
Goal-driven optimization of single-neuron properties in
artificial networks reveals regularization role of neural

diversity and adaptation

Victor Geadah 1,2 Stefan Horoi 2,3 Giancarlo Kerg 2,4

Guy Wolf 2,3,5 Guillaume Lajoie 2,3,5,*

Abstract

Individual neurons, and the circuits they collectively form in the brain, have been subject
to joint evolutionary pressure to produce system-level functions. Considerable effort has
been invested in understanding the impact of single-neuron input-output mechanisms, such
as diversity in f-I curves and spike frequency adaptation, on network computations. Yet,
how goal-driven requirements at the network level influence single-neuron coding properties
remains largely unexplored. Toward addressing this, we systematically investigate single-
neuron input-output adaptive mechanisms, optimized in an end-to-end fashion in artificial
recurrent neural networks. This is achieved by interconnected Adaptive Recurrent Units
(ARU), which perform online control of a novel two-parameter family of activation functions
mimicking the diversity of f-I curves found in common neural types in the brain. Our
network of ARUs shows much-improved robustness to noise and changes in input statistics.
Importantly, we find that ARUs recover precise biological coding strategies such as gain
scaling and fractional order differentiation. Using tools from dynamical systems theory, we
elucidate the role of these emergent single neuron properties and argue that neural diversity
and adaption likely play an active regularization role that enables neural circuits to optimally
propagate information across time. In doing so, we discuss how goal-driven optimization
approaches, while not biologically plausible themselves, reveal neural mechanisms that are
consistent with evolutionary pressures on the brain.

1 Introduction

Biological neurons show an outstanding range of input response diversity and adaptive behavior (Gjorgjieva
et al., 2016; Weber et al., 2019). How the rich dynamics of biological neurons combine with network
interactions to support complex tasks, such as sensory integration and behavior, remains largely unresolved.
While the past decades have seen considerable work aimed at elucidating single neuron coding properties,
most efforts have been “bottom up", modeling mechanistic features observed in biology and analyzing their
computational impact. We argue that to shed light on the system-level role of single neuron properties, a “top-
down" approach is needed. One way to achieve this is with deep-learning optimization, where “goal-driven"
models aim to solve system-level objectives, and emergent neuron properties are studied. In recent years, this
method has been extremely successful in capturing single neuron static tuning properties, such as that in the
visual system (Yamins and DiCarlo, 2016). In this work, we use a goal-driven approach to investigate adaptive

1Program in Applied and Computational Mathematics, Princeton University, Princeton, U.S.A. 2Mila - Quebec
Artificial Intelligence Institute, Montréal, Canada. 3Département de Mathématiques et Statistiques, Université de Montréal,
Montréal, Canada. 4Département d’Informatique et Recherche Opérationelle, Université de Montréal, Montréal, Canada.
5Canada CIFAR AI Chair. *Correspondence should be addressed to G.L. (g.lajoie@umontreal.ca).

Preprint. Under review.

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 1, 2022. ; https://doi.org/10.1101/2022.04.29.489963doi: bioRxiv preprint

g.lajoie@umontreal.ca
https://doi.org/10.1101/2022.04.29.489963
http://creativecommons.org/licenses/by-nc-nd/4.0/

input-output properties of neurons that emerge from end-to-end optimization of recurrent neural networks, and
shed light on their role in biological systems.

A central dynamic component of single-neuron coding is the transformation of input currents into output firing
rates neuron execute, as measured by so called f-I curves, or activation functions (AF). These are both adaptive
and diverse across neurons. At the heart of this modularity lies the efficient coding hypothesis, a theoretical
paradigm by which neurons aim to be maximally informative about the inputs they encode. Supported by
this principle, neurons are known to effectively modulate their f-I curve in response to constant step-like
stimulus, in a process know as spike frequency adaptation (SFA) (Benda and Herz, 2003). It has been shown
that SFA and other adaptive mechanisms in single neurons enable faithful encoding of input signals regardless
of baseline, a crucial feature for animals subject to changing environments (Fairhall et al., 2001a; Peron and
Gabbiani, 2009; Gjorgjieva et al., 2016). SFA also facilitates information integration over long timescales
(Pozzorini et al., 2015), and provides robustness to rapid variation and noise (Lundstrom et al., 2008). At
the network level, adaptive neural responses have been shown to support efficient coding with metabolic
advantages (Gutierrez and Denève, 2019), facilitate computations over long timescales (Bellec et al., 2018;
Fitz et al., 2020; Salaj et al., 2021), and even enable forms of Bayesian inference (Deneve, 2008; Kilpatrick
and Ermentrout, 2011). Recent work also shows robustness gains from learned modulated neural dynamics
(Vecoven et al., 2020) and with diverse and dynamics synapses and IF curves (Burnham et al., 2021; Winston
et al., 2022a), While a number of coding advantages of diverse and dynamic single neuron responses are now
established, it is still unknown how these mechanisms have come to bear, and how they influence learning and
configuration of larger neural networks that support system-level tasks such as perception or prediction.

In parallel, modern artificial neural networks used in artificial intelligence (AI) loosely mimic neural responses
with simple AFs (also called nonlinearities) which transform summed inputs to an artificial neuron into
a scalar state value, akin to a firing rate. While different shapes of activation functions have been used,
and even optimized (Hayou et al., 2019), the prevailing sentiment in AI is that a simple AF such as the
rectified linear unit (ReLU) is enough for large networks to implement almost any transformation. In fact,
this is mathematically guaranteed by the universal function approximation theorem, stating that large enough
nonlinear neural networks can implement any function (Cybenko, 1989; Hornik et al., 1989). Reconciling the
diverse and dynamic nature of biological neurons’ input-output properties with the computational function
of the large networks in the mammalian brain, for example, is therefore a tricky exercise. The prevalent
hypothesis is that the single neuron input-output richness found in the brain has evolved and been optimized to
guide network-level function such as stable population dynamics, and coordinated learning.

In this work, we propose a step towards complementing these longstanding mechanistic investigative efforts
into IF-response diversity and adaptation, through the lens of goal-driven optimization. Using simple artificial
neural networks and deep learning, we ask: given the possibility to implement a wide range of single neuron
input-output properties, including rapid adaptive mechanisms, do networks optimized end-to-end to perform
systems-level goals develop biologically realistic solutions at the single neuron level? If so, can we reconcile
single-neuron properties with network-level mechanisms? To address this, we concentrate on the problem of
perception on sequential stimuli, such as visual input streams. Our goal is to prescribe the simplest system
possible recurrent neural network (RNN) that has enough flexibility to develop optimal solutions for it’s units’
AFs. As such, we propose a two-parameter family of AFs mimicking the diversity of f-I curves that can be
implemented by known neural types, and interpolating between often used nonlinearities in AI. In addition,
we implement a dynamic controller that modulates AFs in real time, acting locally and independently at
each neuron. This controller, implemented with a distinct and smaller RNN, models the genetically encoded
adaptation strategy that would have been refined by evolution. We then train this system end-to-end on
sequential classification tasks. We call our novel adaptive artificial neuron Adaptive Recurrent Unit (ARU).

Our findings can be summarized in three points. First, we find that both diverse and adaptive AFs help the
main RNN learn tasks, and provide surprising robustness to noise and distractors. Second, we investigate the
learned solutions obtained by the optimization procedure and find that surprisingly, a number of biologically
realistic strategies are implemented. Indeed, optimal AFs take on biologically plausible configurations (i.e. not
simple sigmoid or ReLU), diversity of AFs is an important and necessary feature for robustness, and crucially,
the adaption controller implements gain scaling and fractional differentiation, just like several neocortical
neurons. Finally, we analyze the optimization mechanism that led to these solutions and find that diversity and
adaptation acts as a dynamic regularizer, enabling the main RNN to remain in a dynamic regime close to the
edge of chaos where information transmission and error gradients propagate optimally.

2

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 1, 2022. ; https://doi.org/10.1101/2022.04.29.489963doi: bioRxiv preprint

https://doi.org/10.1101/2022.04.29.489963
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 1: Model details. (a) Various shapes of the γ activation function (AF), represented in the parameter
space {n, s}. We attain commonly used nonlinearities. (b) Different settings considered for modulation of
the AF. This modulation is either done alongside training (Optimized) or online (Adaptive). Blue indicates
learned parameters ; notice the blue activation function in the Optimized setting, updated alongside weights.
(c) Artificial unit i of a standard RNN with γ activation function. Legend at the bottom applies to (c-d). (d)
Graphical depiction of the Adaptive Recurrent Units (ARU) and associated recurrent network model. Numbers
{1, 2} on the arrows in the ARU represent the order of processing. Removing the adaptation mechanism A,
we recover the RNN+γ model in c. Each neuron has a private copy of the controller RNN (in red).

2 Results

2.1 Static and adaptive activation functions in recurrent neural network models

We propose a novel, differentiable family of activation functions defined by

γ(x;n, s) = (1− s) log(1 + enx)

n
+ s

enx

1 + enx
(1)

for x ∈ R with two parameters controlling its shape: the degree of saturation s and neuronal gain n1. This is a
s-modulated convex sum of two C∞(R) functions: the non-saturating softplus (s = 0), and the saturating
sigmoid (s = 1), while n rescales the domain and controls response sharpness, or gain (Sompolinsky et al.,
1988). Figure 1a shows the graph of γ for different values of (n, s), interpolating between well-known
activation functions in deep learning. We note γ is differentiable in both s and n, and include these parameters
in the optimization scheme in several experiments described below. We refer the reader to Appendix §A for
error gradient derivations that include these parameters. Finally, the activation function can either be shared by
all neurons (homogeneous) or vary neuron-to-neuron (heterogeneous). We incorporate this diversity by setting
scalar (n, s) parameters in the homogeneous case, and by setting vectors n, s ∈ RN in the heterogeneous case
for N neurons, such that the activation function of neuron i is set by ni, si. This flexible parametric family

Code available at: https://github.com/vgeadah/NonlinMod
1We often shorten these to saturation and gain and collectively refer to them as the activation parameters

3

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 1, 2022. ; https://doi.org/10.1101/2022.04.29.489963doi: bioRxiv preprint

https://github.com/vgeadah/NonlinMod
https://doi.org/10.1101/2022.04.29.489963
http://creativecommons.org/licenses/by-nc-nd/4.0/

allows to capture some key properties of f-I curve shapes present in different neuronal types. For instance,
Type I neurons show gradual frequency increase with increasing applied current (i.e. γ with low n, s ≥ 0),
whereas Type II neurons show sharp firing onset at non-zero frequencies (i.e. approximated by γ with low n,
s > 0). While there is no control of the AF threshold, the combined effect of recurrence and multiplicative
scaling allows sufficient expressivity (Krishnamurthy et al., 2022).

In line with the goal of isolating the role of activation functions, we elect to use a simple “vanilla” RNN
model for experiments. The vector equation for the recurrent unit activation ht ∈ RNh in response to input
xt ∈ RNx , t ∈ {0, . . . , T} is given by

ht = γ(Whhht−1 +Wxhxt + bh ;n, s) (2)

where the output yt ∈ RNy is generated by a linear readout yt = Whyht + by. Weight matrices W(·) and
biases b(·) are optimized in all experiments. In the rest of this paper, we explore different ways in which
learning and computations are influenced by the shape of γ, which operates point-wise on its inputs. To flesh
out computational properties of activation function diversity, and of their use in real-time adaptation, we
consider two main learning frameworks for analysis: (1) static activation functions, and (2) adaptive activation
functions (see Figure 1b for a schematic).

The goal of the first static category of scenarios is to study the sole impact of activation shape on computational
properties of RNNs. Specifically, we consider the activation function as a stationary property, not changing
at inference or during input processing (Figure 1b). The activation function can either be imposed a priori
and remain fixed throughout training, or be optimized by including the activation parameters tuple in the
optimization process. We performed a grid hyperparameter search over the parameters {n, s} in this fixed
setting to set a prior for initialization (further details in Methods). We settled on ninit ∼ N (5, 22) and
sinit = 0, and further used this prior for the optimized but static setting, focusing on this setting for the rest of
this work.

In the second optimization category, we investigate recurrent models with adaptive activation functions,
allowing the activation parameters {nt, st} to vary during input processing (Figure 1b,d). Our goal is to allow
as much flexibility for an adaptation strategy to emerge from end-to-end optimization. As such, we propose to
use communicating standard RNN modules to control these activation parameters. We introduce the network
of Adaptive Recurrent Units (ARUs) composed of parallel recurrent modules: a main RNN processes inputs,
and parallel adaptation controller RNNs act locally to modulate the activation function of each neuron of the
main RNN during input processing. See Figure 1c for a schematic representation of the architecture. The
overall neuron-wise equations in response to input xt ∈ RNx are given by:

ait = W i,:
xhxt +W i,:

hhht−1 + bh (3)

g
(i)
t = tanh

(
Waga

i
t +Wggg

(i)
t−1 + bg

)
(4)

nit = Wgng
(i)
t + bn, sit = Wgsg

(i)
t + bs (5)

hit = γ
(
ait; n

i
t, s

i
t

)
(6)

for each neuron i = 1, . . . , Nh (superscripts denoting indices, subscripts denoting time). The weights
Wαβ ∈ RNβ×Nα and biases bβ ∈ RNβ are updated via gradient descent using backpropagation through
time (see Methods). Equations (3) and (6) define the main RNN with hidden-states ht ∈ RNh similarly to
(2), only now with time-varying shape signals nt, st ∈ RNh . The signals are dictated by the composition
of (4) and (5), yielding the conceptual adaptation mechanism A : at|ΘA 7→ {nt, st}, with weights ΘA =
{Wag,Wgg,Wgc, bg, bc} shared across all neurons. The adaptation mechanism maps the pre-activation ait to a
nonlinear activation function γ(· ;nit, sit), akin to nonlinearity adaptation in cortical networks. Importantly, we
construct A so that, given the neuron-dependent pre-activation ait, it is independent of the specific neuron i.

2.2 Neural adaptation and diversity improves RNN performance and robustness to input
perturbations

We use basic classification tasks to explore static and adaptive AF optimization, considering tasks complex
enough for non-trivial solutions to emerge from end-to-end learning but simple enough to reduce confounders
and augment interpretability. To this end, we conduct experiments on two synthetic tasks of sequential
classification. In our numerical analysis of information propagation metrics during learning and associated
emergent phenomena, we focus primarily on the task of classifying MNIST (Le et al., 2015) digits from a
permuted sequential sequence of pixels (psMNIST). The second task, a grayscaled and sequential version of

4

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 1, 2022. ; https://doi.org/10.1101/2022.04.29.489963doi: bioRxiv preprint

https://doi.org/10.1101/2022.04.29.489963
http://creativecommons.org/licenses/by-nc-nd/4.0/

RNN+ReLU
LSTM
GRU

RNN+ (homo)
RNN+ (hetero)
ARUN

20

40

60

80

100

Te
st

 a
cc

ur
ac

y
(%

)

c Noisy perturbation

Original
Noise perturbation

t
0

a additive

t

1

b multiplicative

0 10 20
0

20

40

60

80

100

Te
st

 a
cc

ur
ac

y
(%

)

d Step perturbation

0 1 2
0.75

0.80

0.85

0.90

0.95

e Variable contrast

Models

20

30

40

50

60

Te
st

 a
cc

ur
ac

y
(%

)

0.0 0.2 0.4
Amplitude (= 200)

20

30

40
Te

st
 a

cc
ur

ac
y

(%
)

0 1 2
Amplitude

30

40

50

60

ps
M

N
IS

T
gs

C
IF

A
R

10

Figure 2: Performance and robustness of RNN architectures on sequential classification tasks. (a, b) Perturba-
tions considered, either an additive step perturbation of amplitude ξ > 0 for τ time-steps, or a multiplicative
change in contrast applied to the pixels inputs. (c–e) Results on the permuted sequential MNIST (top) and
grayscaled sequential CIFAR10 (bottom) classification tasks. (c) Performance on the original unperturbed
setting, and under an additive step noisy perturbation (ξt ∼ N (5, 22) for psMNIST, ξt ∼ N (0.5, 22) for
gsCIFAR10) applied for τ = 200 time-steps starting at t = 200. See Appendix Table 2 for the numerical
values. (d) Sensitivity analysis under the additive step perturbation, for varying amplitude ξ > 0 for fixed
duration τ = 200 time-steps starting at t = 200. (e) Sensitivity analysis under variable contrast, for varying
amplitude α > 0 for fixed phase π.

the CIFAR10 classification task (gsCIFAR10), is further used as a more computationally demanding task to
explore more complex regimes. It should be noted that performance on gsCIFAR10 is far from perfect, mostly
due to the small network size we use. However this tasks serves the purpose of verifying that the emergent
solutions at the single neuron level are consistent with the similar but more manageable task of psMNIST.
See Methods for further details on both tasks. As baselines where appropriate, we focus on the RNN+ReLU
network for comparison with a efficient but non-gated architecture (Glorot et al., 2011), and consider gating
through the LSTM and GRU architectures. We chose the later as they are known to be more efficient that
RNNs at learning long time-dependencies and are robust to transient perturbations, however we note that they
rely on non-local, biologically unrealistic gating mechanisms.

Learning diverse, static activation functions We start by considering the static setting as a stepping stone
towards AF adaptation on transient timescales. First, we find that the introduction of homogeneous γ(·;n, s)
AF learning provides a considerable increase in performance compared to baselines. On the psMNIST task,
RNN with γ outperform both ReLU and gated (LSTM, GRU) baselines. Moreover, learned combinations
of (n, s) activation parameters differ from conventional nonlinearities, converging to the unit-norm manifold
{(n, s) : ‖γ′(x;n, s)‖ = 1} (see Appendix B.1). Similar results are obtained on the gsCIFAR10 task. While
the GRU offers the highest performance by far, homogeneous optimization of RNN+γ achieves greater
classification accuracy and provides a significant improvement over the RNN+ReLU (see Figure 2c). Then
we turned to heterogeneous optimization, providing a more in-depth portrait of AF modulation in RNNs, in

5

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 1, 2022. ; https://doi.org/10.1101/2022.04.29.489963doi: bioRxiv preprint

https://doi.org/10.1101/2022.04.29.489963
http://creativecommons.org/licenses/by-nc-nd/4.0/

a manner closer to the diversity of activations displayed in cortical networks. In terms of performance for
the psMNIST task, we found that learning heterogeneous activation did not provide a significant advantages
over the already well performing optimization settings, outperforming the fixed setting but not necessarily
the homogeneous setting. On the gsCIFAR10 task the same conclusions hold, the heterogeneous RNN+γ
performs as well if not slightly better than the homogeneous RNN+γ (see Figure 2), however the increase in
performance is again not statistically significant.

Adaptive units improve performance and robustness to changes in environment Perturbations of both
neuron- and network-level inputs are an integral part of the literature on neural adaptation. We introduced in
§2.1 the network of ARUs (ARUN), a general RNN-type model that offers modulation of the AF on a transient
scale, during online input processing. How do these adaptive AFs compare in terms of performance, and
upon facing these perturbations? We consider two classes of perturbations. First, we draw inspiration from
optogenetic stimulation and inject a scalar external drive ξ > 0 directly to the neuron before the AF is applied
during τ time-steps (Fig. 2d). Second, we transform the network-level inputs xt by applying a sinusoidal
change in contrast (Fig. 2e), thus altering the input statistics directly. More details in Methods §5.4. We report
our results on the psMNIST and gsCIFAR10 tasks with these variations in Figure 2.

We observe that networks with adaptive nonlinearities exceed or equl performance on the initial tasks (within
error bars). Furthermore, their real advantage emerge when considering their ability to mitigate the changes in
input statistics in psMNIST from the transformed digits or in response to an added stimulus. In psMNIST,
the ARUN outperforms other architectures on the noisy drive (Fig. 2c), as such offering the lowest difference
between the original setting and this step perturbation. Furthermore, it shows high robustness to variable
drive amplitude (Fig. 2e). Performance experiments on the gsCIFAR10 task are less conclusive, as expected,
attributable in part to the overall lower performance for all networks. We can see however that the ARUN is
significantly more robust to the noisy perturbation when compared to the other RNNs or LSTMs (Fig. 2c).
ARUs also seem to be more robust in the extreme cases of step perturbations or variable contrast since it
retains more of its performance in both experiments at high amplitudes.

On top of the results presented in Figure 2, we conducted a sensitivity analysis with respect to the various
parameters of the transformations (see Appendix Figure 12). First, we varied the phase and amplitude of
the sinusoidal transformation applied on inputs, and we observe that the ARUN presents the best robustness.
Second, we varied the amplitude and length of the step-drive applied on neurons. In this driven case, the
ARUN presents a test loss of an order of magnitude lower than the other RNN models while varying the
parameters. In all, endowing networks with adaptive nonlinearities present significant advantages in mitigating
changes in input statistics.

2.3 Top-down optimization of adaptive RNNs recovers biological dynamic coding mechanisms of
single neurons

When trained on temporal perception tasks (sequential MNIST/CIFAR10), we demonstrated that our network
of ARUs shows improved robustness to noise and changes in input statistics. Remarkably, we find that in doing
so, ARUs implement precise SF mechanisms from biological neurons, including gain scaling and specifically
fractional input differentiation (Laughlin, 1981; Fairhall et al., 2001b; Lundstrom et al., 2008). This suggests
that even in simplified models, environmental pressures and objective-based optimization are enough for
sophisticated single neuron mechanisms to emerge. Below, we investigate these mechanisms arising from
goal-oriented optimization, and find that they implement a number of observed properties of biological neurons.
We reiterate that our system does not have any constraints apart from the AF parametrization, and that it could
have, in principle, chosen any adaptive of AF strategy, biologically realistic or not.

Heterogeneity Heterogeneous activation functions already provide a setting more reminiscent of the diversity
of activations in cortical networks. In Section §2.2 we demonstrated that heterogeneity was beneficial to
task performance and robustness (albeit not significantly). Furthermore, we observe that when the activation
function γ is initialized homogeneously, the optimization procedure leads to heterogeneity in the activation
functions across the network (Fig.3a top). See Winston et al. (2022a) for similar results when AFs are
parametrized following known relations between ionic currents and f-I curves. Further experiments (details
included in Appendix §B.2) consider trained RNN+γ networks reading psMNIST digits rotated by π/4 rad.
As opposed to the perturbation experiments highlighted previously, this also changes the temporal order in
which the inputs are fed. In this new setting, we observed an increase in {n, s} heterogeneity upon changes in
task temporal statistics (Fig.3a bottom), when all other parameters are kept fixed. Simply allowing the AFs to

6

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 1, 2022. ; https://doi.org/10.1101/2022.04.29.489963doi: bioRxiv preprint

https://doi.org/10.1101/2022.04.29.489963
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 3: Biological dynamic coding mechanisms recovered by ARUs. Colorbar applies to whole Figure.
(a) Neuron-to-neuron heterogeneity in AFs. (Top) Learned activation parameterss in RNN+γ (het.), from
homogeneous initialization. (Bottom) Increase in heterogeneity before and after a 45◦ rotation is applied to
the psMNIST digit, learned through backpropagation. (b) As a response to a noisy external drive of varying
variance, the gain of the ARUs displays power-like decay (fit in dashed) as a function of the std.-dev. ξ, and
the saturation displays exponential ramp-up (fit in dashed). Averaged over N = 3 seeds. Depictions of the
associated γ AFs are included above, exagerated for visualisation purposes (color follows colorbar). (c,d)
Experiments on original fully connected recurrent dynamics (top), or with neurons in isolation (diagonal
recurrent weight matrix) (bottom). Gray indicates undriven activity. (c) Mean hidden-states ht under varying
step external drive ξ, applied during the green bar period. (d) Mean fractional-order-differentiated hidden-
states Dαht, of order α under varying step external drive ξ. Dashed green step-constant lines indicate the
original additive step-perturbation applied to the networks. (e) Fractional integration order established by
minimizing the MSE between the fractional order differentiated signal of isolated ARUs activity (d bottom)
and the original step drive (d bottom dashed green), as a function of the drive and the task.

be modulated could recover over a quarter of lost performance (over 25%) in this altered task. These results
show that heterogeneity is both beneficial and is learned through optimization.

Adaptation implements gain scaling As a first indication of ARUs implementing optimal coding mecha-
nisms akin to biological neurons, we find the general gain adaptation behavior following general gain scaling
principles of cortical neurons (Laughlin, 1981; Fairhall et al., 2001b). We subjected ARUs to a low-noise
signal N (0, 0.012) for t = 200 time steps, followed by a i.i.d samples from N (0, ξ2) for varying xi > 0
during another t = 200 time steps, before returning to the original low noise (see inlet Fig. 3b). We observe
the gain n∞(ξ) to display a power-law dependence on ξ (Fig. 3 left) (Lundstrom et al., 2008). As for the
saturation, we observed a exponential dependence on ξ (Fig. 3 right). These have the combined effect of
following Laughlin’s original assertion (Laughlin, 1981); we found ARUs to allocate their effective AF range

7

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 1, 2022. ; https://doi.org/10.1101/2022.04.29.489963doi: bioRxiv preprint

https://doi.org/10.1101/2022.04.29.489963
http://creativecommons.org/licenses/by-nc-nd/4.0/

proportionally to the input statistics, thereby mitigating variations in the output distribution. Further details
about the role of this mean response value on the stability of network dynamics are presented in Section 2.4.

Adaptation implements fractional differentiation We find that ARUs learn to produce dynamics that
implement fractional differentiation of input signals, a fundamental mechanism for efficient information
processing in cortical neurons intimately related to gain scaling (Lundstrom et al., 2008; Weber et al., 2019).
Fractional order differentiation can be understood by a filtering operation in Fourier domain H(f) = (2iπf)α,
where α ∈ [−1, 1] is the order of fractional differentiation. Conceptually, differentiation pertains to α > 0, and
a negative order α corresponds to the inverse process of fractional order integration. Both are mathematically
justified, observed in retinal neural populations (Kastner and Baccus, 2011, 2013), and carry meaning as a
convolutional filter mechanism.

In response to a step-constant drive, we observe ARU activity ramping up to a different regime during
stimulation, followed by a return to a regime almost identical to un-stimulated dynamics (Fig. 3a)—an
expected mechanism coherent with firing rate dynamics under optogenetic stimulation (O’Shea et al., 2018).
Turning to the activation parameters, we observe prototypical onset {n0, s0} with exponential decay to steady-
state values in the signals (Fig. 3b). In doing so, the controller network effectively implements fractional order
filtering. Indeed, fractional order integration of these latter signals reveals step-linear-increase signals (see
Appendix Fig. 8).

To further elucidate this finding, we consider the same step-constant drives, now applied to single neurons in
isolation, with trained weights. This is a setting conceptually closer to the original experiment by Lundstrom
et al. (2008), performed on slices of neocortical pyramidal neurons. Population averaged hidden states of these
non-interacting ARUs show inversely exponential ramp up from steady state (Fig. 3c), similar for varying
amplitudes (ξ) of step perturbation. Fractional order differentiation of this signal reveals that we can recover
nearly exactly the original step perturbation (Fig. 3d). We determine the fractional order precisely by finding
the order that minimizes the mean square error (MSE) between the fractionally differentiated signal and the
original step perturbation (Fig. 9). We find this minimum to be sharp, and generally, this methodology yielded
persistent results on all three random seeds and both tasks (see examples in Fig. 9-11). This indicates that the
ARU controller effectively employs the precise fractional differentiation filter in Fourier domain observed in
cortical neurons (Weber et al., 2019), with specific order values akin to sensitizing retina cells (Kastner and
Baccus, 2011).

Taking a closer look at the exact fractional orders, we find that they depend on the task considered. See Fig. 3e.
For all ξ tested, we found the average fractional orders α to be statistically different between the two tasks
(p < 0.001 for ξ ≥ 1, N = 5 seeds, independent two-sample t-test). Furthermore, we did find the fractional
order to depend ξ (p < 0.05, N = 5, related two-sample t-test between ξ = 1 and ξ = 30), increasing for low
values to a plateau for higher values. Given that the same random seeds were used, the ARUN networks were
initialized to the same parameters, and thus this difference in order of fractional integration stems from the
tasks’ input statistics only.

2.4 Neural adaptation as a local regularizer that improves global network information propagation

So far, we have established that diversity and adaptive tuning of single neuron AFs improve an RNN’s
performance on perceptual tasks, and considerably improves robustness to noise. The level of improvements is
on par with advantages afforded by gating architectures (e.g. LSTM, GRU), which are not biologically realistic.
Furthermore, we showed that optimized adaptive dynamics are not only biologically more plausible, as they
are implemented locally at each neuron, but they also implement dynamic coding mechanisms observed in
real neurons (gain scaling, fractional differentiation). In this section, we analyze the solution implemented by
the ARU controller network, and reveal the mechanisms that led to their optimization during gradient descent,
and the advantages they afford.

Adaptive activation reduces noise variance in single neurons To shed some light onto the mechanisms
observed, we now quantify the impact of the activation function γ on noise integration. As a response to a
general perturbation scalar η ∼ N (µ, σ2), linearization of the hidden-states dynamics about the perturbation
means yields better understanding of the role of the parameters {n, s} in amplifying or reducing this noise.

8

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 1, 2022. ; https://doi.org/10.1101/2022.04.29.489963doi: bioRxiv preprint

https://doi.org/10.1101/2022.04.29.489963
http://creativecommons.org/licenses/by-nc-nd/4.0/

3

4

5

Ga
in

 n
t

a

0 250 500 750
Time steps t

0.00

0.02

Sa
tu

ra
tio

n
s t

2.0 2.5 3.0 3.5 4.0 4.5 5.0
Gain n

0.015

0.010

0.005

0.000

0.005

0.010

0.015

0.020

0.025

Sa
tu

ra
tio

n
s

c Jacobian norm

PC1
PC

2

b Controller activity

100

101

Drive ()

Figure 4: Controller activity. The gray color is used throughout to indicate the original perturbation-less
setting. All networks are taken with trained parameters, on the psMNIST task. (a) Under drives of varying
amplitude ξ, the gain (top) and saturation (bottom) signals during the processing of a input digit. (b) Limit
points in controller activity from constant input ξ. (c) {nt, st} trajectories during stimulation, with onset
(triangle) and steady state (square), for each external drive ξ. Overlayed over jacobian γ′(ξ;n, s) = 1− ε level
curves in phase space (ε = 0.01).

Proposition 1. For unitary Whh weight initialization, the variance explained along a vector u ∈ RNh as a
response to a perturbation η ∼ N (µ, σ2I) decays if and only if the parameters {nt, st} satisfy

σ2

[
d

dx
γ
(
µi ;nit, s

i
t

)]2
< 1 +O

(
σ3
)

(7)

for i ∈ {1, . . . , Nh}.

Proof. See proof in Supplementary Materials. (Appendix §C.2.1)

Hence, noise robustness is equivalent to setting the LHS in (7) smaller than one so that noise is non-amplified
by the dynamics. For example: in a linear setting with a linearity of slope a, the above condition reads σ ≤ 1/a.
This proposition reformulates known conditions on the jacobian of the dynamics in a matter especially suited
for our experimental settings. For conciseness, consider a specific neuron i, and drop superscripts. By the
implicit function theorem, setting in Proposition 1 an equality of the form σ2

[
d
dxγ (ξ ;nt, st)

]2
= 1 − ε

defines a manifold in {n, s}-parameter space for any ε > 0. This manifold is a function of the amplitude ξ of
the drive η. Given an initial condition {n0, s0}, one can solve the above system to obtain a path {n(ξ), s(ξ)}
in parameter space as a function of ξ (assuming continuous dependence on ξ, see Appendix §C for further
details). This path corresponds to the expected variation in activation parameters {n, s} as a function of ξ
to absorb, through the hidden-state dynamics within a linearization about the mean, the injected noise by a
distance ε.

We observe that in the absence of an external perturbation, the un-perturbed shape signals {nt, st} in Fig. 4a
show transient behavior before settling into a stable value {n∞, s∞}. As a stimulation ξ is injected into
the system, we observe an onset value {n0(ξ), s0(ξ)} decreasing (or increasing) with an exponential time-
constant to a steady-state value {n∞(ξ), s∞(ξ)}. Note that as the activation parameters {nit, sit} are an affine
transformation of the controller hidden-states g(i)t at each time-step, this behavior indicates similar controller
RNN dynamics. We found the controller RNN to implement varying fixed points of activity as a response to
constant input drive to the main RNN (Fig. 4b). This shape parameter control ties back to the gain scaling and
fractional order differentiation results presented in §2.3.

These values during the stimulation period are precisely the subject of Proposition 1. As observed in Fig. 4c,
we find that the learned {nt, st} trajectories as a function of varying external drive ξ support the expected
behavior detailed above. We observe the onset values (triangle) falling in the region of decaying Jacobian
norm, with the steady-state values (square) approaching its boundary from within. This indicates that the
activation parameters are adapted such that the linearized dynamics enforce the decay of external noise. This
mechanism prescribes the precise value of the steady-state shift of AF parameters due to adaptation, which

9

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 1, 2022. ; https://doi.org/10.1101/2022.04.29.489963doi: bioRxiv preprint

https://doi.org/10.1101/2022.04.29.489963
http://creativecommons.org/licenses/by-nc-nd/4.0/

200 250 300 350
Time step t

0.00

0.01

0.02

0.03

1

a

0 10 20 30
Amplitude

0.00

0.01

0.02

0.03
b

adaptive
fixed

0 200 400 600 800
Input sequence length

100

101

102

103

No
rm

 o
f W

hh
 g

ra
di

en
t

c Gradient propagation

RNN+ReLU
RNN+ (het.)
ARUN

1 0 1

1

0

1

d Eigenspectrum

ARUN
RNN+ReLU

100

101

Figure 5: Dynamic regularization by ARU controllers. (a-b) Maximum Lyapunov Exponent (λ1) of an ARUN’s
main RNN, under varying settings, averaged over n = 10 draws from the used stationary distribution (mean
and 95% c.i. shown). (a) λ1 as a function of the chosen time-step t̂ for varying ξ. Here, we take {nt̂(ξ), st̂(ξ)}
set by an ARU and treat them as unvarying in time (equivalent to RNN+γ het.). (b) λ1 as a function of the
step-drive amplitude ξ, with letting the activation parameters {n∞(ξ), s∞(ξ)} be “adapted”, or remain “fixed”.
In a perfect ergodic system, the fixed line would be horizontal. (c) Frobenius norm of the hidden-to-hidden
weight matrix gradients as a function of input sequence length (mean and 95% c.i. shown, n = 3 seeds). For
sequences of length n, the last n pixels of the original input sequences are used. (d) Eigenspectra of main
RNN connectivity matrices of trained ARUN and RNN+ReLU networks on psMNIST. Both networks were
initialized with Henaff orthogonal matrices, whose eigenvalues lie on the complex plane’s unit circle.

corresponds to the gain-scaling operation described in Section 2.3. The theory prediction is not perfect for low
input amplitudes as the main network can compensate by itself, but our theoretical prediction improves for
high input ranges, where neural adaptation is most needed. Now, to provide a more thorough picture of the
compounded nonlinear effect of the dynamics, we turn our attention to the metric of Lyapunov exponents.

Adaptation regularizes network dynamics at the edge of chaos We find that our optimized adaptation
implements a form of dynamic regularization that aims to keep global network dynamics in an optimal regime.
To better quantify this, we leverage Lyapunov Exponents, a measurement of average expansion and contraction
of state space by a dynamical system, as well as notions of gradient propagation, a proxy for information
transfer quality.

We consider the maximum Lyapunov exponent (λ1) of the autonomous dynamics of the main network in
trained ARUNs (see Appendix D for a primer on the topic). The λ1 computation relies on first drawing an
initial condition h0 ∼ π, and then calculating forward steps based on (3-6) with parameters {Whh, n, s}
(see Vogt et al. (2022) for details). In all cases, we take π(ξ) to be the stationary distribution of the ARUs
during a drive of amplitude ξ (see further details in Methods §5.4). We find this distribution to be Gaussian,
of mean and standard deviation depending linearly on ξ (see Appendix C). We consider both the adaptive
case with activation parameters {n∞(ξ), s∞(ξ)} actively set by the ARUs, and with activation parameters
{n∞(0), s∞(0)} taken from the undriven scenario and thus not adapted (fixed). We find that for constant
drives of distinct amplitude ξ > 0, the activation parameters are effectively adapted to push the networks
to have a λ1 several orders of magnitude closer to 0 in comparison to non-adaptive RNNs (see Fig. 4b. In
other words adaptation regularizes the main network dynamics, otherwise chaotic, to be at the edge of chaos
under external drive. This process is typically achieved by globally modulating connectivity strength, but is
implemented here thanks to a local mechanism at each neuron.

10

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 1, 2022. ; https://doi.org/10.1101/2022.04.29.489963doi: bioRxiv preprint

https://doi.org/10.1101/2022.04.29.489963
http://creativecommons.org/licenses/by-nc-nd/4.0/

Adaptation promotes good gradient propagation The well documented vanishing and exploding gradients
problems of RNNs prohibit effective training over long timescales. In particular, the gradient of the loss
computed with the output of the network at time-step t+ δ with respect to the hidden states of the network at
time-step t either decays or increases exponentially with δ. In the vanishing case this makes the learning of
long term dependencies impossible, while in the exploding case the entire training procedure is compromised.
This phenomenon is linked to dynamic regimes in which an RNN operates, and is thus related to the leading
Lyapunov exponent measurement described above (see Vogt et al. (2022); Poole et al. (2016) for more details).

We quantify the effects of learned neural adaptation on gradient propagation in RNNs by computing the
gradient norms of the hidden-to-hidden weight matrix (Whh in equations 2 and 3) on the psMNIST training
set starting the gradient accumulation at different points in the input sequence. This was done for trained
networks to take into consideration the learned adaptive behavior when considering the gradient propagation.
In RNN+ReLU networks and to some lesser extend in RNN+γ heterogeneous networks the gradient norm
increases monotonously with sequence length, as shown in logarithmic scale in Fig. 5c. The earlier the
accumulation of the gradients is started for these two network types the larger their norm is at the end of the
input sequence when the loss is computed. In ARU networks however, after an initial increase the norms
of the gradients actually decrease with sequence length. When the gradients are computed using the entire
input sequences, the norm of the Whh gradients in ARU networks is an order of magnitude smaller than in
RNN+ReLU or in RNN+γ heterogeneous networks which promotes trainability and the stability of the gradient
propagation during the training procedure. We also note that in ARU networks, elements (pixels) which are at
the beginning of the input sequence and further away from the moment the loss is computed actually contribute
more to the gradient of the weights when compared to later inputs. This is in stark contrast with gradient
contribution in RNN+ReLU networks where the gradient contribution is monotonously increasing with the
element’s position in the input sequence, early inputs contributing much less than later inputs to the gradient.
See Appendix C.4 for more details on the gradient contribution results.

3 Discussion

Optimal information propagation

Recurrent neural networks, whether biological or artificial, must balance expressivity and stability to implement
complex computations. A network whose dynamics quickly converge to a fixed point, for example, is quite
stable but not expressive since very little mathematical transformations of inputs can take place (e.g. integration,
amplification). In contrast, a network operating in a rich, chaotic regime for example, is expressive but unstable:
its dynamics implement very rich computations but tiny perturbations lead to widely contrasting outcomes.
The balance between these two requirements has been identified in several contexts, and is often referred to as
the “edge of chaos" (Bertschinger and Natschläger, 2004). Dynamics close to the transition point between
stable and chaotic dynamics offer optimal information propagation over long timescales, as well as rich
transformations (Bertschinger and Natschläger, 2004; Legenstein and Maass, 2007; Boedecker et al., 2011).
This regime has also been shown to be important in deep and recurrent artificial neural networks (Poole et al.,
2016). Indeed, a rich theory of how large networks learn and implement computations shows that expressivity
is maximized when dynamics are close to chaotic. This finding is closely linked to the backpropagation of
errors in gradient descent optimization.

Several strategies have been developed to ensure efficient training of artificial neural networks. Much of these
strategies rely on global knowledge of networks (Pascanu et al., 2012), and global interventions on connectivity
(Arjovsky et al., 2016; Le et al., 2015; Henaff et al., 2016; Lezcano-Casado and Martínez-Rubio, 2019; Kerg
et al., 2019). For instance during training, batch normalization has proven incredibly efficient at enforcing
certain dynamical regimes. However, this process is inherently non-local, requiring network-level knowledge.
As for online input processing, gating has been the predominant view in forward-processing recurrent neural
networks. Recent work by Krishnamurthy et al. (2022) appeals to the question of multiplicative gating in RNNs,
and its impact on input-driven shifts in dynamical behavior. Here, in subsections §2.3 and §2.4, we report
the learned adaptation mechanisms of trained ARUs. We observe that the ARUs’ controller RNN implement
denoising via fractional order differentiation, and that the input-modulated steady states {n∞(ξ), s∞(ξ)}
effectively bring the main RNN dynamics to the edge-of-chaos. In doing so, we propose that ARU controller
implements a (conditionally purely) local, more biologically plausible form of dynamic regularization.

Importantly, this adaptive strategy offers additional advantages: it allows connectivity matrices to efficiently
implement transformations away from orthogonality, normally leading to chaotic regimes. In a standard RNN,
connectivity matrices with eigenvalues whose magnitude lies beyond the complex plane unit circle typically

11

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 1, 2022. ; https://doi.org/10.1101/2022.04.29.489963doi: bioRxiv preprint

https://doi.org/10.1101/2022.04.29.489963
http://creativecommons.org/licenses/by-nc-nd/4.0/

lead to chaotic dynamics. Such dynamics are computationally rich, but their inherent instabilities hinder
information propagation over long timescales as well as network trainability. Therefore, it is typical to see
optimized RNNs with connectivity matrix eigenspectra lying on the unit circle. In contrast, ARUs allow
optimized networks to have connectivity spectra well beyond the unit circle (Fig. 5d), thus allowing more
expressivity. In addition, in an externally driven setting for which the network was not directly trained, we
found networks to be dynamically stabilized by adaptive neurons. this suggests that adaptation at the single
neuron level enables added expressivity while maintaining stability across a range of dynamic regimes.

Deep learning and backpropagation as a framework to uncover biologically realistic optimal solutions

It is unlikely that the brain makes use of backpropagation, as it is generally implemented for artificial network
optimization. Nevertheless, we argue that the solutions found by back-propagation in RNNs are likely
consistent, in some key regards, with those found by whatever learning and evolutionary mechanism that
unfold in the brain. More precisely, the requirement of stable and expressive information propagation is shared
between artificial and biological networks. For artificial RNNs subject to backpropagation, this manifests
in parameter configuration incentives that help gradients propagate further back in time. Yet, backward
gradient propagation and forward information propagation are two sides of the same coin. Indeed in the
process of backpropagation through time (BPTT), a recurrent neural network’s ability to accomplish a task
dependents entirely on its ability to efficiently propagate information back through the multiple internal
transformations. As highlighted by Pascanu et al. (2012), recurrent neural networks are subject to the vanishing
and exploding gradient problem. The Jacobian of the recurrent dynamics is a leading culprit to this behavior,
and our investigation of the linearized dynamics in §2.4 specifically translates its dependence on the activation
parameters {n, s}. We found the Jacobian to provide significant insights into the integration of external
noise, and more generally metrics on nonlinear composition such as the Maximum Lyapunov Exponent
demonstrated the intricate “edge of chaos” regime neared by the optimal solutions. This is exemplified by
gradient propagation improvements afforded by ARUs and illustrated in Fig. 5c.

Hence while BPTT is regarded as not itself biologically plausible, its requirements on the backward gra-
dient propagation translate into the same requirements for forward stability in networks (Bertschinger and
Natschläger, 2004). We further find that indeed, optimal solutions under BPTT have the same characteristics
as optimal solutions from a more biologically realistic optimization process (§2.3). Taken together, this
highlights how BPTT is a powerful tool for goal-driven investigation in an artificial setting of biological
dynamic processes. Not because of its process, which is biologically implausible, but because it operates under
the same optimization constraints as biological networks, and finds solutions that are consistent with these
requirements.

Therefore, this work focuses on the characterization of optimal solutions, and not on the modeling of learning
itself. This is shared approach that yields impressive results across varied settings. Notably, Winston et al.
(2022b) similarly optimize static neuron properties in RNNs and find advantages of diversity, and the line
of work spawned by Yamins and DiCarlo (2016) keeps reveling stimulus tuning properties of neurons in the
visual pathway and beyond.

Finally, we note that we did not focus on the issue of learning timescales. In comparison to neuron dynamics
and neural circuits in the brain, ARU controller would have been optimized over evolutionary timescales,
while the main RNN parameters, representing synaptic connections, over the lifespan of an animal. We did
try a limited number of experiments, for example by fixing one while learning the other and vice versa (see
Appendix §C.3), and did not see any significant differences in results. A different methodology, borrowing
from deep learning frameworks like meta-learning, could allow for a more adequate consideration of adaptive
mechanisms as a product of evolution-like pressures. Such a more thorough investigation of the impact of
learning timescales on solutions is outside of the scope of this paper, but is a fascinating direction of future
work to disentangle evolution and learning pressures.

4 Conclusion

In this work, we sought to investigate goal-driven learning pressures from the system-level onto dynamic
coding mechanisms at the single-neuron level. We do so by introducing adaptive recurrent units, allowing
for only AF control from a novel parametric family. Our main findings are threefold: (1) Diverse and
adaptive activation functions considerably improve computational performance of networks while also helping
mitigate previously unobserved changes in input statistics during a task, thus improving out-of-distribution
generalization. (2) System-level learning pressures drive biologically plausible adaptation strategies, namely

12

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 1, 2022. ; https://doi.org/10.1101/2022.04.29.489963doi: bioRxiv preprint

https://doi.org/10.1101/2022.04.29.489963
http://creativecommons.org/licenses/by-nc-nd/4.0/

activation function having biologically realistic configurations and more importantly, the implementation
of biological SFA mechanisms such as gain scaling and fractional differentiation. (3) Finally we find that
adaptation acts as a dynamic regularizer allowing recurrent neural networks to remain in a dynamic regime
closer to the edge of chaos where forward and backward information propagation is optimal. These findings
are supported by detailed numerical experiments and analytically derived bounds for information propagation
in networks. We discuss how ARU adaptation can effectively implement a number of methods often used in
deep learning to ensure good network expressivity and stability, including regularization and normalization. In
contrast to these methods which require global, biologically unrealistic network quantities, ARU adaptation
is local to each neuron and is consistent with known physiology. Taken together, our results support that
neural diversity and adaptation serves a crucial role in goal-oriented network optimization, which suggests a
coordinated and consistent optimality across scales linking brain circuits and single neurons.

Acknowledgments

We are grateful for scholarship support from NSERC [V.G., S.H]; FRQNT [V.G., S.H]; IVADO [V.G.,
G.W., S.H.]; and UNIQUE [G.K.], and well as support from NIH grant R01GM135929 [G.W.]; NSERC
Discovery Grant (RGPIN-2018-04821), FRQNT Young Investigator Startup Program (2019- NC-253251),
FRQS Research Scholar Award, Junior 1 (LAJGU0401-253188) [G.L.]; and the Canada CIFAR AI Chair
Program [G.W., G.L.]. The content is solely the responsibility of the authors and does not necessarily represent
the official views of the funding agencies

13

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 1, 2022. ; https://doi.org/10.1101/2022.04.29.489963doi: bioRxiv preprint

https://doi.org/10.1101/2022.04.29.489963
http://creativecommons.org/licenses/by-nc-nd/4.0/

5 Methods

5.1 Tasks

psMNIST : This task focusses on classifying MNIST (Le et al., 2015) digits from a permuted sequential
sequence of pixels (psMNIST) and requires an accumulation of information over long timescales. More
precisely, a fixed random permutation is applied to pixels of the popular hand-written digits MNIST dataset,
and the model reads them sequentially. Correct digit class needs to be outputed at the end.

gsCIFAR10 : Grayscaled and sequential version of the CIFAR10 image classification task (Krizhevsky
et al., 2009). The network is shown images of real world objects one pixel at the time and has to determine to
which one of the 10 classes the image belongs. Because the images are of objects in a variety of settings and
not simply of digits, this constitutes a significantly harder task than psMNIST.

5.2 Task setup and training

The vector of all trainable parameters is denoted Θ, and the parameters are updated via gradient descent using
backpropagation through time (BPTT), with the matrix Wrec initialized using a random orthogonal scheme
(Henaff et al., 2016). Independently of the task, we used Cross-entropy loss as our loss function and the Adam
(Kingma and Ba, 2015) optimizer. We experimented with the RMSprop optimizer (introduced in Hinton et al.
(2012), first used in Graves (2013)) with smoothing constant α = 0.99 and no weight decay, which yielded
similar results. (more details on initialization schemes an be found in Appendix §A). We trained the networks
for 100 epochs. We investigated different learning rates (LR ∈ {10−3, 10−4, 10−5, 10−6}), and settled on
those in the Table 1 for each task.

activation parameters The initialization grid for the activation parameters used throughout this work is
N ×S, where N = {1.0}∪{1.25k : 1 ≤ k ≤ 16} and S = {0.0, 0.25, 0.5, 0.75, 1.0} such that |N | = 17
and |S| = 5. In the heterogeneous adaptation scenario, both n and s vectors are initialized with the same
value for each component.

Pytorch autograd implementation of gamma We implement γ(x;n, s) as a Pytorch autograd Function
with corresponding Pytorch Module. See zipped supplementary code gamma_function.py.

To allow for activation function adaptation, we further include the activation parameters in the backpropagation
algorithm. We do so by defining the gradient of γ with respect to the input and parameters. We can rewrite
γ(x;n, s) as :

γ(x;n, s) =
(1− s)
n

γ1(nx) + sσ(nx) (8)

where σ(x) is the sigmoid activation function. With this notation, the partial derivatives of γ with respect to x
(or total derivative), n and s are

γ′(x;n, s) =
∂

∂x
γ(x;n, s) = (1− s)σ(nx) + nsσ(nx)(1− σ(nx)) (9)

∂

∂n
γ(x;n, s) =

1− s
n

(xσ(nx)− γ1(nx)

n
) + sxσ(nx)(1− σ(nx)) (10)

∂

∂s
γ(x;n, s) = σ(nx)− γ1(nx)

n
(11)

5.3 Evaluation methods

To assess how the activation gain and saturation influence on signal propagation, we use three quantities:

Jacobian norm The main mechanism leading to the well studied problem of exploding & vanishing gradients
in backpropagation and BPTT happens when products of Jacobian matrices explode or vanish (Pascanu
et al., 2012; Bengio et al., 1994). We average the L2-norm of the derivative of Eq. (2) with respect to
ht−1 ∼ U(−5, 5). A mean Jacobian norm (JN) that is greater/less than one leads to exploding/vanishing
gradients, respectively. An issue with this approximation is that the true mean depends on ht’s invariant
distribution, which changes with (n, s).

14

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 1, 2022. ; https://doi.org/10.1101/2022.04.29.489963doi: bioRxiv preprint

https://doi.org/10.1101/2022.04.29.489963
http://creativecommons.org/licenses/by-nc-nd/4.0/

Lyapunov Exponents Developed in Dynamical Systems theory, Lyapunov exponents measure the exponen-
tial rate of expansion/contraction of state space along iterates. Let us define F : X → X to be a continuously
differentiable function, and consider the discrete dynamical system (F,X, T) defined by

xt+1 = F (xt) (12)

for all t ∈ T , where X is the phase space, and T the time range. Let x0, w ∈ X , define

λ(x0, w)
def
= lim

m→∞

1

m
ln

m∏
t=1

‖DF t(x0) · w‖
‖w‖

(13)

= lim
m→∞

1

m

m∑
t=1

ln
‖DF t(x0) · w‖

‖w‖
(14)

Note that once x0 and w have been fixed, the quantity λ(x0, w) is intrinsic to the discrete dynamical system
defined by xt+1 = F (xt). We call λ(x0, w) a Lyapunov exponent of the mentioned dynamical system.
Intuitively, Lyapunov exponents are topological quantities intrinsic to the dynamical system that describe the
average amount of instability along infinite time horizons. Now, a randomly chosen vector, has a non-zero
projection in the direction of the Maximal Lyapunov exponent (MLE) with probability 1, and thus over
time the effect of the other Lyapunov exponents will become negligible. This motivates taking the MLE
as a way of measuring the overall amount of stability or instability of a dynamical system. (see Appendix
§D for a LE primer). As an asymptotic quantity, the MLE has been used to quantify ANN stability and
expressivity (Pennington et al., 2018; Poole et al., 2016). We numerically compute it for our system using a
QR algorithm (as motivated in Appendix D.3). The MLE gives a better measurement of stability than the
Jacobian norm above, although it requires more effort to approximate. A positive MLE indicates chaotic
dynamics and can lead to exploding gradients, while a negative MLE leads to vanishing ones.

5.4 Network perturbations and task variations

To test the adaptive capabilities of our model and to compare it with conventional RNNs, we consider two
different ways in which these external inputs may be perturbed:

1. Variable contrast: transforming the inputs xt (Wxt + b). A brightness factor from a randomly
sampled sinusoidal curve may multiplies the xt input at each time-step t (Figure 2). These transformed
inputs are then encoded by the same linear module Wxh.

2. Perturbed: applying an external drive directly to the neurons (Wxt + b). Taking inspiration from
optogenetic stimulation, we inject a scalar external drive ξ ∈ R directly to the neuron (e.g. for ARUN,
we add +ξ in equation (3)), before the activation function is applied. This perturbation may either be
a non-random scalar (Figure 2) or noisy.

References
Arjovsky, M., Shah, A., and Bengio, Y. (2016). Unitary evolution recurrent neural networks. In Proceedings of

the 33rd International Conference on International Conference on Machine Learning - Volume 48, ICML’16,
pages 1120–1128. JMLR.org.

Arnold, L. (1998). Random Dynamical Systems. Springer.

Bellec, G., Salaj, D., Subramoney, A., Legenstein, R., and Maass, W. (2018). Long short-term memory and
learning-to-learn in networks of spiking neurons. 32nd Conference on Neural Information Processing
Systems, abs/1803.09574.

Benda, J. and Herz, A. V. M. (2003). A Universal Model for Spike-Frequency Adaptation. Neural Computation,
15(11):2523–2564.

Benettin, G., Galgani, L., Giorgilli, A., and Strelcyn, M. (1980). Lyapunov characteristic exponents for
smooth dynamical systems and for hamiltonian systems; a method for computing all of them. part 1: theory.
Meccanica, 15:9–20.

Bengio, Y., Simard, P., and Frasconi, P. (1994). Learning long-term dependencies with gradient descent is
difficult. IEEE Transactions on Neural Networks, 5(2):157–166.

15

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 1, 2022. ; https://doi.org/10.1101/2022.04.29.489963doi: bioRxiv preprint

https://doi.org/10.1101/2022.04.29.489963
http://creativecommons.org/licenses/by-nc-nd/4.0/

Bertschinger, N. and Natschläger, T. (2004). Real-time computation at the edge of chaos in recurrent neural
networks. Neural Computation, 16(7):1413–1436.

Boedecker, J., Obst, O., Lizier, J. T., Mayer, N. M., and Asada, M. (2011). Information processing in echo
state networks at the edge of chaos. Theory Biosci., 131(3):205–213.

Burnham, D., Shea-Brown, E., and Mihalas, S. (2021). Learning to predict in networks with heterogeneous
and dynamic synapses. bioRxiv.

Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Math. Control Signal Systems
2, pages 303–314.

Deneve, S. (2008). Bayesian Spiking Neurons I: Inference. Neural Computation, 20(1):91–117.

Dieci, L. and Vleck, E. S. V. (1995). Computation of a few lyapunov exponents for continuous and discrete
dynamical systems. Applied Numerical Mathematics, 17(3):275 – 291. Special Issue on Numerical Methods
for Ordinary Differential Equations.

Fairhall, A. L., Lewen, G. D., Bialek, W., and de Ruyter van Steveninck, R. R. (2001a). Efficiency and
ambiguity in an adaptive neural code. Nature Publishing Group, 412(6849):787–792.

Fairhall, A. L., Lewen, G. D., Bialek, W., and de Ruyter van Steveninck, R. R. (2001b). Efficiency and
ambiguity in an adaptive neural code. Nature, 412(6849):787–792.

Fitz, H., Uhlmann, M., van den Broek, D., Duarte, R., Hagoort, P., and Petersson, K. M. (2020). Neuronal
spike-rate adaptation supports working memory in language processing. Proceedings of the National
Academy of Sciences, 117(34):20881–20889.

Gjorgjieva, J., Drion, G., and Marder, E. (2016). ScienceDirect Computational implications of biophysical
diversity and multiple timescales in neurons and synapses for circuit performance. Current Opinion in
Neurobiology, 37:44–52.

Glorot, X., Bordes, A., and Bengio, Y. (2011). Deep sparse rectifier neural networks. In Gordon, G., Dunson,
D., and Dudík, M., editors, Proceedings of the Fourteenth International Conference on Artificial Intelligence
and Statistics, volume 15 of Proceedings of Machine Learning Research, pages 315–323, Fort Lauderdale,
FL, USA. PMLR.

Gutierrez, G. J. and Denève, S. (2019). Population adaptation in efficient balanced networks. eLife, 8:e46926.

Hayou, S., Doucet, A., and Rousseau, J. (2019). On the impact of the activation function on deep neural
networks training. In Proceedings of the 36th International Conference on Machine Learning, volume 97 of
Proceedings of Machine Learning Research, pages 2672–2680. PMLR.

Henaff, M., Szlam, A., and LeCun, Y. (2016). Recurrent orthogonal networks and long-memory tasks. In
Balcan, M. F. and Weinberger, K. Q., editors, Proceedings of The 33rd International Conference on Machine
Learning, volume 48 of Proceedings of Machine Learning Research, pages 2034–2042, New York, New
York, USA. PMLR.

Hornik, K., Stinchcombe, M., and White, H. (1989). Multilayer feedforward networks are universal approxi-
mators. Neural Networks, 2(5):359–366.

Kastner, D. B. and Baccus, S. A. (2011). Coordinated dynamic encoding in the retina using opposing forms of
plasticity. Nat Neurosci, 14(10):1317–1322.

Kastner, D. B. and Baccus, S. A. (2013). Spatial segregation of adaptation and predictive sensitization in
retinal ganglion cells. Neuron, 79(3):541–554.

Kerg, G., Goyette, K., Touzel, M. P., Gidel, G., Vorontsov, E., Bengio, Y., and Lajoie, G. (2019). Non-normal
recurrent neural network (nnrnn): learning long time dependencies while improving expressivity with
transient dynamics. NeurIPS.

Kilpatrick, Z. P. and Ermentrout, B. (2011). Sparse gamma rhythms arising through clustering in adapting
neuronal networks. PLOS Computational Biology, 7(11):1–17.

16

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 1, 2022. ; https://doi.org/10.1101/2022.04.29.489963doi: bioRxiv preprint

https://doi.org/10.1101/2022.04.29.489963
http://creativecommons.org/licenses/by-nc-nd/4.0/

Kingma, D. P. and Ba, J. (2015). Adam: A method for stochastic optimization. In Bengio, Y. and LeCun, Y.,
editors, 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May
7-9, 2015, Conference Track Proceedings.

Krishnamurthy, K., Can, T., and Schwab, D. J. (2022). Theory of gating in recurrent neural networks. Phys.
Rev. X, 12(1).

Krizhevsky, A., Hinton, G., et al. (2009). Learning multiple layers of features from tiny images. Technical
report, MIT & NYU.

Laughlin, S. B. (1981). A simple coding procedure enhances a neuron’s information capacity. Zeitschrift für
Naturforschung C, 36:910 – 912.

Le, Q. V., Jaitly, N., and Hinton, G. E. (2015). A Simple Way to Initialize Recurrent Networks of Rectified
Linear Units. arXiv e-prints, page arXiv:1504.00941.

Le, Q. V., Jaitly, N., and Hinton, G. E. (2015). A simple way to initialize recurrent networks of rectified linear
units. CoRR, abs/1504.00941.

Legenstein, R. and Maass, W. (2007). What makes a dynamical system computationally powerful?, pages
127–154. MIT Press, 1 edition.

Lezcano-Casado, M. and Martínez-Rubio, D. (2019). Cheap Orthogonal Constraints in Neural Networks: A
Simple Parametrization of the Orthogonal and Unitary Group. ICML.

Lundstrom, B. N., Higgs, M. H., Spain, W. J., and Fairhall, A. L. (2008). Fractional differentiation by
neocortical pyramidal neurons. Nature Neuroscience, 11(11):1335–1342.

O’Shea, D. J., Kalanithi, P., Ferenczi, E. A., Hsueh, B., Chandrasekaran, C., Goo, W., Diester, I., Ramakrishnan,
C., Kaufman, M. T., Ryu, S. I., Yeom, K. W., Deisseroth, K., and Shenoy, K. V. (2018). Development of an
optogenetic toolkit for neural circuit dissection in squirrel monkeys. Sci Rep, 8(1).

Pascanu, R., Mikolov, T., and Bengio, Y. (2012). On the difficulty of training Recurrent Neural Networks.
arXiv e-prints, page arXiv:1211.5063.

Pennington, J., Schoenholz, S. S., and Ganguli, S. (2018). The Emergence of Spectral Universality in Deep
Networks. arXiv.org.

Peron, S. and Gabbiani, F. (2009). Spike frequency adaptation mediates looming stimulus selectivity in a
collision-detecting neuron. Nature neuroscience, 12:318–26.

Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., and Ganguli, S. (2016). Exponential expressivity in deep
neural networks through transient chaos. arXiv e-prints.

Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., and Ganguli, S. (2016). Exponential expressivity in deep
neural networks through transient chaos. arXiv.org.

Pozzorini, C., Mensi, S., Hagens, O., Naud, R., Koch, C., and Gerstner, W. (2015). Automated high-throughput
characterization of single neurons by means of simplified spiking models. PLOS Computational Biology,
11(6):1–29.

Salaj, D., Subramoney, A., Kraisnikovic, C., Bellec, G., Legenstein, R., and Maass, W. (2021). Spike frequency
adaptation supports network computations on temporally dispersed information. eLife, 10:e65459.

Sompolinsky, H., Crisanti, A., and Sommers, H. J. (1988). Chaos in random neural networks. Phys. Rev. Lett.,
61:259–262.

Vecoven, N., Ernst, D., Wehenkel, A., and Drion, G. (2020). Introducing neuromodulation in deep neural
networks to learn adaptive behaviours. PLOS ONE, 15(1):1–13.

Vogt, R., Puelma Touzel, M., Shlizerman, E., and Lajoie, G. (2022). On lyapunov exponents for rnns:
Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics
and Statistics, 8.

17

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 1, 2022. ; https://doi.org/10.1101/2022.04.29.489963doi: bioRxiv preprint

https://doi.org/10.1101/2022.04.29.489963
http://creativecommons.org/licenses/by-nc-nd/4.0/

Weber, A. I., Krishnamurthy, K., and Fairhall, A. L. (2019). Coding principles in adaptation. Annual Review
of Vision Science, 5(1):427–449. PMID: 31283447.

Winston, C. N., Mastrovito, D., Shea-Brown, E., and Mihalas, S. (2022a). Heterogeneity in neuronal dynamics
is learned by gradient descent for temporal processing tasks. bioRxiv.

Winston, C. N., Mastrovito, D., Shea-Brown, E., and Mihalas, S. (2022b). Heterogeneity in neuronal dynamics
is learned by gradient descent for temporal processing tasks. bioRxiv.

Yamins, D. L. K. and DiCarlo, J. J. (2016). Using goal-driven deep learning models to understand sensory
cortex. Nature Neuroscience, 19:356 – 365.

18

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 1, 2022. ; https://doi.org/10.1101/2022.04.29.489963doi: bioRxiv preprint

https://doi.org/10.1101/2022.04.29.489963
http://creativecommons.org/licenses/by-nc-nd/4.0/

Supplementary Material for:
Goal-driven optimization of single neuron properties in artificial networks

reveals regularization role of neural diversity and adaptation

A Experimental details

Task LR hid LR-scheduler Rec. init. In init.

copy 10−4 128 Henaff Glorot normal
psMNIST 10−4 400 Henaff Kaiming
PTB 10−4 600 ReduceLROnPlateau Henaff Kaiming

Table 1: Task-dependent hyperparameters, where "hid" is hidden state size, "LR" is learning rate, "Rec. init."
and "In init." are the initialization scheme for respectively the state transition matrix and the input weights.

The initialization schemes in Table 1 for the recurrent weights and input weights refer to :

Activation parameters The initialization grid for the activation parameters used throughout this work is
N ×S, where N = {1.0}∪{1.25k : 1 ≤ k ≤ 16} and S = {0.0, 0.25, 0.5, 0.75, 1.0} such that |N | = 17
and |S| = 5. In the heterogeneous adaptation scenario, both n and s vectors are initialized with the same
value for each component.

Task independent stability metrics Figure 6 shows the task-independent stability metrics of JN and MLE
for a range of (n,s) values (fixed across neurons). Clearly, activation shape influences Jacobian norms and will
play an important role during training. Consistent with the average gradient norm, the MLE reports distinct
(n, s)-regions of stability for random networks. In some cases, expansion and contractions can be useful for
computations, and we further use these measurements to study training dynamics.

Figure 6: A-B Task independent stability metrics in activation parameter space. C-D Test accuracy in activation
parameter space for the psMNIST task under two different learning scenarios.

B Performance: supplemental

B.1 Further details on learning differences and performance in the static setting

As expected, we find a strong correlation between the norm of the Jacobian in parameter space which is
task-independent (Fig. 6A) and the performance landscapes for each task (see Fig. 6C). Interestingly, regions

19

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 1, 2022. ; https://doi.org/10.1101/2022.04.29.489963doi: bioRxiv preprint

https://doi.org/10.1101/2022.04.29.489963
http://creativecommons.org/licenses/by-nc-nd/4.0/

psMNIST gsCIFAR10
Model Original Noise pert. Original Noise pert.

RNN+ReLU 90.1± 0.2 33.0± 18.9 28.1± 0.2 16.6± 3.9
LSTM 89.6± 2.6 90.2± 2.8 36.4± 2.3 10.4± 0.7
GRU 93.3± 0.2 91.6± 0.7 61.3 ± 0.4 60.4 ± 0.1

RNN+γ (homo.) 95.8± 0.3 81.1± 12.0 42.5± 3.1 21.9± 3.1
RNN+γ (hetero.) 95.4± 0.5 84.0± 9.1 44.3± 2.9 23.7± 2.0
ARUN 95.4± 0.2 94.7 ± 0.4 42.4± 1.7 31.9± 3.5

Table 2: Bold indicates significant superior performance (p < .01, two sample t-test on pairwise comparisons).

in space (n, s) with poor performance are all associated with an exploding gradient, not a vanishing gradient.
Networks whose activation functions have activation parameters in a neighborhood of {(n, s) : ‖γ′(x;n, s)‖ =
1} present optimal performance, on all the tasks. On the one hand, this further emphasizes the performance
of ReLU (see (Glorot et al., 2011)) as part of this (n, s)-neighborhood. However, as we show in Fig. 6C-D,
traditional nonlinearities (including ReLU) are outperformed by the considerably different activation functions
arising in the different scenarios of end-to-end learning. This result highlights that non trivial combinations
of parameters may also achieve optimal performance while allowing for much more complex nonlinear
transformations than ReLU.

B.2 Learned adaptation offers transfer learning advantages

Figure 7: Trajectories of the activation parameters
during retraining on the modified MNIST images.

In neuroscience, the term adaptation is mostly used to
describe processes that occur on short timescales and at
a neuron level which have been shown to account for
changes in stimulus statistics (Weber et al., 2019). This
mechanism is naturally linked to the concept of transfer
learning in AI where one seeks systems where minimal
changes in parameters allow adaptation from learned
tasks to novel ones. To see if changes in single neurons
activation could offer transfer advantages in ANNs, we
design a novel task using the psMNIST test data set
where the images are rotated by 45°. The goal is for a
trained network to adapt to this change in input structure
by only changing its activation function parameters. To
evaluate this, we split rotated images into training and
test sets, each containing approximately 5k images and
the same number of images per digit. We then briefly retrain heterogeneous activation parameters (ni, si) on
this rotated data set using the heterogeneous adaptation scenario. For initialization, we take the parameters
(including the (ni, si)’s) that resulted from training with normal images, also under the heterogeneous
adaptation scenario. Before retraining, the networks achieved an accuracy of 94% on the original data set, this
fell to 42% after rotation. Retraining (n, s) allowed the networks to recover classification accuracy up to 56%.
This shows that simply allowing the activation functions to adapt can recover over a quarter of lost performance
(over 25%). An example of the variation of (n, s) trajectories after retraining is showed in Fig. 3a (bottom).
Like in Fig. 3a (top), the cloud of (n, s) parameters expands with respect to its initialization, suggesting that a
diversification in activation function shapes is needed to adapt to the change in task.

Allowing for small changes in the activation functions of individual neurons helps to mitigate the loss in
performance caused by drastic changes in network inputs. The following question naturally arises from
these results: is it possible to leverage the advantages brought by adaptation in an online manner instead of
relying on retraining a part of the network? Such a "dynamic" adaptation process, which allows the network’s
activation functions to instantly change when presented with inputs of different statistics, would not only be
less computationally expensive and faster but would also be more alike its natural counterpart. We further
explore the idea of implementing rapid adaptation protocols for ANNs in the next section.

20

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 1, 2022. ; https://doi.org/10.1101/2022.04.29.489963doi: bioRxiv preprint

https://doi.org/10.1101/2022.04.29.489963
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 8: (Top) Graph of a step to linear-increase function (right), then fractional order (α = 0.15) differenti-
ated (left). (Bottom) Saturation st as a function of the time (left), for varying external drives ξ ∈ [0, 30] with
the usual range applied during a stimulation period framed by the two dashed green lines. See next Figure
9 for colorbar. (right) The saturation signals st fractionally integrated with α = 0.15 reveal step to linear
increase signals during the stimulation period.

Figure 9: Task: psMNIST. Random seed #: 400. Colorbar applies to whole figure. (top-right) mean ARU
hidden-states for non-interacting ARUs, just as main text’s setting. For other panels, see respective titles.

C Adaptation: supplemental

C.1 Fractional differentiation

Activation function parameters Further details on fractional order differentiation of the activation parame-
ter signals, as opposed to the resulting hidden-states ht, is included in Figure 8.

Determination of fractional order The order α of fractional order differentiation was determined as the
arg-min (over α) of the mean square error between the fractional α-order integrated signal and the precise
step inputs that drove the network. See Figure 9. We observe that this minimum is sharp, and observe close
correspondence between the fractional order integrated signal and the original step-drive. This analysis was
consistent across tasks and random seeds (see examples in Figures 9, 10, 11).

21

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 1, 2022. ; https://doi.org/10.1101/2022.04.29.489963doi: bioRxiv preprint

https://doi.org/10.1101/2022.04.29.489963
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 10: Task: psMNIST. Random seed #: 500.

Figure 11: Task: gsCIFAR10. Random seed #: 403.

C.2 Further details on dynamic regularization

C.2.1 Proof of Proposition

Proof. Consider some multivariate Gaussian noise η ∼ N (µ, σ2I), injected in the dynamics

ht = γ (Whhht−1 + η ;nt, st)

Now, the variance of this noise along a given vector u ∈ RNh as it propagates through the dynamics is given
by:

Var
[
u>Whhγ(η ;nt, st)

]
= u>WhhVar [γ(η ;nt, st)]W

>
hhu

after one iteration. Since η is chosen such that ηi is independent of ηj for i 6= j, i.e. Cov[ηi, ηj] = σ2δij , and
γ(·) acts element-wise, we have that Cov [γ(ηi), γ(ηj)] = 0. As such,

Var [γ(η ;nt, st)] = diag
{

Var
[
γ(ηi;n

i
t, s

i
t)
]}

1≤i≤n =: Dn,s

and
Var

[
u>Whhγ(η ;n, s)

]
= u>WhhDn,sW

>
hhu (15)

22

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 1, 2022. ; https://doi.org/10.1101/2022.04.29.489963doi: bioRxiv preprint

https://doi.org/10.1101/2022.04.29.489963
http://creativecommons.org/licenses/by-nc-nd/4.0/

Using a first order Taylor expansion of γ(x ;nt, st) about the mean of η, we obtain

[Dn,s]i,i = Var
[
γ(ηi;n

i
t, s

i
t)
]

= σ2

[
d

dx
γ
(
E[ηi];n

i
t, s

i
t

)]2
+O

(
E
[
(ηi − E[µi])

3
])

(16)

= σ2

[
d

dx
γ
(
E[ηi];n

i
t, s

i
t

)]2
+O

(
σ3
)

(17)

where the first term of the RHS can easily be evaluated directly (see SM equation (10) for a closed form
expression of d

dxγ). Also, under the initialisation schemes considered in our experiments, Whh is unitary
and as such WhhDn,sW

>
hh defines a normal matrix with eigenvalues exactly given by the entries of diagonal

matrix Dn,s. This gives the result.

C.2.2 Noise integration

Let us for a moment restrict our attention to a single neuron, thus removing subscripts i and assuming scalar
quantities. We note in passing that σ is non-zero even for scalar ξ as our formalization accounts for the linearly
scaled inputs xt, which are distributed under the task input statistics. Now, consider the level set

Λ(ξ) :=

{
(n, s) :

∂

∂x
γ (µ+ ξ ;n, s) =

1

|σ|

}
(18)

consisting of (n, s) values at the boundary of the region derived from Proposition 1 for a noise shifted by
an external drive ξ ≥ 0 (un-perturbed if ξ = 0). As mentioned earlier this set corresponds to a manifold in
(n, s) space, one that shifts as a function of ξ (see Fig. 3c for a visualization of these curves). Take {n̂, ŝ}
satisfying Prop. 1, and assume that there exists ε > 0 for which d({n̂, ŝ},Λ(0)) = ε. For noise robustness to
be maintained in stimulated regimes, we have that the activation parameters {n(ξ), s(ξ)} should shift to stay
within the region highlighted by Prop 1, i.e. d({n̂, ŝ},Λ(ξ)) > 0 for all ξ ≥ 0. This is what we observe, see
Fig. 3c.

Still, this does not account for particular behavior observed of an onset value {n0, s0} decreasing or increasing
with an exponential time-constant to a steady-state value {n∞, s∞}, in a matter akin to spike frequency
adaptation. Both onsets and steady-states satisfy the observations previously highlighted, but their–distinct–
existence is unaccounted for. This sets a rich ground for future work.

Figure 12: Sensitivity analysis for the step drive experiment. Lower is better. ARUN performs the best.

23

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 1, 2022. ; https://doi.org/10.1101/2022.04.29.489963doi: bioRxiv preprint

https://doi.org/10.1101/2022.04.29.489963
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 13: Sensitivity analysis for the Sinusoidal transformation on inputs, varying phase and amplitude
alternatively. Lower is better. ARUN performs the best on average.

Figure 14: (Left) Modulation of gain nt and saturation st during input processing, averaged over samples in a
given batch. (Right, top) Shape of the activation function γ as dictated by {nit.sit} at a given time-step, for
the original and perturbed signals. (Right, bottom) Pre-activation density, i.e. an empirical distribution over
neurons of what is received by the adaptation sub-network.

C.3 Testing the evolutionary plausibility of our adaptive units

The performance and robustness results presented in the main paper were obtained by randomly initializing
and then simultaneosly training both the main RNN networks as well as the adaptive sub-networks. For our
adaptive units to adequately model adaptation in biological neurons, the adaptive sub-units of each network
should in principle be fixed when training the main RNN network. Indeed, in the brain, single neuron
adaptation mechanisms have been developed over evolutionary timescales and are passed down through
genetic information.

In this section we test our AURNs in a more biologically plausible setting, and see if the structure of the
adaptive sub-network can be efficiently passed down from a network to another without affecting the network’s

24

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 1, 2022. ; https://doi.org/10.1101/2022.04.29.489963doi: bioRxiv preprint

https://doi.org/10.1101/2022.04.29.489963
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 15: Performance on the psMNIST classification task and robustness to the noise perturbed, step drive
transformed and sine transformed inputs. The mean and standard deviation across three different initializations
are shown.

performance or robustness. To verify this we have tested the performance and robustness to the noise, step and
sine data transformations of AURNs generated using two distinct initializing and training scenarios:

• Scenario 1: Both the main and the adaptive RNNs are randomly initialized, using a specified random
seed (here denoted seed1), and trained from scratch as previously described. All results from the
paper are obtained with AURNs generated using this scenario.

• Scenario 2: The main RNN is randomly initialized using a specified random seed (seed2) while the
adaptive sub-network is taken from a scenario 1 trained AURN with seed1 6= seed2. The main RNN
is then trained using the same training procedure as in scenario 1 but the adaptive sub-network’s
parameters are kept constant.

This was done for multiple random seeds of both the main RNN and the trained adaptive RNN, the results are
shown in Fig. 15. We can see that the adaptation mechanisms previously learned with a specific main network
can be used, as efficiently, by another main network without needing any re-training of the sub-network. The
performance and robustness to different perturbations are, for all practical purposes, the same in both the
setting where the main and the adaptive networks were trained simultaneously (scenario 1) and the setting
where the adaptive sub-network was imported from a previously trained network and only the main network
was trained (scenario 2).

C.4 Gradient contribution according to position in input sequence

The vanishing (resp. exploding) gradient problem in RNNs can be characterized by inputs at time-step t, which
are further away from the moment the loss is computed (time-step t+ δ), contributing exponentially less (resp.
more) to the gradient than inputs closer to t + δ as δ increases. To see the effects of neural adaptation on
gradient propagation in RNNs we have computed the gradient contribution to the hidden-to-hidden weight
matrix gradients of the psMNIST training set pixels with respect to their position in the input sequence. We plot
the results in Fig.16. We see that in ReLU RNNs, the gradient contribution is almost perfectly monotonously
increasing with respect to the element’s (the pixel’s) position in the input sequence, i.e. pixels early on in the
input sequence contribute significantly less to the gradient than pixels at the end of the sequence. In ARUNs
however, and to some extent even in RNN γ hetero, the gradient contribution is more uniform across the
different pixel positions with almost all pixels contributing equally to the gradients regardless of their position
in the input sequence. This shows that the adaptive capabilities of ARUNs help improve information (gradient)
propagation in the model’s training process.

25

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 1, 2022. ; https://doi.org/10.1101/2022.04.29.489963doi: bioRxiv preprint

https://doi.org/10.1101/2022.04.29.489963
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 16: Frobenius norm of the hidden-to-
hidden weight matrix Whh gradient contribution
of a given input element, or pixel, as a function of
that element’s position in the input sequence. The
sequences are of length 784 and elements closer to
position 0 are closer to the beginning of the input
sequences. The gradients are computed in trained
RNN+ReLU, RNN+γ heterogeneous and ARU
networks on the psMNIST training set. The val-
ues were standardized for comparison purposes,
mean and standard deviation across three random
initialization are shown.

D A primer on Lyapunov exponents

In this section we are first going to give a bit of theoretical background on Lyapunov exponents. Exponential
explosion and vanishing of long products of Jacobian matrices is a long studied topic in dynamical systems
theory, where an extensive amount of tools have been developed in order to understand these products. Thus
one can hope to leverage these tools in order to better understand the exploding and vanishing gradient problem
in the context of RNNs.

D.1 Definition of Lyapunov exponents

Let F : X → X be a continuously differentiable function, and consider the discrete dynamical system
(F,X, T) defined by

xt+1 = F (xt) (19)

for all t ∈ T , where X is the phase space, and T the time range. We would like to gain an intuition for how
trajectories of the mentioned dynamical system behave under small perturbations.

Let xt and x′t be two trajectories with initial conditions x0 and x′0, such that |x0 − x′0| is sufficiently small.

Defining εt = x′t − xt, we get by the first order Taylor expansion

x′t+1 = F (x′t) (20)
= F (xt + εt) (21)

= F (xt) +DF (xt) · εt +O(|εt|2) (22)

= xt+1 +DF (xt) · εt +O(|εt|2) (23)

Substracting xt+1 both sides we get the variational equation

εt+1 = DF (xt) · εt +O(|εt|2) (24)

≈
t∏

k=0

DF (xk) · ε0 (25)

= DF t+1(x0) · ε0 (26)

(Here DF t+1(x0) is an abuse of notation for the Jacobian of the (t + 1)-th iterate of F , evaluated at x0).
Intuitively the ratio ‖εt‖‖ε0‖ = ‖DF t(x0)·ε0‖

‖ε0‖ describes the expansion/contraction rate after t time steps if our
initial perturbation was ε0, which motivates the following definition:

Let x0, w ∈ X , define

λ(x0, w)
def
= lim

m→∞

1

m
ln

m∏
t=1

‖DF t(x0) · w‖
‖w‖

(27)

= lim
m→∞

1

m

m∑
t=1

ln
‖DF t(x0) · w‖

‖w‖
(28)

26

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 1, 2022. ; https://doi.org/10.1101/2022.04.29.489963doi: bioRxiv preprint

https://doi.org/10.1101/2022.04.29.489963
http://creativecommons.org/licenses/by-nc-nd/4.0/

Thus λ(x0, w) measures the average rate of expansion/contraction over an infinite time horizon of the trajectory
starting at x0, if it has been given an initial perturbation w. Note that once x0 and w have been fixed, the
quantity λ(x0, w) is intrinsic to the discrete dynamical system defined by xt+1 = F (xt). We call λ(x0, w) a
Lyapunov exponent of the mentioned dynamical system.

Since the Lyapunov exponents describe the the average rate of expansion/contraction for long products of
Jacobian matrices, it doesn’t sound too surprising that they might provide an interesting perspective to study
the exploding and vanishing gradient problem in RNNs. To give a complete picture of the analogy to RNNs,
one can think of xt as the hidden state at time t, and F can be seen as the function defined in the RNN cell.
The only difference is that in RNNs we have inputs at every time steps, and thus the function F changes at
every time step. This is the distinction between autonomous and non-autonomous dynamical systems, which
is explained in more detail in the upcoming subsection D.4.

Finally, let us remark that the expression in the above definition of Lyapunov exponents is not always well
defined. This will be the topic of the next subsection D.2, where we are presenting Oseledets theorem which
gives exact conditions for when the above expression in well-defined.

D.2 Oseledets theorem

As already stated, we bypassed the fact that the limit in the definition of λ(x0, w) might not actually exists. In
fact this is the result of the well-known Oseledets theorem, but before stating the theorem let us point out a
definition.

Definition. A cocycle of an autonomous dynamical system (F,X, T) is a map C : X × T → Rn×n
satisfying:

• C(x0, 0) = Id
• C(x0, t+ s) = C(xt, s)C(x0, t) for all x0 ∈ X and s, t ∈ T

Oseledets theorem. (sometimes referred to as Oseledets multiplicative ergodic theorem) Let µ be an ergodic
invariant measure on X , and let C be a cocycle of a dynamical system (F,X, T) such that for each t ∈ T , the
maps x 7→ log ‖C(x, t)‖ and x 7→ log ‖C(x, t)−1‖ are L1-integrable with respect to µ. Then for µ-almost all
x and each non-zero vector w ∈ Rn the limit

λ(x,w) = lim
t→∞

1

t
ln
‖C(x, t)w‖
‖w‖

(29)

exists and assumes, depending on w but not on x, up to n different values, called the Lyapunov exponents
(giving rise to a more general definition)

One can prove that the following matrix limit

Λ = lim
t→∞

[C(x, t)TC(x, t)]1/2t (30)

exists, is symmetric positive-definite and its log-eigenvalues are the Lyapunov exponents. We call Λ the
Oseledets matrix.

In order to make this definition a little bit more intuitive, let us come back to our original situation, and note
that the terms

∏t
k=0DF (xk) = DF t+1(x0) define a cocycle verifying the conditions of the theorem. Thus,

in this case, the Lyapunov exponents are not only well defined, but there are up to n distinct ones of them, and
they are the log-eigenvalues of the following Oseledets matrix:

Λ = lim
t→∞

[DF t(x0)T ·DF t(x0)]1/2t (31)

Let us now consider the singular value decomposition of DF t(x0),

DF t(x0)V (x0, t) = U(x0, t)Σ(x0, t) (32)

where Σ(x0, t) is a diagonal matrix composed of the singular values σ1(x0, t) ≥ . . . ≥ σn(x0, t) ≥ 0, and
U(x0, t) as well as V (x0, t) are orthogonal matrices, composed column-wise of the left and right singular
vectors respectively. Then

27

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 1, 2022. ; https://doi.org/10.1101/2022.04.29.489963doi: bioRxiv preprint

https://doi.org/10.1101/2022.04.29.489963
http://creativecommons.org/licenses/by-nc-nd/4.0/

Λ = lim
t→∞

V (x0, t)
TΣ(x0, t)

1/tV (x0, t) (33)

Thus, for large t, the log-eigenvalues of Λ can be approximated by 1
t lnσi(xo, t)’s, which can be thought of as

the average singular value along an infinite time horizon. It turns out that for ergodic systems, the Lyapunov
exponents are independent of initial conditions x0. Thus, intuitively, Lyapunov exponents are topological
quantities intrinsic to the dynamical system that describe the average amount of instability along infinite time
horizons.

In order to understand how this instability manifests along each direction, let us further look what we can say
about the vectors associated with the individual Lyapunov exponents. If we denote λ(1) ≥ λ(2) ≥ . . . ≥ λ(s)
the distinct Lyapunov exponents, and vi(x0) the corresponding vector of the matrix limt→∞ V (x0, t), then let
us define the nested subspaces

Sj(x0) = span{vi(x0)|i = j, j + 1, . . . , s} (34)

for all j = 1, 2, . . . , s, and take a vector wj(x0) ∈ Sj(x0) \ Sj+1(x0). Then wj(x0) is orthogonal to all
vi(x0) with i < j, and has a non-zero projection onto vj(x0) since vj(x0) /∈ Sj+1(x0), and thus

‖DF t(x0) · wj(x0)‖ ∼ eλ
(j)t (35)

In particular, since S1(x0) is the whole phase space X , and S2(x0) is only a hyperplane in X (a subset of
Lebesgue measure zero), we have that for "almost all" w ∈ X:

‖DF t(x0) · w‖ ∼ eλ
(1)t (36)

hence aligning with the direction of maximum Lyapunov exponent (MLE). In other words a randomly chosen
vector, has a non-zero projection in the direction of the MLE with probability 1, and thus over time the effect
of the other exponents will become negligible. This motivates taking the MLE as a way of measuring the
overall amount of stability or instability of a dynamical system. One typically distinguishes the cases, where
the MLE is negative, zero and positive.

Thus computing MLEs, LEs and their corresponding subspaces can be a useful tool to understand the average
expansion/ contraction rate as well as the corresponding directions of gradients in recurrent neural networks.

D.3 The QR algorithm

It is generally not advised to calculate the Lyapunov exponents and the associated vectors using DF t(x0) as
this matrix becomes increasingly ill-conditioned. There is a known algorithm that in most cases allows to
provide good estimates, called the QR algorithm.

As a preliminary remark, let us emphasize that the right singular vectors of DF (xt+1) do not necessarily
match the left singular vectors of DF (xt), thus simply applying the singular value decomposition in order to
calculate the Lyapunov exponents does not work.

Let us denote Jt = DF (xt) for each time step t = 0, 1, 2, . . ., then lets us pick an orthogonal matrix Q0, and
compute Z0 = J0Q0. Then let us perform the QR decomposition Z0 = Q1R1. Let us further assume that
J0 is invertible and we are imposing that the diagonal elements of R1 are non-negative (which we can), thus
making the QR decomposition unique.

In the next step, we compute Z1 = J1Q1 and perform the QR decomposition Z1 = Q2R2, where again we
are imposing the diagonal elements of R2 to be non-negative.

Continuing in this fashion at each time step k, we then have the identity Jk = Qk+1Rk+1Q
T
k , and thus

DF t+1(x0) =
t∏

k=0

Jk (37)

= Qt+1(Rt · . . . ·R1)QT0 (38)

28

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 1, 2022. ; https://doi.org/10.1101/2022.04.29.489963doi: bioRxiv preprint

https://doi.org/10.1101/2022.04.29.489963
http://creativecommons.org/licenses/by-nc-nd/4.0/

It turns out that, as long as the dynamical system is "regular", we can then compute the i-th Lyapunov exponent
via

λi = lim
t→∞

1

t

t∑
k=1

ln(Rk)ii (39)

where the Lyapunov exponents are ordered λ1 ≥ λ2 ≥ . . . ≥ λn as explained in Benettin et al. (1980) and
Dieci and Vleck (1995).

D.4 Link to RNNs

Recalling the update equation of an RNN:

ht+1 = φ(V ht + Uxt+1 + b) (40)

for t = 0, 1, . . ., and by denoting F (h, x) = φ(V h+ Ux+ b), we can see that

h̃t+1 = F (h̃t, 0) (41)

defines an autonomous discrete dynamical system (DS1), while

ht+1 = F (ht, xt+1) (42)

defines a non-autonomous discrete dynamical system (DS2).

For (DS1), the machinery that we have developed over the last subsections is directly applicable, as we are
in the autonomous case. For instance, we can compute the Lyapunov exponents of recurrent neural network
over the course of training using the QR algorithm, and in particular observe the evolution of the maximum
Lyapunov exponent (MLE), as a means to measure the amount of instability or chaos in the network. For
example in the case of a linear RNN with a unitary or orthogonal connectivity matrix, all LEs are equal to
zero, and thus no expansion nor contraction is happening. If all LEs are negative, we are in the contracting
regime, where every point eventually will approach an attractor, thus producing a vanishing gradient. For
instance, Bengio et al. (1994) showed that storing information in a fixed-size state vector (as is the case in a
vanilla RNN) over sufficiently long time horizon in a stable way necessarily leads to vanishing gradients when
back-propagating through time (here stable means insensitive to small input perturbations).

The natural question arises whether and to what extent the machinery will stay valid for (DS2). It turns out
that one can use the theory of Random Dynamical Systems Theory, where Oseledet’s multiplicative ergodic
theorem holds under some stationarity assumption of the underlying distribution generating the inputs xt as
stated in Arnold (1998). However in this paper we are just making use of the machinery developed for (DS1),
by computing Lyapunov exponents for trained RNNs but computed without inputs (xt = 0 for all t).

Supplementary References
Graves, A. (2013). Generating sequences with recurrent neural networks. CoRR, abs/1308.0850.

Hinton, G., Srivastava, N., and Swersky, K. (2012). Lecture 6e, rmsprop: Divide the gradient by a running
average of its recent magnitude.

29

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted May 1, 2022. ; https://doi.org/10.1101/2022.04.29.489963doi: bioRxiv preprint

https://doi.org/10.1101/2022.04.29.489963
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Introduction
	Results
	Static and adaptive activation functions in recurrent neural network models
	Neural adaptation and diversity improves RNN performance and robustness to input perturbations
	Top-down optimization of adaptive RNNs recovers biological dynamic coding mechanisms of single neurons
	Neural adaptation as a local regularizer that improves global network information propagation

	Discussion
	Conclusion
	Methods
	Tasks
	Task setup and training
	Evaluation methods
	Network perturbations and task variations

	Experimental details
	Performance: supplemental
	Further details on learning differences and performance in the static setting
	Learned adaptation offers transfer learning advantages

	Adaptation: supplemental
	Fractional differentiation
	Further details on dynamic regularization
	Proof of Proposition
	Noise integration

	Testing the evolutionary plausibility of our adaptive units
	Gradient contribution according to position in input sequence

	A primer on Lyapunov exponents
	Definition of Lyapunov exponents
	Oseledets theorem
	The QR algorithm
	Link to RNNs

