitatory neurons (Excit) and oligodendrocytes (Oligo)
for AKT3 have a difference in slopes of 0.093 (t=155.77, p<2*10-16).Cell types are the same as
those from Supplementary Figure 9 and it should be noted that MALAT1 puncta were
unreliable due to oversaturation of fluorescent signals as previously explained. Related to
Figure 7. There is no data for inhibitory neurons for MALAT1 and POLR2A as GAD1 was
omitted for this experiment due to limitations in multiplexing (Figure 4).
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Supplementary Tables Legends

Supplementary Table 1: Numbers of different nuclei over brain regions. Nuclei counts in
the snRNA-seq dataset over the ten broad cell types and five brain regions.
  
Supplementary Table 2: Detailed gene metrics. Detailed gene metrics. Including the Ensembl
ID, gene symbol, gene type annotation and t-statistic for the total RNA linear regression. For
ALL regions and, and each individual region: pass the 50% expression filter (top50), the
maximum Proportion Zero (max_propZero),  pass the Proportion Zero filter (PropZero_filter),
Rank Invariance value (rank_invar) .

Supplementary Table 3: RNAscope probe combinations and opal dye (fluorophore)
assignments. GAD1 labels inhibitory neurons, SLC17A7 labels excitatory neurons, and MBP
labels oligodendrocytes. AKT3, ARID1B, and MALAT1 are candidate TREGs while POLR2A is a
classic HK gene.

Supplementary Table 4: Opal dye dilutions used to fluorescently label probes in
RNAscope. Opal dyes must be diluted before application to tissue sections. Dilutions are
optimized based on probe intensity (e.g. cell type marker genes with high expression require a
lower concentration [higher dilution] of fluorescent Opal dyes).

Supplementary Table 5: Scanning protocol exposure times. The exposure times, in
milliseconds, used for the Polaris scanning algorithms listed by experiment.

Supplementary Table 6: HALO cell counts. Columns 2-3: Numbers of cells (before and after
performing quality control for poorly segmented regions) segmented by HALO software for each
sample (rows) in the RNAscope experiments. Columns 4-8: The number of nuclei assigned to a
given cell type category. Nuclei with more than one cell type marker (Excit, Inhib, or Oligo) are
classified as “Multi” whereas those without any markers are labeled as “Other”.
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