
DysRegNet: Patient-specific and
confounder-aware dysregulated network

inference
Olga Lazareva1,5,6,7*, Zakaria Louadi1,2*, Johannes Kersting1, Jan Baumbach2,3, David B. Blumenthal4, and Markus List1,�

1Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
2Institute for Computational Systems Biology, University of Hamburg, Hamburg, Germany

3Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark
4Department Artificial Intelligence in Biomedical Engineering (AIBE), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany

5Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
5Junior Clinical Cooperation Unit Multiparametric methods for early detection of prostate cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany

6European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
*These authors contributed equally

Gene regulation is frequently altered in diseases in unique
and often patient-specific ways. Hence, personalized strate-
gies have been proposed to infer patient-specific gene-regulatory
networks. However, existing methods do not focus on disease-
specific dysregulation or lack assessments of statistical signifi-
cance. Moreover, they do not account for clinically important
confounders such as age, sex or treatment history.
To overcome these shortcomings, we present DysRegNet, a
novel method for inferring patient-specific regulatory alter-
ations (dysregulations) from gene expression profiles. We com-
pared DysRegNet to state-of-the-art methods and demonstrated
that DysRegNet produces more interpretable and biologically
meaningful networks. Independent information on promoter
methylation and single nucleotide variants further corroborate
our results. We apply DysRegNet to eleven TCGA cancer types
and illustrate how the inferred networks can be used for down-
stream analysis. We show that unique as well as cancer-type-
specific dysregulation patterns exist and highlight immune-
related mechanisms that are not obvious when focusing on in-
dividual genes rather than their interactions.
DysRegNet is available as a Python package (https:
//github.com/biomedbigdata/DysRegNet_package)
and analysis results for eleven TCGA cancer types are
further available through an interactive web interface
(https://exbio.wzw.tum.de/dysregnet).

Correspondence: markus.list@tum.de

Introduction
Gene regulatory network (GRN) inference methods model
the relation between different genes based on their co-
expression, relying on measures such as (conditional) mutual
information or (partial) correlation to infer edges [1]. Since
this does not allow for distinguishing between direct and indi-
rect effects, a common strategy is to consider the interaction
of transcription factors (TFs) with putative target genes to
create a directed GRN. While methods such as GENIE3 [2]
or ARACNE [3] identify static GRNs from gene-expression
data, dynamic methods have also been developed to com-
pare the co-expression in different conditions. Such meth-
ods were successful in identifying differential gene regula-
tion programs [4], disease modules and perturbation in regu-

lation. For example, apoptosis was shown to be activated or
repressed in cancer, depending on the tumor state and envi-
ronment [5].

Methods for differential expression and co-expression anal-
ysis are designed to compare between two groups or more
(e.g. disease and control or treated and untreated patients).
However, because of the heterogeneous nature of complex
diseases such as cancer, these approaches are limited in their
ability to identify disease subgroups or to describe patient-
specific dysregulatory patterns. As a result, we often lack
specific biological or therapeutic insights for individual pa-
tients. Few recent studies have shown that individual differ-
ences in gene expression can lead to new insights that cannot
be captured by the general groups comparison [6, 7]. These
methods identify patient-specific aberrations of gene expres-
sion in a one-against-all comparison, where sample-specific
outlier genes are reported.

While capturing aberrantly expressed genes at the patient
level is useful, such approaches cannot pinpoint the source
of the dysregulation since they do not account for indirect
effects and effects that affect only one of the interaction part-
ners. For instance, if a mutated TF retains a normal expres-
sion pattern but leads to a change of the expression of its tar-
get gene, such approaches would not capture this. These ob-
servations show the importance of considering co-expression
at the single patient level. Only few approaches have been
proposed to this end which are mainly based on gene-gene
correlation [8–11]. Specifically, these methods calculate
the Pearson correlation between two genes before and af-
ter adding/removing one sample. Some approaches such as
SSN [11] evaluate the significance of this difference using
transformations to z-scores or p-values. Other frameworks
like LIONESS [10] do not offer any significance evaluation.
Nakazawa et al. [12] define an edge contribution value to ex-
tract subnetworks from Bayesian networks inferred from all
samples. Following this approach, they successfully identi-
fied novel and known cancer subtypes. A limitation of above
mentioned approaches is that they do not correct for con-
founders such as sex, age, and origin of the sample which
can greatly impact the analysis at a single sample level.
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Fig. 1. Overview of the method. (A) We first infer a baseline gene regulatory network using only control samples. For illustration, we assume our network has only 3 edges
with two activating and one repressing interaction. For all edges, we fit a linear model using all control samples and then test each individual patient sample, one at a time.
(B) By comparing the observed value with the expected value from the linear model, we calculate patient-specific residual for every interaction; the latter is then transformed
to a z-score and a p-value assuming the residual normality. (C) In the final step, the corrected p-values are used to infer patient-specific dysregulation. For instance, if gene
A is an activator for gene B, we notice that for patient 1, the observed expression of gene B is significantly lower than the expected value from the positive slope of the linear
model. This can be a sign of dysregulation of the activation. However, for patient 2, we notice that the activation is normal. After testing for every edge in the initial network,
the patient-specific dysregulation networks are inferred. (D) We validate the generated networks using known cancer subtypes and other omics data. We also show how they
can be used as input for machine learning algorithms such as support vector machines or graph neural networks. Created with BioRender.com

To mitigate this, we propose a novel method called DysReg-
Net. DysRegNet employs linear models, using the TF ex-
pression as an explanatory variable and its target as a re-
sponse variable. These linear models are inferred from all
available control samples. Subsequently, we test for each pa-
tient sample if the co-expression pattern deviates from the
expected value obtained from the linear model by consider-
ing its residual. Using a linear model allows us to correct
for known covariates and allows fast computation of model
residuals to identify dysregulated TF-gene interactions. This
is an advantage compared to methods such as LIONESS or
SSN which need to compute TF-gene correlations with and
without each of sample of interest and cannot account for co-
variates. Note that our model can in principle be used for one-
against-all comparisons where control samples for a baseline
model are missing, where we would still retain the advantage
of accounting for covariates.
To validate our approach, we perform an extensive pan-
cancer analysis and showed that DysRegNet outperforms
correlation-based methods in terms of biological relevance

and speed. Next, we investigate to what extent our approach
can be informative at the patient level using validation from
other omics data such as mutation and promoter methylation.
We show that dysregulated edges are associated with mutated
TF complexes and methylated targets. We further provide
multiple use cases demonstrating the value of patient-specific
networks, ranging from identifying known subtypes of can-
cer and driver genes to improve cancer stage prediction and
providing new insights into cancer progression. Finally, we
show how the topological features of the patient-specific dys-
regulated networks can be used to train a graph neural net-
work to identify active modules related to cancer progression.

Results

A. Overview of the method. DysRegNet requires an ini-
tial GRN, which can be inferred from the control samples
using methods such as GENIE3 [2] or ARACNE [3] or in-
clude experimentally verified interactions such as in HTRIdb
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A B

Fig. 2. Heatmaps and hierarchical clusterings based on pairwise patient similarities. A: Pairwise patient similarities are computed as overlap coefficients of edges contained
in dysregulatory networks. B: Pairwise patient similarities are computed as overlap coefficients of nodes contained in dysregulatory networks. Here we observe that patients
stratification based on dysregulated edges is superior to stratification based only on nodes.

[13]. The motivation for using a template network is to de-
fine feasible interactions and to reduce the number of false
positives by relying on experimental evidence. The template
GRN contains interactions of TFs with their target genes
that could either represent an activation (positive correla-
tion) or repression (negative correlation). When describing
our own method we use networks inferred with the GENIE3
approach. Depending on the context, we use the GENIE3
individual network, which is derived from control samples
for each cancer type individually, or the GENIE3 shared
network, which comprises the intersection of edges across
GENIE3 cancer networks. When we compare DysRegNet
performance to other methods, we also use experimentally
validated TF-target regulations from HTRIdb [13] and the
STRING network [14], the latter of which is not limited to
gene-regulatory interactions but considers protein-protein in-
teractions. We included a PPI network to the benchmark
analysis for a fair comparison with the SSN method that was
evaluated using the STRING network. We fit a linear model
for every edge in the network using all control samples. For
illustration purposes, we consider gene A as an explanatory
variable together with known covariates such as age, sex and
ethnicity Figure 1A. After estimating the model parameters
using Ordinary Least Squares (see Methods), we test every
patient sample individually by comparing the expected value
of gene B with the observed value specific to the patient sam-
ple. Since we verified normality of the error terms (resid-
uals), we can calculate a z-score specific to the test sample
using a standardized residual. This technique is comparable
with an outlier detection task in regression analysis. After
evaluating all patients, the z-scores are then transformed to p-
values and corrected for multiple testing (see Methods). Af-
ter modeling every edge in the initial GRN, the output of our
method is a list of predicted dysregulated edges for every pa-

tient which can be integrated into a network with one or sev-
eral connected components. It is important to note that previ-
ous studies used the term "patient- (or sample-) specific regu-
latory network". We prefer to call it a patient-specific dysreg-
ulated network since, using current approaches, we can only
identify outliers w.r.t. the original GRN but not learn new
edges or gain of function specific to one sample.

B. Pan-cancer analysis for assessment of biological
relevance. To assess the biological relevance of the patient-
specific dysregulatory networks computed by DysRegNet,
we analysed the networks obtained for eleven cancer types
available in TCGA. Three types of analysis were carried out,
namely, patient clustering based on the computed networks,
promoter methylation analysis for dysregulated targets, and
comparison of dysregulation scores for the targets of mutated
TFs. As detailed below, all three analyses generated evidence
indicating that the networks computed by DysRegNet indeed
capture biologically relevant signal.

B.1. Validation via clustering of dysregulated patient net-
works. Pan-cancer analysis was performed to identify simi-
larities among different types of cancers regarding patient-
specific dysregulations. Our primary assumption is that pa-
tients with the same type of cancer have similar dysregulated
edges, while patients with different cancers do not have large
edge overlaps. Some cancer types in our analysis originate
from the same organ: lung adenocarcinoma (LUAD) and
lung squamous cell carcinoma (LUSC), kidney renal clear
cell carcinoma (KIRC), and kidney renal papillary cell car-
cinoma (KIRP) and, therefore, we expect them to be more
similar to one another compared to cancer types of differ-
ent origin. Detailed comparison of methods for KIRC, KIRP,
LUAD and LUSC is provided in the Supplementary Material.
To make sure that we focus on similarities between patients
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Fig. 3. Evaluation of DysRegNet with additional methylation and mutation data. A: Relationship between normalized degree of ZNF549 and its promoter methylation. B:
p-value for the slope coefficient in the global methylation model with all targets vs. slope coefficients p-values for models where the degrees of the target genes have
been shuffled. C: Significant associations between promoter methylation and target gene dysregulation. Bars with a star indicate that a global model (with all promoters)
showed significant association between promoter methylation and target dysregulation. D: Associations between mutations in TFs and target genes dysregulation. TFs-target
complexes were tested only when at least seven patients have a mutation in a TF. The x-axis shows how many TFs-target complexes have been tested. The y-axis shows
the percentage of significant association out of all tested complexes.

based on cancer-type-specific dysregulation and not based on
tissue-specific expression, we used the shared GENIE3 net-
work that excludes tissue-specific edges and only comprises
edges that are common in all cancer types. We evaluate the
similarity between individual patient networks by computing
a pairwise overlap coefficient for the set of edges (see Meth-
ods). To emphasize that our analysis focuses on differences
in edges (dysregulations) and not abnormal single gene ex-
pression, we also computed the overlap between node sets.
Figure 2 illustrates that node clustering shows far worse strat-
ification of patients in different cancer types. Additionally,
edge clustering demonstrates that LUAD and LUSC as well
as KIRC and KIRP are their respective closest neigbours,
as expected. In comparison, the other methods performed
poorly and failed to identify similarities between patients of
the same subtype (Supplementary Figure 1). Note that in or-
der to reduce the effect of tissue-specificity, this comparison
was performed on subtypes from the same (or similar) tis-
sue. A more detailed quantitative comparison with these ap-
proaches is presented in subsection C.

B.2. Genes with methylated promoters are more likely to be
dysregulated . DNA methylation plays a crucial role in con-
trolling gene expression. For instance, methylation of cy-

tosines (in a CpG) context in the promoter region is associ-
ated with gene repression as TFs cannot bind anymore [15].
Gene promoter methylation is thus also used as a diagnostic
and prognostic cancer biomarker [16].
Even though changes in promoter methylation represent only
one possible cause of dysregulation, we hypothesize that pro-
moter methylation across a large number of samples should
be correlated with dysregulation of a target gene. To test
this hypothesis, we evaluated all targets individually (local
model) and all targets together (global model). The local
model allowed us to evaluate how many targets exhibit a cor-
relation between the node degree and promoter methylation
(an example of such a target is shown in Figure 3 A).
We reason that a high node in-degree of a target gene (i.e.
many dysregulated edges) indicates that TFs generally lost
the ability to regulate the target as we would expect if they
can no longer bind to the promoter. Note that while this
would not affect TFs binding to enhancer regions, it suf-
fices to show that dysregulation is related to changes in DNA
methylation. We subsequently build a global model that al-
lowed us to evaluate if this pattern holds in general in a given
condition (for details see Methods sections O.2, O.3). An
example of an empirical p-value distribution obtained from
fitting the global model after repeatedly shuffling the target
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gene’s node degrees is shown in Figure 3 B. An illustration
of differences between the global and the local model can be
found in the Supplementary Material (Figure 3).
The local model showed that for all 11 cancer types tested, a
significant association of node degree and promoter methyla-
tion was observed for at least 5% of all targets (for THCA)
and at most 17% of all targets (for BRCA). The global model
demonstrated that the assumption holds for all 11 considered
cancer types (Figure 3 C).

B.3. Dysregulated targets are associated with mutated TFs.
Mutations in TFs are associated with many types of cancer:
lung cancer [17], prostate cancer [18], breast cancer [19], and
many others [20]. We hypothesize that TF mutations lead to
a higher target gene dysregulation. We performed analysis
on a local level for individual targets and on a global level for
all target dysregulations in every cancer type to verify this
hypothesis.
In the local model, we compared dysregulation scores (i.e.
the percentage of dysregulated edges per node - see Meth-
ods) for targets where at least one of the regulating TFs was
mutated with dysregulation scores of targets without mutated
TFs using the Mann-Whitney U test and report p-values after
correction for multiple hypothesis testing (see Methods for
details). The global model was built as a regression where
mutations in a set of co-regulating TFs were predicted based
on a dysregulation score of a target gene. We then tested if
the dysregulation score was significantly associated with TFs
mutations for every cancer type individually.
Figure 3 D shows results of the local- and global-scale anal-
yses for all types of cancers and networks. Based on the GE-
NIE3 individual network, the most prominent connection (p-
value 1.2−11) was between RPL23 and TP53 in breast can-
cer. RPL23 was widely studied as it links oncogenic RAS
signaling to p53-mediated tumor suppression [21]. Riboso-
mal proteins bind to and inhibit MDM2, a potentially onco-
genic E3 ubiquitin ligase that interacts with and promotes the
degradation of the TP53 tumor suppressor [22]. On the pro-
tein level, physical interaction between TP53 and RPL23 is
confirmed by affinity chromatography [23]. As the analy-
sis was performed on the GENIE3 inferred network, over-
lap with known and experimentally validated interactions and
regulatory mechanisms creates additional confidence in our
results.

C. Comparison against state-of-the-art methods.
Patient-specific network inference has the potential to
unravel disease mechanisms for each patient individu-
ally following the precision medicine paradigm. Several
published methods attempted to provide this information
considering how the correlations between genes is affected
by adding or removing individual patient samples.
We compared the performance of DysRegNet to two state-
of-the-art methods: LIONESS and SSN. Both of these meth-
ods construct patient-specific networks by considering how
the correlation between genes is affected by adding or re-
moving individual patient samples. For all methods, we used
all four template networks: GENIE3 individual and shared,

LIONESS SSN DysRegNet
algorithm

0.0
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1.0

F1

experimental
string
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Fig. 4. F1 score for clustering performed on pair-wise similarities among patient-
networks.

HTRIdb and STRING. We did not use an approach proposed
by Nakazawa et al. [12] due to lack of publicly available
code.

C.1. Ability of methods to distinguish known cancer types.
We assessed the ability of all tested methods to derive similar
networks for patients with the same cancer type. For each
pair of patients, we computed an overlap coefficient between
their corresponding edge sets. Every network-algorithm pair
was represented as a symmetric patient-by-patient similarity
matrix that was clustered using spectral clustering. The ob-
tained clusters were then mapped to the known classes using
the Hungarian algorithm (i.e., maximizing F1 score for each
class-cluster mapping) [24]. The final F1 score for every
method-network pair is shown on Figure 4. The evaluation
was made for GENIE3 shared network, HTRdb and STRING
network. Individual (cancer-specific) GENIE3 network were
excluded from the assessment due to high tissue specificity
that makes it impossible to conclude if the observed dysreg-
ulation is specific for a cancer type. For the other three net-
works, DysRegNet consistently outperformed SSN which in
turn outperformed LIONESS.

C.2. Cancer-specific gene set enrichment. We investigated
if the studied methods are capable of extracting cancer-
related genes for each cancer individually. For each of the
eleven studied cancers, we considered the 100 most common
edges for all patients and checked if they were enriched in
DisGeNet gene sets. Most TCGA cancers can be directly
mapped to DisGenNet gene sets, e.g., TCGA ’lung squamous
cell carcinoma’ can be mapped to DisGeNet ’Squamous cell
carcinoma of lung’ gene set. The full mapping of TCGA
cancers and DisGeNet gene sets are available in the Supple-
mentary Material.
Figure 5 demonstrates that the method performance is highly
dependent on the selected template network and studied can-
cer type. Prior-knowledge based networks (experimental and
STRING) perform significantly better as they can potentially
limit the search space to well-studied genes. SSN and LI-
ONESS perform best for breast cancer, possibly due to the

Lazareva et al. | DysRegNet bioRχiv | 5

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 1, 2022. ; https://doi.org/10.1101/2022.04.29.490015doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.29.490015
http://creativecommons.org/licenses/by-nc-nd/4.0/


lack of influence of the sex covariate.

D. Case study 1: Identifying the regulatory sub-net-
works linked to cancer progress in thyroid cancer. Dis-
ruption of TFs is a hallmark of cancer. However, one would
expect more disruption in advanced stages than in the earlier
stages of cancer. To investigate this assumption and to char-
acterize the link between dysregulation and tumor-specific
progression, we analyzed thyroid cancer (THCA) using pa-
tient stages annotations. We have chosen THCA because of
the availability of sufficiently many samples for all stages.
We first split 511 THCA patients into two groups: early-stage
and advanced stages (see Methods). Then, for every TF, we
tested if the percentage of dysregulated edges is greater in
the advanced stages group than in the early stage group using
a one-sided Mann–Whitney U test. Out of 1,341 TFs in the
initial GRN of THCA, 495 were significantly more dysreg-
ulated after multiple testing correction (Benjamini/Hochberg
adjusted p-value ≤ 0.05). In comparison, the same analysis
performed on the graphs generated from LIONESS and SSN
led to only one significant TF for each method. As expected,
using the three methods, none of the edges were more signif-
icantly dysregulated in early cancer compared to late stages.
An example from DysRegNet is shown on the Figure 6, the
median dysregulation of Zinc finger protein 687 (ZNF687) is
higher in advanced stages. Interestingly, ZNF687 was pre-
viously associated with promoting hepatocellular carcinoma
recurrence [25], but it was not fully investigated for other
types of cancer.
Since the dysfunction of most TFs is expected and common
in all cancer types and stages, we next focused on TF-target
edges instead of single TFs. We hypothesize that only some
edges of these TFs are linked with severe THCA. To examine
this hypothesis, we checked for over-representation of dys-
regulated edges between the two groups. We compared the
number of times an edge is dysregulated in each group us-
ing a one-sided Fisher’s exact test. Indeed, out of the 47,236
edges from the initial list of significantly dysregulated TFs,
646 were significantly over-represented in late stages after
multiple testing correction (Benjamini/Hochberg adjusted p-
value ≤ 0.05). Most of the edges were linked to the TF
FOXP3, a crucial transcriptional regulator for the develop-
ment and inhibitory function of regulatory T-cells. FOXP3
is also a well-known tumor suppressor and plays an impor-
tant role in cancer development [26]. Interestingly, the most
significant edge corresponds to FOXP3 activation of the PY-
HIN1 gene, The encoded protein belongs to HIN-200 fam-
ily which is involved in cell differentiation, and apoptosis
[27]. This protein is also known to act as tumor suppres-
sor [28]. To assess if the observed changes in immune func-
tion were related to differences in the cell type composition
of the tumor microenvironment, we checked for differences
in cell type enrichment between these two groups using the
method xCell [29]. The results did not show any significant
difference between the two groups (see Methods), except for
CD4+ naive T-cells and CD8+ T-cells where a few samples
exhibit a slightly higher cell-type enrichment in early stages
(Supplementary Figure 8).

The observed dysregulation of this activation in a set of pa-
tients could be a sign of a disrupted immune response consis-
tent with the progressive cancer state for these patients. Over-
all the over-represented edges were enriched in the pathways:
“T cell receptor signaling”, “Inflammatory Response Path-
way” and “Hematopoietic Stem Cell Differentiation” (Fig-
ure 6). This enrichment confirms that the disruption of ex-
pression of tumor suppression genes and alterations in the
regulatory T cells are associated with advanced cancer.
To explore the possibility of using dysregulated edges for pa-
tient stage predictions and as potential biomarkers, we trained
an SVM model with patient-specific edges as features. An
edge had a value of 1 if it was dysregulated in a patient or
0 otherwise (see Methods). To establish a baseline, we also
trained a model using gene expressions for all patients and
another model using TFs dysregulation percentages as fea-
tures. It is important to note that even if the information at
the edge level and TF level is derived from gene expression,
it still contains an additional layer from the conditional ex-
pression of a gene given the expression of another gene (co-
expression). All hyperparameters were selected using grid-
search in nested cross-validation (see Methods). The model
based on gene expression yields a mean and a standard devi-
ation of AUC of 0.74 ± 0.05. The TFs dysregulation model
performed similarly with an AUC of 0.70 ± 0.09. In contrast,
the model based on binary edge features yields a higher AUC
of 0.78 ± 0.03. This shows that TF dysregulation is at least as
informative as the expression for stage predictions and offers
a more detailed interpretation.
These observations are consistent with our initial hypothe-
sis and confirm the importance of co-expression analysis at a
single patient level as an additional layer of information. The
analysis also demonstrates an opportunity to extend our un-
derstanding of complex diseases such as cancer and find new
potential therapeutic targets.

E. Case study 2: Interpretable Graph Neural Networks
identifies patients specific cancer stage. In the previ-
ous sections, we demonstrated that patient-specific dysreg-
ulation networks can be efficiently used in the downstream
analysis for supervised and unsupervised learning. However,
up to this point, every edge was treated as a binary feature,
and therefore we did not take full advantage of the network
topology. While application, calibration, and interpretation
of graph neural networks (GNNs) is not the focus of this
study, the following use case exemplifies how patient-specific
GNNs can be employed for classification in the downstream
analysis.
We used dysregulated networks for all cancer patients with
early- and late-stage cancers and trained GNN for stage clas-
sification. As input, we used the patient-specific dysregula-
tory networks with the direction of regulation (1 or -1 corre-
sponding to activation or repression) as edge features. Addi-
tionally, we encoded gene sequences and used them as node
features to indicate positions of the same genes across patient
graphs (more details in the Supplementary material).
Supplementary Figure 5 shows the convergence of GNN and
its performance on an unseen validation set. Supplementary
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Fig. 6. The regulatory sub-networks linked to cancer progress

Figure 6 shows the performance of GNN across cancer types.
Mean validation accuracy is 0.68.

GNNs can be interpreted using various interpretability frame-
works such as Captum [30]. We applied the integrated gradi-
ents approach [31] to obtain edge attribution, i.e., evaluate the
predictive power of every edge in each patient-specific net-
work. We extracted a cancer progression subnetwork (Sup-
plementary Figure 7) using the top 10 the most predictive
edges per cancer type.

The interpretation of the GNN results is consistent with the
first case study, since FOXP3 again shows the most predic-
tive edges. The second large component includes the E2F4
transcription factor and its targets. E2F4 is widely studied

in the context of cancer as a crucial regulator in liver cancer
[32], breast cancer [33, 34], hepatocellular carcinoma [32],
prostate cancer [35], skin cancer [36] and other [37]. Genes
from the induced subnetwork showed significant enrichment
for transcriptional dysregulation in the cancer KEGG path-
way (adjusted p-value 0.000488).

This high-level analysis shows the potential of GNN appli-
cation to patient-specific dysregulated networks. GNNs ar-
chitectures are very flexible and can be enriched with other
omics data as node features (gene expression, methylation,
mutations, copy number variations, etc) and different edge
types (PPIs, healthy regulations, etc). We provide implemen-
tation and code details in the Supplementary Materials.
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Discussion

F. Influence of different template networks. The initial
template network is necessary for DysRegNet and all other
reviewed methods. In our analysis, we have considered three
different template networks: computationally inferred regu-
latory network from GENIE3, experimentally validated net-
work from HTRIdb, and a combined network from STRING.
All networks were compared in 4 different contexts: net-
works clustering evaluation (i), edge enrichment evaluation
(ii), the association between target dysregulation and pro-
moter methylation (iii), the association between target dys-
regulation and TFs mutations (iv).
Given the different origins of the networks, we cannot con-
clude that one of them is universally better than others, and
therefore the choice should depend on the downstream anal-
ysis. Some types of comparison may penalize false posi-
tive edges in networks (likely present in computationally in-
ferred GENIE3 networks), while others penalize false nega-
tive edges (likely present in the experimental and STRING
networks). We obtained encouraging results for the network
clustering task, where DysRegNet performed equally good
on all 4 networks. This implies that if a user wants to use
patient networks for clustering or classification, most likely
performance will not depend on the network selection. Al-
though the interpretation of the results strongly depends on
the template network choice.
Gene set enrichment worked best for the experimental and
STRING network for all methods. This suggests that GE-
NIE3 template networks introduce more false-positive edges
but may be better suited for hypothesis generation. This is
supported by the better performance of the GENIE3 inferred
networks in the DNA methylation-dysregulation association
analysis where we observed a stronger global trend. We
hypothesize that the observed trend is due to understudied
changes in DNA methylation that the GENIE3 inferred net-
work allows us to test.
The mutation-dysregulation association analysis showed the
best results for the STRING network. This is possibly due to
the STRING network density as there are many connections
between frequently mutated TFs and target genes. In general,
STRING (as a PPI network) might not be the ideal source of
a template network as it does not capture TF-target interac-
tions. Interactions on a protein level can only portray indirect
regulatory effects.

G. Dysregulation scenarios. The ability of a TF to predict
expression of a target gene is often considered an indication
of a regulatory link [2]. We consider a regulatory link dysreg-
ulated, if a model trained on control samples is not predictive
of a target gene expression in a (disease) sample of interest.
This implies four possible scenarios of dysregulation shown
in Supplementary Figure 2: suppressed activation (1), am-
plified activation (2), amplified repression (3), suppressed re-
pression (4).
We follow the assumption that changes in the expression of
genes encoding TFs are followed by expression changes of
the target genes they regulate [38]. Therefore, if regulation

is disturbed, then changes of TFs expression do not lead to
changes in target expression any longer. This pattern corre-
sponds to scenarios 1 and 4. Scenarios 2 and 3 can be in-
terpreted by a stronger response of the target gene, e.g. due
to increased affinity of a TF to the target gene’s regulatory
motif. While we observed this type of correlation pattern in
our data (although in far fewer cases than the other two sce-
narios), there is comparably little evidence in the literature to
support these scenarios. In our analysis, we thus considered
only scenarios 1 and 4 here and plan to follow up on the other
two scenarios in the future. The DysRegNet python package
allows to study all four scenarios.

H. Benchmark analysis. We benchmarked two popular
methods for patient-specific network inference: LIONESS
and SSN. While we only used two methods for comparison,
other published methods use similar assumptions. Park et al.
[8] use a similar approach to the SSN method, but instead
of control data, they use gene expression data from healthy
subjects in GTEx [39] . Lee et al. [9] use precisely the same
approach as SSN for patient-specific network inference and
further expand it to CNV, methylation, and miRNA. Due to
the high similarity of methods and lack of public source code,
we did not include those methods in the benchmark.
The use of control samples brings a clear advantage to a
method (such as SSN or DysRegNet) as it allows to observe
dysregulations common among patients. LIONESS is not us-
ing any control data, and while this has a clear advantage for
experiment designs with no controls, it does not allow the ob-
servation of common dysregulation mechanisms among pa-
tients with similar phenotypes. SSN uses correlation-based
approach similar to LIONESS, but the incorporation of con-
trol data produces significantly better clustering and enrich-
ment results.
We hypothesize that better performance of DysRegNet in
terms of clustering and gene set enrichment can be explained
by using covariates in our statistical model. Very basic char-
acteristics such as age [40], ethnicity [41] and sex [42] can be
extremely strong confounders in certain types of cancer. We
observed that SSN and LIONESS performed better for breast
cancer (BRCA) analysis than other cancer types (Figure 5).
A possible explanation is a lack of sex covariate influence.

I. Limitations and outlook. We evaluated DysRegNet in
different scenarios to emphasize its contribution to the un-
derstanding of cancer dysregulation mechanisms at single-
patient resolution. Cancer is known to be highly heteroge-
neous, and therefore, single-patient network extraction can
be particularly advantageous for precision medicine. Addi-
tionally, TCGA data allowed us to verify our analysis on 11
different cancer types showing that all of them can be studied
with DysRegNet.
Recent studies have shown that the vast majority of human
genes have been studied in the context of cancer [43]. Can-
cer tends to cause severe perturbation to the regulatory mech-
anism, and therefore it is hard to disentangle the disease-
driving mechanisms from their consequences. To gain a bet-
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ter understanding of DysGeNet results, we will focus on ap-
plying DysRegNet to a wider range of complex diseases.
Additionally, users of the Python package should carefully
consider data prepossessing strategies. We applied our
method to well-studied, high-quality TCGA data that did not
require extensive quality control. Users should keep in mind
that the method is built based on the assumptions: (1) tar-
get gene expression can be predicted based on TF expres-
sion, (2) the residuals of the linear model are normally dis-
tributed. The first assumption typically does not hold for
PPI networks. It also sometimes does not for regulatory net-
works, as not all TF-target pairs exhibit correlation. For those
pairs, our method cannot be applied. A user needs to evaluate
the goodness of fit before considering an edge as potentially
dysregulated. Our python package allows users to apply an
R2 filtering strategy to eliminate links where a TF does not
have predictive power. The second assumption was verified
for our analysis, but it is not guaranteed to hold for all gene
expression data. We implement a test for normality [44, 45]
of a residual distribution in our python package and encour-
age users to perform the tests for their data. If the normal-
ity of the residuals assumption is violated, a user might need
to consider different pre-processing strategies or non-linear
modeling techniques.
One promising direction for further research is the connec-
tion between dysregulations and mutations. We have inves-
tigated whether mutations in TFs co-regulating a gene can
cause target gene dysregulation. Unlike the DNA methyla-
tion association analysis, the association between dysregula-
tions and mutations was more complex to interpret. We found
this effect in different cancer types, but the percentage of af-
fected targets was not large (10 % at most). On the other
hand, the strongest association was from the TP53 pathway
in breast cancer, which suggests that a more focused analysis
is needed to understand the mechanism at play. Our analysis
did not consider that not all (somatic) mutations affect reg-
ulatory mechanisms. For example, a mutation could cause
a gain of function instead of loss of interactions (new inter-
actions for the TF). An example of a more specific analy-
sis could focus on a known driver mutation within a DNA
binding domain or, alternatively, on mutations of target gene
TF binding motifs. Furthermore, somatic mutations in can-
cer are frequently affecting the splice-site and possibly cause
isoform switches [46, 47]. Our analysis was performed at the
gene level but a deeper analysis at the isoform or transcript
level would help explaining a larger fraction of the identified
dysregulated edges.
Another interesting application of the method is in studying
rare and undiagnosed diseases, where the focus is often on the
unique differences of a single sample. Up to date, the current
rate of genetically diagnosed rare disorders is approximately
25 to 50% [6]. Thus, DysRegNet provides a novel opportu-
nity to expand our knowledge on such disorders.
Additionally, we note that we cannot guarantee dysregulated
edges to be cancer-related as they might also represent dys-
regulation that is already present in the healthy tissue of a
patient. To discern such edges, it is necessary to profile both

healthy and cancer samples which is only the case for a sub-
set of samples in TCGA.

J. Conclusion. Aberrant TF regulation is an important
mechanism in the development and progression of complex
diseases such as cancer. Rather than focusing on the aberrant
expression of TFs or their target genes, it is worthwhile to
study which specific interactions of a TF are affected to gain
a more detailed insight into the underlying pathomechanisms.
A multitude of molecular changes can lead to the same out-
come and hence, it is of importance to study dysregulation in
a patient- or sample-specific manner. With DysRegNet, we
present a novel approach that delineates such individual TF-
regulatory changes in relation to a control cohort. In contrast
to competing methods, DysRegNet uses linear models to ac-
count for confounders and residual-derived z-scores to assess
significance. Due to the latter, DysRegNet scales efficiently
to an arbitrary number of samples. We have shown that Dys-
RegNet results are robust across template networks and pro-
duce meaningful insights into cancer biology, thus serving as
an important systems medicine tool for data exploration and
hypothesis generation in oncology and beyond.

Materials and Methods

K. Data preprocessing. All data from The Cancer
Genome Atlas Program (TCGA) is acquired from the XENA
browser (https://xena.ucsc.edu/) [48]. We in-
cluded 11 cancers with at least 50 control samples (labeled
as: solid tissue normals). As a gene expression dataset, we
used TPM values for the PANCAN cohort. We retained only
genes expressed in 80 % of the patients of the same cancer
type, followed by z-scoring. Illumina 450k DNA methylation
array data was filtered for CpGs associated with promoter
regions (according to Illumina’s annotation) which were ag-
gregated using the mean. Somatic mutations were mapped
to their transcripts/genes. Only missense mutation were in-
cluded in our analysis since they are more likely to affect TF
functions.

L. Statistical model behind DysRegNet. We define a
template network N = (G,T,E), where G is a set of genes,
T ⊆G is a set of TFs, and E ⊆ T ×G is a set of edges con-
necting TFs t ∈ T to target genes g ∈ G. The role of the
template network is to limit the search space for potentially
dysregulated edges and to provide prior information about
expected healthy regulations. We discuss possible choices
for the template network in the subsection M.
For every pair of connected nodes (ti, gj), the relationship
between expression profiles of a TF ti and a target gene gj
can be modeled as:

ÊH(gj) = βH0 +βH1 ·EH(ti) +
L∑
l=2

(βHl ·CHl ) (1)

where EH(ti) is the expression of a TF ti in a cohort of
healthy controls, ÊH(gj) is the expected expression of a tar-
get gene gj in a cohort of control samples, {CH2 , ..,CHL } is

Lazareva et al. | DysRegNet bioRχiv | 9

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 1, 2022. ; https://doi.org/10.1101/2022.04.29.490015doi: bioRxiv preprint 

https://xena.ucsc.edu/
https://doi.org/10.1101/2022.04.29.490015
http://creativecommons.org/licenses/by-nc-nd/4.0/


a set of available covariates such as age, ethnicity and sex,
{βH0 , .., βHL } are coefficients estimated with an ordinary least
squares model.
An edge ek = (tki ,gkj ) is dysregulated for a patient k if the
edge exists in the template network N and, for patient k,
the expression of gkj cannot be reliably estimated using the
model from Equation 1. Formally, this means that expected
expression of Êk(gj) = βH0 +βH1 ·Ek(ti)+

∑L
l=2(βkl ·Ckl )

is significantly different from the actual value of Ek(gj).
This difference can be defined as a residual of the model, i.e.
rk = Êk(gj)−Ek(gj). We can convert rk to a z-score using
the following transformation:

zk = rk− rH
σ(rH) (2)

where rH = ÊH(gj)−EH(gj) are residuals of Equation 1
model and rH is the mean of rH , σ(rH) is the standard de-
viation of rH . According to our evaluations, residuals of the
linear model are normally distributed, and therefore, z-scores
can be further converted to probabilities P (Z < zk), which
are then corrected for multiple hypothesis testing using Bon-
ferroni correction at the 0.01 significance level.
An additional condition that we enforce for dysregulated
edges is:

rk ·βH1 > 0 (3)

This condition implies that two out of four possible scenarios
of dysregulation are considered:

1. TF is an activator, but no activation of target is ob-
served for a patient (rH > 0 and βH1 > 0).

2. TF is an activator and target is activated higher than
expected (rH < 0 and βH1 > 0).

3. TF is a repressor, but target is repressed more than ex-
pected (rH > 0 and βH1 < 0).

4. TF is a repressor, but target is not repressed (rH < 0
and βH1 < 0).

Equation 6 implies that only scenario 1 and 4 are considered
(all four scenarios are shown in Supplementary Material, Fig-
ure S1).

M. Template networks. The primary role of a template net-
work is to provide prior information about possible regula-
tions in an organism. The network can be derived from tran-
scriptomics data using computational methods such as GE-
NIE3 [2] or derived from ATAC-seq, ChIP-seq, and other ap-
propriate technologies. In our analyses, we used three tem-
plate networks: a in silico inferred network from GENIE3, an
experimentally derived regulatory network from the Human
Transcriptional Regulation Interactions database (HTRIdb)
[13], and STRING [14].

GENIE3 GENIE3 uses an ensemble of trees to estimate
the strength of the regulatory relationship between all possi-
ble TF-target pairs. The list of 1639 human TFs was used
from Lambert et al. [49] (http://humantfs.ccbr.

utoronto.ca/). Then, the top 100 000 important regula-
tions were used in the further analysis as a template network.
In all PANCANCER analyses, we considered two possible
applications of the template network: each cancer has its
own template network, based on cancer-specific controls (i),
a shared template network for all cancers (ii). Cancer-specific
networks were computed by running GENIE3 individually
on each set of controls. To obtain a shared template network,
we summed up edge importance scores from every cancer-
specific template network and retained the 100 000 most im-
portant edges in a shared template network.

HTRIdb The Transcriptional Regulation Interactions
database (http://www.lbbc.ibb.unesp.br/htri)
is an open-access database of experimentally validated TF-
target gene interactions. The database provides information
about regulation interactions among 284 TFs and 18302 TGs
detected by 14 distinct techniques [13]. Namely, chromatin
immunoprecipitation, concatenate chromatin immunoprecip-
itation, CpG chromatin immunoprecipitation, DNA affinity
chromatography, DNA affinity precipitation assay, DNase I
footprinting, electrophoretic mobility shift assay, southwest-
ern blotting, streptavidin chromatin immunoprecipitation,
surface plasmon resonance and yeast one-hybrid assay,
chromatin immunoprecipitation coupled with microarray
(ChIP-chip) or chromatin immunoprecipitation coupled with
deep sequencing (ChIP-seq).

STRING The STRING database (http://string-db.
org/) is dedicated to protein-protein interactions. It was
included in our assessment for a fair comparison between
DysRegNet, and SSN [11] (see subsubsection P.1), which
was originally evaluated using the STRING network. Fol-
lowing the described methodology, we also considered high-
confidence interactions with a combined score larger than
0.9. The combined score is computed as an average
of 7 channels (neighborhood, fusion, co-occurrence, co-
expression, experimental, database, text mining).

N. Patient networks similarity. We evaluate the similarity
between patient-specific networks by computing a pairwise
overlap coefficient for the set of edges, i.e.:

o(pi,pj) = (
|E+
pi

⋂
E+
pj
|

min(|E+
pi |, |E

+
pj |)

+
|E−
pi

⋂
E−
pj
|

min(|E−
pi |, |E

−
pj |)

) · 12 ,

(4)
where E+

pi
and E−pi are positive (dysregulated activation)

and negative (dysregulated repression) edge sets for patient i,
respectively.

O. Hypothesis testing for mutation and methylation
analysis.

O.1. Dysregulation scores. We compute dysregulation
scores to assess how much gene (TF or target) is affected
by a condition in question. Dysregulation score represent
the proportion of dysregulated patient-specific edges out of
all edges towards target g (or from a TF t) in the template
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network. Thus, for a target gene g, dysregulation score
is defined as d̃s(g) = dins (g)/dinT (g) where dins (g) is the
in-degree of g in a dysregulated network of patient s and
dinT (g) is the in-degree of g in the template network. For
a transcription factor t, dysregulation score is defined as
d̃s(t) = douts (t)/doutT (t) where douts (t) is the out-degree of
t in a dysregulated network of patient s and doutT (g) is the
out-degree of t in the template network.

O.2. DNA Methylation local model. To model relationship be-
tween promoter DNA methylation and target dysregulation,
the following model was used:

m̂e(g) = βme0 +βme1 · d̃(g) (5)

Here, me(g) = [me1(g), . . . ,meP (g)] is the vector of aver-
age (across CPGs) promoter DNA methylations of target g
for all P patients and d̃(g) = [d̃1(g), . . . , d̃P (g)] is the vector
of g’s dysregulation scores.
Then the slope coefficient βme1 was tested for significance of
the association with null hypothesis H0 : βme1 = 0. P-values
were then corrected using the Benjamini-Hochberg method.

O.3. DNA Methylation global model. While Equation 5 al-
lows to test every target individually, we also applied a linear
mixed effect model to all targets in the template network to
test for the global effect. We chose the model with a ran-
dom intercept coefficient for each target assuming different
baseline methylation levels:

me(G) = βme∗
0 +βme∗

1 · D̃G+γme, (6)

where me(G) is methylation for any of g ⊆ G, D̃G =
[d̃1(g1), , .., d̃P (g1), d̃1(g2), .., d̃P (g2), ...] are target dysreg-
ulation scores across all targets and patients, and γme is a
random intercept.

O.4. Mutation local model. We tested if mutations in any of
TFs affect the dysregulation of a target gene. For that, we
compared the dysregulation score of a target gene between
patients without mutations in any TFs to and patients where
at least one TF was mutated. We compared the two distri-
butions using the Mann-Whitney U test if there were at least
7 patients with mutated TFs. P-values were then corrected
using the Benjamini-Hochberg method.

O.5. Mutation global model. To evaluate the global relation-
ship between TF mutations and targets dysregulation, we
used a linear mixed effect model with a random intercept co-
efficient for each target assuming different baseline mutation
load for each TFs-target complex:

mu(ti) = βmu0 +βmu1 · D̃gi+γmui (7)

where mu(ti) indicates if any of TFs that regulate gi are mu-
tated, D̃gi are target dysregulation scores, γme is a random
intercept for every TFs-target complex. βmu0 and βmu1 were
estimated using linear mixed effect model and then βmu1 was
tested for significance of association with a null hypothesis
H0 : βmu1 = 0.

P. Benchmark analysis. To evaluate the DysRegNet
method in comparison to other sample-specific methods,
we performed a comparison with two methods: LIONESS
(Linear Interpolation to Obtain Network Estimates for Sin-
gle Samples) [10], and SSN (Single Sample Network)
[11]. All tools for the benchmark were implemented in
Python (code is available at https://github.com/
biomedbigdata/DysRegNet). Both methods require
a template network, i.e., a set of edges that will be tested
for dysregulation. We used GENIE3 cancer-specific tem-
plate network and GENIE3 shared template network (see
subsection M) for both methods. Additionally, we employed
STRING network with confidence scores higher than 0.9 as
it was used by Liu et al. [11] for the SSN method.

P.1. SSN. SSN described by Liu et al. [11] is based on differ-
ences in correlations introduced by the addition of one case
sample to a set of control samples. For each case sample and
each pair of genes, the following score is computed:

Z = ∆PCCn
(1−PCC2

n)/(n−1) (8)

, where ∆PCCn = PCCn+1−PCCn is the difference in
Pearson correlation coefficients between two genes in con-
trol samples (PCCn) and control samples with one case
sample(PCCn+1), n is the number of control samples. Ac-
cording to Liu et al., the Z value can be further converted
to a p-value based on normal distribution probability density
function. Next, p-values were corrected for multiple hypothe-
sis testing. We set a cut-off that defines a dysregulated edge at
0.005 significance level in order to have a comparable num-
ber of edges for all the methods.

P.2. LIONESS. LIONESS, just like SSN, is a correlation-
based method, but instead of investigating the influence of the
addition of a case sample to a set of controls, the LIONESS
strategy is to investigate the withdrawal of one case sample
from all other case samples. Formally, for each patient and
each pair of genes, LIONESS performs the following scor-
ing:

s=m(PCCm−PCCm−1) +PCCm−1 (9)

, where PCCm is the correlation between two genes based
on m case samples and PCCm−1 is the correlation between
two genes when one sample is withdrawn, m is the number
of case samples.
LIONESS scores cannot be converted to p-values; therefore,
we set a cut-off such that top 1% of the most highly dysregu-
lated edges are preserved in each control sample.

Q. Hypothesis testing for cancer stage analysis. We
separated the samples of THCA cancer into two groups: the
early stage group (287 tumor samples annotated with stage
I) and the advanced group (170 samples annotated with ei-
ther stage III or stage IV). For a better separability, we ex-
cluded stage II samples from this analysis since they pose
an intermediate setting that can resembles either stage I or
III too closely. For every TF in the GENIE3 inferred net-
work for THCA, we computed the dysregulated score (or
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the normalized out-degree), which is the percentage of TF-
specific edges that are dysregulated. A score of 1 means
that all interactions of the TF are dysregulated in the sam-
ple, while 0 means that none of the interactions are affected.
We then compare the dysregulated scores for the two pa-
tient groups with one one-sided Mann–Whitney U test and
corrected for multiple testing using the Benjamini/Hochberg
method. To test if some dysregulated edges are more likely
in advanced stages, we performed a one-sided Fisher exact
test, and further corrected for multiple testing in a similar
fashion. Cell type enrichment analysis for TCGA data were
pre-computed using xCell [29] and directly obtained from
(https://xcell.ucsf.edu/). We tested for the dif-
ference between the two groups defined above using two-
sided Mann–Whitney U test and corrected for multiple test-
ing using the Benjamini/Hochberg method.

Q.1. Support vector machine classification. To train SVM
classification models, we used a 5 fold nested cross-
validation for hyper-parameter selection. All models were
trained with the same hyper-parameter search space using the
grid search implementation in Scikit-learn [50]. The search
space includes the kernel type (either linear, polynomial, rbf
or sigmoid), the regularization parameter L2 and the kernel
coefficient. Since the number of edges considered in the
GRN is very large compared to the number of samples avail-
able, and to reduce the high-dimensional feature space for the
edge level model, we filtered out edges that are dysregulated
in only 10 patients or less. The TF level model was trained
using the dysregulated score, as described above. The gene
expression model was trained using z-score normalized TPM
values.

Q.2. Graph Neural network. The GNN architecture consisted
of 2 graph convolutional layers, a mean pooling layer, and
two fully connected layers. After each of the convolutional
layers, we used batch normalization to improve stability.
Each graph node (gene) had five features corresponding
to gene sequence low-dimensional representation. The
representation was obtained by making a k-mer (k = 4)
frequency matrix over all gene sequences and then applying
UMAP to get a 5-dimensional representation of each gene.
The motivation behind this step was to indicate locations
of identical genes across patient graphs. A Google collab
notebook is available to reproduce our results using PyTorch
and Captum (https://colab.research.google.
com/drive/1La0NVGZjqIq_1T5EhulU9tHPNQ_
o1ek0?usp=sharing).

R. Web interface. The results can be interactively
explored using a web interface (https://exbio.
wzw.tum.de/dysregnet), which is build with
Plotly Dash v2.0.0 (https://plotly.com/dash/),
the Cytoscape.js [51] wrapper Dash Cytoscape v0.2.0
(https://dash.plotly.com/cytoscape), Dash
Bio v0.8.0 (https://dash.plotly.com/dash-bio)
and a Neo4j v3.5.3 database (https://neo4j.com/).
Since the underlying network is vast and highly connected,

the interface is centered around individually selected query
genes. Only the regulatory connections between those genes
and their targets or sources are displayed to keep the resulting
network compact and tidy. Further query genes can be added
to expand the graph in directions of interest.
We display the fraction of patients with a dysregulation for
each regulatory connection, which is directly depicted by
the corresponding edge in the graph network. This met-
ric can also be compared visually between different cancer
types. Furthermore, the web interface incorporates informa-
tion about the gene mutation frequency and mean promoter
DNA methylation. Heatmaps allow the investigation of the
DNA methylation status and the significance of a dysregula-
tion on the patient level.
To prevent the underyling graph structure from becoming
too large, the maximum number of displayed regulations is
capped, and the regulations can be filtered by their fraction
of dysregulated patients and their type. In case a user is in-
terested in the full, unfiltered graph, it can be downloaded as
a CSV file.
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• Experimentally validated regulatory network: Tran-
scriptional Regulation Interactions database (http:
//www.lbbc.ibb.unesp.br/htri)

• Pyhton package: GitHub (https://github.com/
biomedbigdata/DysRegNet_package)

• Modeling computer scripts: GitHub (https://
github.com/biomedbigdata/DysRegNet).
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Supplementary Note 1: Performance comparison for same organ cancers

Stratification of different cancer types can be challenging to interpret due to vast differences between them. One might argue
that performance of DisRegNet can be explained by tissue/organ specific differences while other methods are less biased. We
want to demonstrate results of patients stratification in a homogeneous setting where potential tissue specific differences are
minimized. The figure below (Figure 1) demonstrates superior performance of DysRegNet in cancer subtypes stratification.

KIRC KIRP

A: LIONESS

B: SSN

C: DysRegNet
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Supplementary Figure 1. Performance comparison for same-organ cancers
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Supplementary Note 2: Dysregulation scenarios
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Supplementary Figure 2. Different scenarios of dysregulation

Supplementary Note 3: Global versus local model explanation
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Supplementary Figure 3. Local and global models for methylation-dysregulation association studies.
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Supplementary Note 4: Run-time comparison
Run-time analysis was performed on Linux machine with 160 cores. All methods were implemented in Python 3.9. While
LIONESS has an R implementation, we did not use it maintain our pipeline completely in python. Thus, our run-time estimation
might not be completely accurate with respect to LIONESS.
If we consider an input gene expression matrix X ∈ Rn×m, where n is a number of genes and m is a number of patients then
complexity of LIONESS isO(nm3). This is a rough estimate assuming that correlation matrix can be obtained with complexity
O(nm2) and this procedure should be repeated for every patient.
SSN also computes correlation matrix for every patient, but the matrix itself is computed based on controls samples (m∗
control samples). Additionally, for every patient, SSN requires to raise the matrix to a power of 2. Thus, SSN complexity can
be estimated as O(nm2

∗) to obtain the correlation matrix and then O(n3) for powering it. Repeating this procedure for every
patient the final complexity of SSN is O(m(nm2

∗ +n3)∼O(mn3)
DysRegNet relies on ordinary least squares model, where the number of features is equal to 2 (genes) + several covariates (c).
Thus, the complexity is O(c2m). Given that the number of patients dominates the number of covariates (only 5 in our case),
the expression can be simplified to O(m). Since this procedure needs to be repeated for every edge set (at most 100 000 in our
case), the final asymptotic complexity is O(100000×m).
In the conducted experiment we used data with 50 case samples, 50 control samples, 10 000 potential regulatory edges and
6689 genes. Average run-time of DysRegNet was 49 seconds, LIONESS performed in 140 seconds and SSN in 466 seconds
(Figure 4). Given the estimated algorithm complexity, larger number of patients will lead to even bigger difference in run-time
between DysGeNet and other methods.
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Supplementary Figure 4. Run-time comparison (in seconds) for 10 runs of every method

Supplementary Note 5: Mapping of TCGA cancer abbreviations to DisGeNet terms
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Supplementary Figure 5. Performance of GNN during training.
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Supplementary Table 1. Mapping of TCGA cancers to closest DisGeNet terms

Abbreviation Full name DisGeNet term
LIHC Liver hepatocellular carcinoma Liver carcinoma (C2239176)
THCA Thyroid carcinoma Thyroid carcinoma (C0549473)
STAD Stomach adenocarcinoma Stomach Carcinoma (C0699791)
BRCA Breast invasive carcinoma Breast Carcinoma (C0678222)
COAD Colon adenocarcinoma Adenocarcinoma of colon (C0338106)
LUSC Lung squamous cell carcinoma Squamous cell carcinoma of lung (C0149782)
PRAD Prostate adenocarcinoma Adenocarcinoma of prostate (C0007112)

HNSC Head & neck squamous cell carcinoma
Squamous cell carcinoma of the head and neck
(C0007112)

KIRC Kidney clear cell carcinoma Malignant neoplasm of kidney (C0740457)
KIPR Kidney papillary cell carcinoma Malignant neoplasm of kidney (C0740457)
LUAD Lung adenocarcinoma Adenocarcinoma of lung (C0152013)
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Supplementary Figure 6. Final GNN accuracy for different cancer types.
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Supplementary Figure 7. Aggregated dysregulatory network that is the most predictive of advance stages across cancer types
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Supplementary Figure 8. CD4+ naive T-cells and CD8+ T-cells composition in early and advanced THCA cancer patients. No big
effect, is observed except for few outliers.
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