
Content-aware image restoration improves spatiotemporal resolution in
luminescence microscopy.

Tobias Boothe1,*, Mario Ivanković1, Markus A. Grohme2, Jochen C. Rink1,*

1 Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Goettingen,
Germany
2 Max Planck Institute for Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108,
01307 Dresden, Germany
* correspondence should be addressed to tobias.boothe@mpinat.mpg.de or
jochen.rink@mpinat.mpg.de

Abstract

Luminescence microscopy is a powerful tool in biomedical imaging applications due to its
intrinsically high signal to noise ratio. However, luminescence signal detection requires
longer exposure times than fluorescence imaging and is consequently less suited for
applications requiring high temporal resolution or throughput. Here we demonstrate that
content-aware image restoration can drastically reduce the exposure time requirements in
luminescence imaging, thus overcoming one of the major limitations of the technique.

Introduction

In biomedical sciences, fluorescence microscopy is widely used for the specific visualisation
of proteins, organelles, cells, organs or entire organisms1. Despite its versatility and
applicability on many scales, this imaging technique exposes the sample to potentially
harmful excitation light and is also sensitive to artefacts caused by autofluorescence.1 In
contrast, bioluminescence imaging exploits the light emitted by a chemical reaction between
a luciferase enzyme and its substrate (luciferin). Luciferase enzymes originate from
approximately 10,000 bioluminescent species across the tree of life and well characterised
natural and various biotechnologically optimised or designed luciferases are available as
reporters2. Luminescence microscopy does not require excitation light and is highly specific
due to the practical absence of spontaneous photon emission in biological samples. The
technique is therefore especially powerful for imaging photosensitive or highly
autofluorescent samples3,4. However, a major drawback of bioluminescence imaging are the
low signal intensities, which typically require much longer exposure times in comparison with
fluorescence imaging. This practically restricts luminescence microscopy applications to
immobile samples and imposes throughput limits on high content screening applications.
Although shorter exposure times could, in principle, remedy these shortcomings, the
inevitable decrease in the signal to noise ratio limits the practical utility of this approach.
Recently, Weigert et al. presented an approach for denoising fluorescent microscopy data by
utilising deep neural networks, through which signal to noise ratios could be enhanced post
acquisition5. Here we show that this content-aware image restoration (CARE) can similarly
restore luminescence recordings without compromising image quality, allowing exposure
time reductions up to 100-fold. By overcoming one of the major limitations of luminescence
imaging, our results demonstrate an expanded practicability of luminescence microscopy.

1

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 29, 2022. ; https://doi.org/10.1101/2022.04.29.490012doi: bioRxiv preprint 

https://sciwheel.com/work/citation?ids=244386&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=244386&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=67875&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=3743811,4040242&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=6061392&pre=&suf=&sa=0
https://doi.org/10.1101/2022.04.29.490012
http://creativecommons.org/licenses/by-nc-nd/4.0/


Results

Convolutional networks have demonstrated strong denoising capabilities in fluorescence
microscopy5,6. To explore their corresponding utility in luminescence microscopy, we trained
a CARE network with luminescence recordings of different exposure times. In our
experimental setup, human tissue culture cells expressing untargeted NanoLuc luciferase
required 60 s exposure time on a commercially available luminescence imaging system to
achieve satisfactory signal to noise ratios. These recordings served as ground truth for
restoring signals from exposure times as short as 0.5 s. Training networks on short and long
exposure image pairs denoised and restored short exposure images to virtually ground truth
quality (Figure 1a, S1a). The restorations from such recordings display a mean absolute
error (MAE) that is similar to the technical noise between two subsequently acquired images
at 60 s exposure time.
Another commonly used strategy for decreasing exposure times is pixel binning on the
camera chip, which sacrifices resolution for signal strength. CARE has previously shown
strong capabilities in restoring undersampled z-resolution in 3D recordings.5 We sought to
transfer this 1D Z-resampling power to the 2D XY-dimension by training a CARE network
with binned recordings (2x2, 4x4, 8x8) at low exposure times and unbinned long exposure
time ground truth images. We demonstrate that the resolution lost by pixel binning can be
restored even from 8x8 binned recordings (Figure 1b, S1b). Therefore, pixel binning and
subsequent image restoration provide a further layer of reducing luminescence exposures,
with the additional benefit of enhanced visibility of the residual signal in the raw images at
short exposures.
Thus far, we described approaches that require long exposure time recording for generating
ground truth training data. Technical or biological constraints, however, can make long
exposures problematic. Therefore, we additionally explored the capabilities of noise2noise
image restoration in which only noisy image pairs are used as training data7,8. From such
training pairs the CARE network is able to identify and remove statistical noise without the
need for long exposure images as ground truth. In our setup exposure times as low as 5 s
per image were sufficient to create training data that allowed signal restoration to a degree
comparable to that of 60 s exposure times (Figure 1c, S1c).
Overall, our data demonstrate the dramatic shortening of luminescence exposure times that
are achievable with CARE.

Image restorations performed with CARE - just like any machine learning algorithms -
perform best when the training data accurately represents the data to be restored5. This
often entails frequent retraining of the models whenever experimental conditions change and
the recording of training data can thus quickly become a bottle-neck. We therefore evaluated
the co-transfection of fluorescently labelled proteins requiring short exposure times as
ground truth for their luminescent labelled equivalent. To test this training approach we
transiently co-transfected cells with NanoLuc tagged Histone 2B (H2B-Nluc) and
eGFP-fused H2B plasmid DNA. We continued to compare the restoration quality of the
CARE networks when training with image pairs of short exposure Nluc-H2B signal and
eGFP-H2B signal or long exposure Nluc-H2B signal as ground truth respectively. When
analysing the by-pixel signal correlation between objects segmented from restorations and
ground truth signal, we show that restoration from luminescence signals based on training to
fluorescent ground truth is virtually indistinguishable to restorations obtained from training to
long exposure luminescence ground truth signals (Figure 2a, S2a). Note that luminescence
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exposure times as short as fluorescent ground truth exposure times provide sufficient signal
from the tagged H2B proteins for an accurate restoration, thus making high-throughput
applications of luminescence imaging feasible.
Due to the rather low signal emission, luminescence microscopy has been predominantly
applied to whole tissue or organism imaging since the signals are often too weak for the live
imaging of subcellular dynamics. To assess restoration qualities in this context, we fused
NanoLuc to the outer mitochondrial membrane protein Tomm209 (TOMM20-Nluc) and used
mitochondrial dynamics as model system9. Due to the continuous remodelling of the
mitochondrial network, the recording of long exposure ground truth data is practically
impossible. As previously shown (Fig 2 a), fluorescently labelled proteins can act as ground
truth while keeping ground truth recordings at short exposure times to avoid motion
artefacts. Analogous to the H2B-Nluc/eGFP co-transfection (see above), we trained a
network on recordings of cells co-transfected with TOMM20-Nluc and TOMM20-NeonGreen.
In this approach we demonstrate that luminescence signals obtained from exposure times as
short as 4 s can be reliably restored to the fluorescently labelled TOMM20-NeonGreen
ground truth equivalent (Figure 2 b). Mitochondria dynamics, which include fusion and fission
events, can be a response to cellular stress and are therefore an important indicator of
cellular health10. To test if the restoration quality is sufficient to characterise mitochondrial
phenotypes, we exposed cells to Rotenone - a well characterised respiratory inhibitor that
induces mitochondrial fragmentation11. We analysed mitochondrial morphology by
quantifying the organelle’s circularity and aspect ratio. Despite the challenges associated
with segmenting diffraction-limited structures on a widefield microscope, we show that
restorations of Rotenone treated cells can be distinguished from their DMSO treated
controls. Separation of mitochondrial morphology performed equally well on TOMM20-Nluc
signal reconstructions as compared to reconstructions based on fluorescent
TOMM20-NeonGreen ground truth of the same cell (Figure 2b). Therefore, our results
demonstrate that CARE enables luminescent imaging and analysis of dynamic intracellular
compartments that were previously inaccessible due to long exposure time requirements.

Discussion

The present study demonstrates the utility of CARE in luminescence imaging. Specifically,
the previously introduced CARE method enabled the reliable restoration and denoising of
luminescence micrographs with initially low contrast, thus shortening required exposure
times dramatically. We successfully applied the original CARE network in noise2noise
restorations, which is useful when long-term exposures of ground truth are not possible due
to biological or technical constraints. Especially in non-dedicated luminescence imaging
setups, light pollution by external sources such as instrument LEDs or room light can impact
long term exposures and thus greatly complicate the acquisition of the ground truth data.
We further showed that the CARE network architecture can be used to reliably upsample
binned images, thus lifting the constraint previously imposed on image resolution.
Furthermore, upsampling is useful, when camera read out times are a constraining factor in
highly dynamic events as the camera chip read out times for binned images are much
shorter than those at full resolution. This is especially interesting for rapid imaging in
fluorescence microscopy to which this procedure can be equally applied. It is important to
stress that deep learning based restoration methods are - like any restoration method -
prone to artefacts,12 which can be assessed computationally, as outlined in the original
CARE publication5.
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We finally demonstrate that fluorescence signals can also act as ground truth for
luminescence signals in particularly sparse and spatially distinct structures. This further
shortens exposure times required for training data acquisition. It is especially useful in very
challenging samples that require short exposure times already for training data generation
because of biological or practical constraints. With CARE we demonstrate one neural
network architecture that can be applied to restore signals in luminescence images. In
principle, other networks dedicated to image restoration are potentially equally suitable6,13.
With our method, we enable luminescence microscopy imaging at exposure times that
shorten acquisitions by a factor of 60 or more. This translates into shortening recording times
from minutes to seconds or from hours to minutes. Our method lifts the previously major
constraint of long exposure times in luminescence imaging, making this technique now
suitable for dynamic and high throughput imaging.
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Figure legends

Figure 1: Luminescence image restoration. (a) Content-aware image restoration (CARE)
allows the restoration of images obtained with short exposure times to images with a signal
to noise ratio that is normally achieved with much longer exposure times. (b) CARE can be
used to upsample and restore binned images to full resolution. (c) CARE can be utilised for
noise2noise image restorations by training a network with image pairs of short exposure
times only. (a-c) Schematics for CARE training pairs are illustrated. Restorations were
performed on previously unseen data. Binary images represent automatically segmented
objects from the respective micrograph. The mean absolute error (MAE) between object
masks was used as a quantitative readout to compare restorations with ground truth (lower
is better). Scale bars = 10 um

Figure 2: Restoration of luminescence signals to fluorescent ground truth. (a)
Fluorescently labelled proteins can act as ground truth to reduce exposure times required for
training data acquisition. H2B-Nluc and H2B-eGFP were cotransfected and training pairs
were generated by capturing short exposure luminescence and short exposure fluorescence
signals. Long exposure luminescence signals were recorded for quality control. The Pearson
correlation of pixel intensities under masked objects was used as a restoration quality
readout. Scale bars = 10 um (b) Restoring luminescence signals from diffraction limited
structures. Mitochondria were labelled with TOMM20 fusion proteins and a network was
trained with luminescence and corresponding fluorescence image pairs. Restorations from
luminescence signals allowed for a similar phenotype classification compared to
classifications from fluorescently labelled mitochondria. Rotenone treatment was used to
induce mitochondrial fragmentation for phenotype scoring. The line in the classification
charts delineates all Rotenone treated cells. Scale bars = 5 um
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Supplementary figure legends

Supplementary Figure S1a: Classical denoising for luminescence image restoration.
Content-aware image restoration (CARE) allows the restoration of images obtained with
short exposure times as indicated with a signal to noise ratio that is normally achieved with
much longer exposure times. Restorations were performed on previously unseen data.
Binary images represent automatically segmented objects from the respective micrograph.
Scale bars = 10 um

Supplementary Figure S1b: Upsampling in luminescence image restoration. CARE
can be used to upsample and restore binned images to full resolution. Restorations were
performed on previously unseen data. Binary images represent automatically segmented
objects from the respective micrograph. Scale bars = 10 um

Supplementary Figure S1c: noise2noise denoising in luminescence image restoration.
CARE can be utilised for noise2noise image restorations by training a network with image
pairs of short exposure times only. Restorations were performed on previously unseen data.
Binary images represent automatically segmented objects from the respective micrograph.
Scale bars = 10 um

Supplementary Figure S2a: Restoration of luminescence signals to fluorescent
ground truth. Fluorescently labelled proteins can act as ground truth to reduce exposure
times required for training data acquisition. H2B-Nluc and H2B-eGFP were cotransfected
and training pairs were generated by capturing short exposure luminescence and short
exposure fluorescence signals. Long exposure luminescence signals were recorded for
quality control. Restorations were performed on previously unseen data. Binary images
represent automatically segmented objects from the respective micrograph. Scale bars = 10
um
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Online Methods

Plasmids and Molecular Cloning
DNA constructs containing open reading frames (ORFs) encoding H2B-Nluc and
Tomm20-Nluc C-terminal fusion proteins were commercially synthesized (Eurofins
Genomics). The ORFs were cloned into pBI-CMV4 (Takara Bio) utilizing 5’-NheI and 3’-SalI
restriction sites with reagents from New England Biolabs following standard procedures
yielding the final plasmids used for subsequent transfections.
Cytoplasmic Nanoluc was expressed by transfecting U2OS cells with pcDNA3.1-NL plasmid.
Plasmid pcDNA3.1-NL was obtained from Addgene (Addgene plasmid #113442).
Fluorescently labeled H2B was expressed by transfecting pEGFP-N1-H2B plasmid.
H2B-GFP was obtained from Addgene (Addgene plasmid # 11680). Fluorescently labeled
Tomm20 was expressed by transfecting pN1-TOMM20-mNG plasmid (Addgene plasmid #
129347).

Cell Culture
All cell lines were cultured at 37 ℃, 90% humidity and 5% CO2. U2OS cells were cultured in
DMEM medium (Gibco Cat# 31885-023) supplemented with 10% v/v FBS (Anprotec Cat#
AC-SM-0033), 100 U/ml Penicillin-Streptomycin (Gibco Cat# 15140-122). Hela CCL-2 cell
lines were cultured in DMEM media (Corning Cat# 15-013-CV) supplemented with 10% v/v
FBS, 100U/ml Penicillin-Streptomycin and 10 mM L-glutamine (Gibco Cat# 25030-024).

Transfections
All plasmid transfections were performed at 70% confluency using Lipofectamine 3000
transfection reagent using 2 µl Lipofectamine and 2 µl P3000 reagent/µg DNA (Thermo
Fisher Scientific). For transfecting 30 mm dishes or 75 cm2 flask, a total of 2.5 µg or 25 µg of
plasmid DNA were used, respectively. For double transfections, plasmids were combined
equally while retaining absolute amounts used for single transfections.

Fluorescence-activated cell sorting
To ensure coexpression in experiments that were used to train luminescence signal on
fluorescent ground truth signal, luminescence fusion proteins were cloned into a bidirectional
vector (pBI-CMV4) that also expresses dsRed2 as an expression control for the luminescent
fusion protein (see section ‘plasmids and cloning’ for details).
For experiments in which co-expression of fluorescently labeled H2B and Nluc conjugated
H2B was required, a transfected, confluent 75 cm2 flask of HelaCCL cells was harvested.
Cells were resuspended in complete DMEM and kept on ice and FACsorted at 5 °C:
eGFP+/dsRed2+ double positive populations were isolated by FACS using a SONY Cell
Sorter SH800 with a 100µM microfluidics sorting chips. Scatter characteristics utilizing
FSC-A/BSC-A were used to exclude debris and FSC-A/FSC-W to exclude doublets.
eGFP+/dsRed2+ cells were sorted using the "Semi-Purity" sort mode with a sensor gain of
32% for dsRed2 (FL3-600/60) and eGFP (FL2-525/50). During the sort, 488 nm and 561nm
lasers were active. Per 35mm glass bottom dish 300.000 double positive cells with
comparatively high expression ratios of both eGFP and dsRed were seeded.
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Luminescence assays
For cells expressing cytosolic NanoLuc or H2B-Nanoluc fusion proteins, Nano-Glo
Endurazine (Promega) was used as a substrate at a 1x final concentration. Cells were
imaged 1h after addition of the substrate.
For cells expressing Tomm20-Nanoluc fusion protein, Nano-Glo Vivazine (Promega) was
used as a substrate at a 1x final concentration. Cells were imaged 1.5 h after addition of the
substrate.

Microscopy
All images were recorded using Olympus’ LV200 bioluminescence imaging platform. eGFP
and NeonGreen were excited through a 470/11nm bandpass filter. Emission for eGFP and
NeonGreen was collected with a 525/25nm bandpass filter. Luminescence was detected
without any emission filter. Olympus’ 20x NA 0.8 UPLXAPO objective was used to image
cytoplasmic NanoLuc and H2B-Nluc/eGFP signals. Olympus’ 100x NA 1.5 UPLAPO OHR
Objective was used to image Tomm20-Nluc/mNeonGreen. For signal detection, an Andor
iXon 888 Ultra EM-CCD camera, deep cooled to -85℃ at a 1 Mhz readout rate with an EM
gain of 300 was used. Cells were incubated with a Tokai Hit stage top incubator providing full
environmental control.
Cells for imaging experiments were cultured in 30mm glass bottom dishes (ibidi, Cat#
81158). Cells were imaged in CO2-independent, phenol-red free, L15 Leibovitz media
(Thermo Fisher Cat# 21083027) supplemented with 10% v/v FBS and 100U/ml
Penicillin-Streptomycin. L15 Leibovitz imaging media for Hela CCL cells was additionally
supplemented with 10mM L-Glutamine.

Data recording, Deep Neural Network training and image restoration
For training, the previously published CSBDeep package v0.6.0 was used
(http://csbdeep.bioimagecomputing.com). A detailed documentation of this software is
available at http://csbdeep.bioimagecomputing.com/doc. We performed all training and
prediction pipelines using our publicly available docker container that can be obtained at
https://hub.docker.com/r/tboo/csbdeep_gpu_docker. Generalised Python scripts that can be
used with this container for preparing training data, network training and prediction are
available at https://gitlab.gwdg.de/rinklab_public/lumicare.
Networks were trained on a Lenovo ThinkSystem SR670 server equipped with two Intel
Xeon Gold 6234 CPUs, 768GB RAM and four NVIDIA Tesla V100 32GB GPUs.
Networks were trained for each low-high signal condition separately, providing best
restoration performance.
All training data were recorded in 3D (XYZ) and all networks were trained as 3D networks.
For acquisition of training data, input (low signal) condition(s) and ground truth/target
condition (high signal) were imaged consecutively per plane before proceeding to the next
z-plane. Training data for noise-to-noise training was obtained by taking 2 consecutive
images with identical imaging parameters. To train networks for upsampling, training data
was obtained by software binning using the “bin” function in Fiji. These binned images were
subsequently upsampled without interpolation to match the pixel dimensions of the
respective ground truth image. To increase training data complexity, each raw stack was
rotated 3 times in 90° increments and subsequently each of the resulting stacks was
mirrored horizontally resulting in an 8-fold increase of available training data. The table
below summarises the key parameters used for training data acquisition, training data
preparation and network training.

8

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 29, 2022. ; https://doi.org/10.1101/2022.04.29.490012doi: bioRxiv preprint 

http://csbdeep.bioimagecomputing.com/doc/
https://hub.docker.com/r/tboo/csbdeep_gpu_docker
https://gitlab.gwdg.de/rinklab/microscopy/lumicare
https://doi.org/10.1101/2022.04.29.490012
http://creativecommons.org/licenses/by-nc-nd/4.0/


Structures to restore

Cytoplasmic Nluc H2B-Nluc Tomm20-Nluc

Microscope
parameters for
generating raw
training data

XYZ camera ROI (pixels, unbinned) 1024x1024x16 512x512x16 512x512x16

Z stepping 570 nm 570 nm 130 nm

Number of Stacks 8 14 90

Objective 20x XAPO 20x XAPO 100x APO

Processed Training
data

Patch dimensions XYZ (pixels)
(patch_size)

64x64x16 64x64x16 64x64x16

number of randomly sampled
patches per raw image stack
(n_patches_per_image)

200 250 150

Training parameters Number of epochs (train_epochs) 150 100 200

Steps per epoch
(train_steps_per_epoch)

200 400 600

Batch size
(train_batch_size)

128 128 128

Fraction used for validation
(validation_split)

0.1 0.2 0.3

Networks were trained with probabilistic per pixel prediction (probabilistic=True). All
other network parameters were used in default settings.
For all conditions, the trained models were used to restore images by tiling the respective
stacks 2x2x2 in XYZ using the csbdeep API.

Image analysis
All image processing and analysis was performed using the ImageJ distribution Fiji v2.3.0 14.
To quantify the disagreement between ground truth images of cells expressing cytoplasmic
Nanoluc and respective restoration results from low signal images, the mean absolute error
(MAE) between cell masks was determined using the SNR plugin v06.05.201115. To obtain
the masks, all images were converted to 16bit, thresholding was applied using the “Mean”
auto thresholding function with enabling the “dark background” option. Resulting particles
were filtered by size (>100 pixel). The resulting masks were inverted and used with the SNR
plugin to quantify the MAE between the ground truth masks as the reference images and the
corresponding restoration or input masks as test images.
To quantify the disagreement between ground truth images of cells expressing labeled H2B
and respective restoration results from low signal images, the Pearson correlation between
intensities of masked nuclei was determined. For that purpose, ground truth images were
thresholded using the “Triangle” auto thresholding function enabling the “dark background”
option. Resulting particles were filtered by size (>5 pixel). The resulting masks were inverted
and used as masks for determining the Pearson correlation of raw pixel values between an
input/restoration image and the respective ground truth images utilizing the “Coloc2” plugin
v3.0.5 in Fiji.
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For quantifying mitochondrial morphology all images (including restorations) were maximum
projected along Z and a rolling ball background subtraction (radius = 5 pixel) was applied
using Fiji. To quantify the disagreement between ground truth images of cells expressing
labeled Tomm20 and respective restoration results from low signal images, a pixel classifier
to segment mitochondria was trained using ilastik software v1.3.3 16. For training this pixel
classifier, a subset of mitochondria and background was annotated in 10 images total (5
DMSO control, 5 Rotenone treated) of cells expressing Tomm20-NeonGreen (ground truth
images). This trained classifier predicted accurate mitochondria masks in all images used for
analysis. The resulting masks were subsequently analyzed for their morphology with Fiji by
setting an object size threshold (>20 pixel). Circularity and aspect ratio of these segments
was measured via the ‘shape’ measurements module. The values displayed in Figure 2 are
object measurement mean values per image analysed.
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