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 15 
Liquid chromatography-mass spectrometry (LC-MS) based untargeted metabolomics provides 16 
systematic profiling of metabolic. Yet its applications in precision medicine (disease diagnosis) have 17 
been limited by several challenges, including metabolite identification, information loss, and low 18 
reproducibility. Here, we present the deepPseudoMSI project (https://www.deeppseudomsi.org/), 19 
which converts LC-MS raw data to pseudo-MS images and then processes them by deep learning for 20 
precision medicine, such as disease diagnosis.  Extensive tests based on real data demonstrated the 21 
superiority of deepPseudoMSI over traditional approaches and the capacity of our method to achieve 22 
an accurate individualized diagnosis. Our framework lays the foundation for future metabolic-based 23 
precision medicine.  24 
 25 
Liquid chromatography-mass spectrometry (LC-MS)-based untargeted metabolomics is a powerful tool 26 
that enables the identification of biomarkers for precision medicine1, such as diagnosing diseases2, 27 
customizing drug treatments3, and monitoring therapeutic outcomes4. The traditional processing and 28 
analysis method for LC-MS-based untargeted metabolomics in precision medicine can usually be divided 29 
into four steps5 (Fig. S1): (1) raw data processing, (2) data cleaning, (3) metabolite identification, and (4) 30 
diagnosis (prediction) model building. However, existing approaches suffer from several limitations. The 31 
first disadvantage is the information loss and misidentification of metabolites. Metabolite annotation is still 32 
one of the most challenging tasks for LC-MS-based untargeted metabolomics5. Most of the metabolite 33 
identification methods are based on the database resources, therefore, many metabolites not identified 34 
before are usually bypassed by the studies6. Current instruments usually detect tens or hundreds of 35 
thousands of metabolic features, however, only about 10% of those detected features could be identified in 36 
most experiments6. In addition, peak picking may lose low-intensity signals or mistakenly align features. 37 
This means that most of the information is lost in the further step of diagnosis/prediction model construction. 38 
The second disadvantage is the low reproducibility of LC-MS analysis7. During data acquisition, the 39 
retention time (RT), the mass-to-charge ratio (m/z), and signal intensity drift can commonly cause unwanted 40 
variations and significantly affect the diagnosis (prediction) accuracy. These substantially limit the 41 
application of LC-MS-based untargeted metabolomics in precision medicine8. 42 
 43 
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To overcome these limitations of the prior traditional methods, we presented the deepPseduoMSI project 1 
(deep-learning-based Pseudo-Mass Spectrometry Imaging, https://www.deeppseudomsi.org/). Mass 2 
Spectrometry Imaging (MSI) can image thousands of molecules in a single experiment, making it a valuable 3 
tool for diagnosis9. The LC-MS raw data can be seen as an image containing millions of data points defined 4 
by retention time, mass-to-charge ratio, and intensity. Instead of peak picking to extract the metabolic 5 
feature table, we could also process the raw data as images to be handled by deep learning methods10.  6 
 7 
The deepPseudoMSI includes two parts. The first part is the pseudo-MS image converter, which converts 8 
the LC-MS raw data to images (Fig. 1a and Fig. S2). The LC-MS raw data usually contains millions of 9 
data points, so we need to divide it into different pixels (or grids) based on the revolution in the x-axis 10 
(retention time) and y-axis (mass-to-charge ratio) to reduce the size. Briefly, all the data points in the same 11 
pixel are combined to represent the intensity of this pixel. Then, the intensity of each pixel is linearly 12 
transformed to the color of the pixel. Finally, one LC-MS raw data with millions of data points is converted 13 
into an image with thousands of pixels based on the resolution (for example, 224 × 224). The final generated 14 
“image” contains all the information from the LC-MS raw data, which is termed the pseudo-MS image. 15 
The second part is the pseudo-MS image predictor, a pre-trained VGG16 network (convolutional neural 16 
networks)11, which is fine-tuned to extract various image features from the pseudo-MS images to construct 17 
a prediction model (Fig. 2b and Fig. S3). Supervised deep learning models require a large number of 18 
labeled data to train12. To enlarge the number of pseudo-MS images for training, we adopt a strategy called 19 
data augmentation13 (Fig. S4). Briefly, we randomly add the RT, m/z, and intensity errors for each pseudo-20 
MS image to simulate the drift during the data acquisition. Finally, several simulative images could be 21 
generated from one actual pseudo-MS image, which can significantly enlarge the number of images for 22 
training.  23 
 24 
Compared to the traditional method, deepPseudoMSI does not need to annotate metabolites because all the 25 
information from the raw data is used for subsequent processing and analysis. Additionally, the drift of RT 26 
and m/z during data acquisition represents the shift of one pseudo-MS image on the x and y-axis. And the 27 
drift of intensity just represents the brightness changing of one pseudo-MS image. Our results show that 28 
the deep learning model can easily handle those variations and does not affect its prediction accuracy. 29 
Collectively, the pseudo-MS image can overcome the disadvantages of the traditional method, which may 30 
improve the application of LC-MS in precision medicine. 31 
 32 
 33 
 34 
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 1 
Fig. 1 | The workflow of converting LC-MS raw data to pseudo-MS images and the deep learning-based 2 
prediction model (deepPseudoMSI). a, Schematic of converting LC-MS raw data to pseudo-MS images (Image 3 
converter). LC-MS untargeted metabolomics raw data with millions of data points (x-axis represents RT, and the y-4 
axis represents m/z) is binned into different pixels according to revolutions. The total intensity is calculated and 5 
transferred to a responded grey degree for each pixel. b, Schematic of prediction model construction (Image predictor). 6 
To generate more Pseudo-MS images for training, RT, m/z, and intensity drift are utilized for data augmentation for 7 
each pseudo-MS image. Then, the pseudo-MS images are projected for model training and construction using the 8 
VGG16 network.  9 
 10 
To gauge the effectiveness of deepPseudoMSI, it is used to predict the gestational age (GA, week) of 11 
pregnant women14 (Fig. S5) using our previously published dataset. This provides a more cost-effective 12 
method for pregnancy dating. First, the LC-MS raw data were converted to pseudo-MS images using the 13 
Pseudo-MS image converter. To identify the optimal resolution of the pseudo-MS images, we compared 14 
the generally used 224×244 and 1024×1024 resolutions presetting. And the first one achieved a better 15 
prediction result (RMSE: 3.61 vs. 6.10) (Fig. S6), so the 224×224 resolution was chosen for the pseudo-16 
MS image generation. The data augmentation method was utilized to get lots of simulative pseudo-MS 17 
images for training to construct the prediction model. And then, the prediction model was built using the 18 
pseudo-MS image predictor. To evaluate the prediction model's performance based on deepPseudoMSI, the 19 
5-fold cross-validation method was utilized (Fig. S7). Intriguingly, the root mean square error (RMSE) is 20 
4.1 weeks (mean absolute error (MAE) is 2.7 weeks. Adjusted R2 is 0.79) (Fig. 2a), which is better than 21 
the prediction result using the traditional method with all features (Random Forest model, RMSE: 4.34 22 
weeks; adjusted R2: 0.76. Fig. S9. The permutation test p-value < 0.05). In addition, the deepPseudoMSI 23 
can get good prediction accuracy at the individual level (Fig. 2b and Fig. S8). This result demonstrates that 24 
the deepPseudoMSI has the potential to be leveraged for clinical diagnosis in the future. 25 
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 1 
Fig. 2 | DeepPseudoMSI predicts gestational age in pregnant women. a, Gestational age predicted by 2 
deepPseudoMSI (y-axis) highly correlates with clinical values determined by the standard of care (x-axis). Different 3 
colors represent samples in different folds (5-fold cross-validation). b, Highly correlated GA predicted by 4 
deepPseudoMSI (y-axis) and actual GA (x-axis) at the individual level. 5 
 6 
To demonstrate that deepPseudoMSI can overcome the disadvantages of the traditional methods for LC-7 
MS data, we designed an experiment to simulate the pervasive issue in LC-MS data acquisition, RT drift. 8 
Briefly, the random RT error was added to each raw data to simulate the RT drift during data acquisition 9 
(Fig. 3a and Fig. S10). We named the raw dataset “original dataset”, and the simulative dataset “RT drift 10 
dataset”. And then, both datasets were used for the raw data processing (traditional method) and pseudo-11 
MS image conversion (deepPseudoMSI), respectively. The overlapped features between the original and 12 
the RT drift datasets are tiny (Jaccard index: 0.324, Fig. 2b), which is within the expectation15. Then we 13 
used the traditional method and deepPseudoMSI to construct the prediction model and validate results in 14 
original and RT drift datasets, respectively. Remarkably, the deepPseudoMSI has no difference in the 15 
prediction accuracy between the original and RT drift datasets (Fig. 3c and Fig. 3d). However, for the 16 
traditional method, the RT drift dataset's prediction accuracy significantly decreases compared to the 17 
original dataset (Fig. 3d). About 16% of samples whose prediction errors are between 0-2 weeks in the 18 
original dataset then increased to 2-5 weeks in the RT drift dataset. Collectively, those results demonstrate 19 
that the deepPseudoMSI can overcome the disadvantages of the traditional methods for LC-MS-based 20 
untargeted metabolomics in diagnosis. 21 
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 1 
Fig. 3 | deepPseudoMSI can handle most of the disadvantages of the traditional method. a, Schematic simulation 2 
of RT drift in untargeted metabolomic data and then utilize the traditional method to process and construct prediction 3 
models. b, Venn diagram shows the metabolic features matching between original and RT drift datasets. c, Predicted 4 
error distribution of original and RT drift datasets that processed utilized deepPseudoMSI and traditional methods, 5 
respectively. d, Sankey diagram shows the absolute predicted errors for each sample in different datasets and 6 
methods.    7 
  8 
To our best knowledge, this is the first systematic study that converts the LC-MS-based untargeted 9 
metabolomics data to pseudo-MS images and then takes advantage of the power of deep learning in image 10 
processing for precision medicine16,17,18,19. We also demonstrate that the deepPseudoMSI can overcome the 11 
limitations of the traditional method for LC-MS data in precision medicine. In summary, those results 12 
indicate that the deepPseudoMSI has the potential ability to significantly increase the application of mass 13 
spectrometry in clinics for precision medicine.  14 
As a pilot study, our research has some shortcomings that we need to improve. First, deep learning 15 
methodology is a black-box-like process, and we don’t know the details of the pseudo-MS image process 16 
that contributes the most to our prediction. Second, we only use one mode of the LC-MS data (positive 17 
mode) to convert it to the pseudoMS image. Next, we plan to explore how to combine datasets of different 18 
chromatography and ESI modes to increase the prediction accuracy. We believe the deepPseudoMSI can 19 
provide a new data analysis direction for precision medicine using LC-MS-based untargeted metabolomics 20 
data. We only used untargeted metabolomics to demonstrate the application of deepPseudoMSI, this 21 
strategy can also be easily applied to LC-MS-based untargeted lipidomics and proteomics data. 22 
 23 
Methods 24 
PseudoMS image converter. The pseudo-MS image converter is designed and developed to convert the 25 
LC-MS-based untargeted metabolomics raw data to pseudo-MS images. Briefly, the LC-MS-based 26 
untargeted metabolomics raw data (from mass spectrometry instrument) is first converted to mzXML 27 
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format data using msConvert20 or massconverter21. And then, the mzXML format data is imported to the R 1 
environment using the readMSData function from the MSnbase package22. Then the data points are filtered 2 
based on the m/z, RT, and intensity. The thresholds for the filtering should be based on the experiment and 3 
design. In our case study, the RT cutoff is set as RT > 50 and RT < 1000 seconds, and the m/z cutoff is set 4 
as  m/z > 70 and m/z < 1000 Da. We then divide the data points by the y-axis (m/z) into different pixels (or 5 
grids) based on the set resolution. For example, if the pseudo-MS image resolution is set as 224 × 224, the 6 
data points in each scan are divided into 224 grids, and the data points in the same grid are combined as 7 
one pixel. The data points in one pixel have close retention time and mass-to-charge ratio, so they may be 8 
similar metabolites with the same biological functions. Then for the x-axis (RT), the scans are divided into 9 
different grids based on the resolution. Then the LC-MS raw data is converted into an image with thousands 10 
of pixels. For each pixel, it contains data points that are in the range of the pixel (x-axis and y-axis). Then 11 
the intensity of all the data points is log-transformed to correct heteroscedasticity and promote the low-12 
intensity data point contribution23. The mean value of all the data points in this pixel is calculated to 13 
represent the pixel's intensity. To transform the intensity of each pixel to color, we linearly transform the 14 
intensity of pixel to color (grey degree, from 0 - 255). Finally, the pseudo-MS image (black-and-white 15 
graph, png format) is generated with a specific resolution. The pseudo-MS image converter is written in R 16 
and available on GitHub (https://github.com/jaspershen/deepPseudoMSI/tree/main/code/pseudoMS-17 
image-converter).  18 
 19 
Data augmentation for the training dataset. We developed an augmentation strategy to simulate pseudo-20 
MS images for training. Briefly, for each mzXML format data, the MSnbase package is used to read it into 21 
the R environment. We randomly added an RT error, m/z error, and intensity error to all the data points in 22 
this spectrum. The RT error, m/z error, and intensity error are assigned, which are from the “error 23 
distributions”. For example, for the RT error, if we set it as 10 seconds, we will construct an “RT error 24 
distribution” (a normal distribution with a mean value of 10 seconds and an SD (standard variation) of 2 25 
seconds). Then, for each data point in one scan, an RT error will be added randomly from the “RT error 26 
distribution”. The same strategy is used for m/z and intensity error adding. And then, the drifted mzXML 27 
data is converted to a pseudo-MS image using the pseudo-MS image converter. In the case study, we 28 
randomly generated 6 drifted pseudo-MS images for each data point.  29 
 30 
Pseudo-MS image predictor. The image predictor of deepPseudoMSI is a deep learning-based approach 31 
for predicting (diagnosis) using pseudo-MS images. Using the case study as an example, we first fine-tuned 32 
a pre-trained VGG16 network11 to extract various image features from the pseudo-MS images. The 33 
extracted image features were then fed into a global average pooling (GAP) layer, which transforms the 34 
input dimension from N × N × C to 1 × 1 × C, where N is the size of each feature image and C is the number 35 
of features. The output of the GAP layer was flattened and connected to a stack of three dense layers to 36 
regress the gestational age. One advantage of using the GAP layer is that it converts feature images of any 37 
dimension to 1x1, allowing our image predictor network to predict the gestational age from pseudo-MS 38 
images of any size. The GAP layer can also prevent the deep neural network from overfitting since it has 39 
significantly reduced the number of model parameters. We trained our neural network using 5,250 pseudo-40 
MS images (including the drifted pseudo-MS images using a data augmentation strategy) from 30 subjects 41 
(750 samples) with a 5-fold cross-validation on the NVIDIA GeForce RTX 2080 GPU (8GB memory, 42 
14,000 MHz clock speed). In training, we used the Adam optimizer with an initial learning rate of 0.0001 43 
and a learning rate decay of 0.98. The batch size was set to be 8. The training was terminated after 100 44 
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epochs. The pseudo-MS predictor is written in Python and available on GitHub 1 
(https://github.com/jaspershen/deepPseudoMSI/tree/main/code/pseudoMS-image-predictor). 2 
 3 
Retention time (RT) drift dataset generation. All the mzXML format data were loaded using the 4 
MSnbase R package22. Then for each spectrum, the retention time (RT) was randomly added with a specific 5 
error to simulate RT drift in LC-MS data acquisition (RT error is 60 seconds and SD is 10 seconds, see the 6 
“Data augmentation for the training dataset” section). Then the RT drift data were subjected to peak 7 
detection and alignment using XCMS24, and the parameter setting is the same as in the “Data augmentation 8 
for the training dataset” section.  9 
  10 
Alignment of two metabolic peak tables. Two metabolic feature tables were aligned according to m/z and 11 
RT using the masstools package (mz_rt_match function) from the tidyMass project21. Briefly, only the 12 
features in two metabolic feature tables within the setting cutoff for m/z matching (< 10 ppm) and RT 13 
matching (< 30 seconds) are considered the same features. If one feature matches multiple features, only 14 
the feature with the minimum RT matching error remains. 15 
 16 
General statistics analysis and data visualization. All the general statistical analysis and data 17 
visualization are performed utilizing Rstudio (Version 1.3.959) and R environment (Version 4.1.2). Most 18 
of the R packages and their dependencies used in this study are maintained in CRAN (https://cran.r-19 
project.org/), Bioconductor (https://www.bioconductor.org/), or GitHub. The detailed information on R 20 
packages is provided in the Supplementary Note. The R package ggplot2 (version 3.2.21) was used to 21 
perform all the data visualization in this study. 22 
 23 
Five-fold cross-validation. To avoid information leakage, all the 30 subjects are randomly assigned to 5 24 
groups (sample function in R), and each group has six subjects. Then all the samples are assigned to 25 
different groups based on the subjects. So for each subject, all its samples are in the same group. 26 
  27 
Random Forest prediction model. The boruta algorithm25 (R package Boruta, version 6.0.0) is utilized to 28 
select potential biomarkers. Briefly, it duplicates the dataset and shuffles the values in each column. These 29 
values are called shadow features. Then, it trains a Random Forest classifier (R package randomForest) on 30 
the dataset and checks for each of the real features if they have higher importance. If it does, the algorithm 31 
will record the feature as “important”. This process is repeated 100 iterations. In essence, the algorithm is 32 
trying to validate the importance of the feature by comparing it with randomly shuffled copies, which 33 
increases the robustness. This is performed by comparing the number of times a feature did better with the 34 
shadow features using a binomial distribution. Finally, the confirmed features are selected as potential 35 
biomarkers for Random Forest model construction. 36 
 37 
In the Random Forest model, all the parameters are used as default settings except ntree (number of trees 38 
to grow) and mtry (number of variables randomly sampled as candidates at each split). Those two 39 
parameters are optimized on the training dataset, they are combined to form a set. The performance of each 40 
set of parameters is evaluated using the mean squared error (MSE). The parameter pair with the smallest 41 
MSE is used to build the final prediction model. 42 
 43 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 1, 2022. ; https://doi.org/10.1101/2022.04.29.490098doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.29.490098
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 

We utilize the 5-fold cross-validation method to evaluate the prediction accuracy of our models. Briefly, it 1 
is selected as the validation dataset for each fold, and the remaining four-fold data are used for the training 2 
dataset. The training dataset is utilized to get the potential biomarkers using the feature selection method 3 
described above. Then a Random Forest prediction model is built based on the training dataset. Then the 4 
external validation model is utilized to demonstrate its prediction accuracy. The predicted GA and actual 5 
GA for the validation dataset are plotted to observe the prediction accuracy. Then the RMSE (root mean 6 
squared error), MAE (mean absolute error), and adjusted R2 are used to quantify the prediction accuracy.  7 
 8 
For internal validation, the bootstrap sampling method is utilized4. We randomly sampled the same number 9 
of samples from the training dataset with replacement (about 63% of the unique samples on average). We 10 
then used it as an internal training dataset to build the Random Forest prediction model using the same 11 
selected features and optimized parameters. The remaining about 37% of the samples were used as the 12 
internal validation dataset. Those steps repeat 1,000 times. Finally, we got more than one predicted GA 13 
value for each sample. The mean value of multiple predicted GA values is used as the final average 14 
predicted GA and used to calculate RMSE, MAE, and adjusted R2. 15 
  16 
Permutation test. The first permutation test was utilized to calculate p-values to assess if the Random 17 
Forest prediction models are not overfitting. In brief, firstly, all the responses (GA, week in this study) are 18 
randomly shuffled for both training and validation datasets, respectively. Secondly, the potential biomarkers 19 
are selected, and the parameters of Random Forest are optimized in the training dataset using the method 20 
described above. Thirdly, the Random Forest prediction model uses the selected features and optimized 21 
parameters in the training dataset. Finally, we use this random forest prediction model to get the predicted 22 
responses for the validation dataset. Then we get the null RMSE and adjusted R2. We repeat this process 23 
1,000 times, getting 1,000 null RMSE and 1,000 null adjusted R2 vectors. Using maximum likelihood 24 
estimation, these null RMSE values and adjusted R2 values are modeled as Gamma distribution, and then 25 
the cumulative distribution function (CDF) is calculated. Finally, the p-values for the real RMSE and 26 
adjusted R2 are calculated from the null distributions, respectively.  27 
 28 
The second permutation test was utilized to calculate the p-value to assess if the depPseudoMSI performs 29 
better than the traditional method. In brief, for the traditional method, we randomly shuffled the subjects to 30 
different 5-folds and then used this to construct the Random Forest prediction model and get a new 31 
prediction result. This step was repeated 1,000 times, so we have 1,000 prediction results for the traditional 32 
model. Then the p-value was calculated based on the method described above. 33 
 34 
Sample preparation and data acquisition of case study. All the sample preparation and data acquisition 35 
for the case study can be found in our previous publication14.  In brief, 30 pregnant women were recruited, 36 
and 750 blood samples were collected during the study. Then all the blood samples were processed for LC-37 
MS analysis. 38 
  39 
LC-MS-based untargeted metabolomics raw data processing. The mzXML format data (RPLC positive 40 
mode) were placed into different folders according to their class (for example ''Blank'', ''QC'' and ''Subject'') 41 
and then subjected to peak detection and alignment using the massprocesser package from the tidyMass 42 
project21 based on XCMS24. Briefly, the peak detection and alignment were performed using the centWave 43 
algorithm24. The key parameters were set as follows: method = ''centWave''; ppm = 15; snthr = 10; 44 
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peakwidth = c(5, 30); snthresh = 10, prefilter = c(3, 500); minifrac = 0.5; mzdiff = 0.01; binSize = 0.025 1 
and bw = 5. Finally, the generated MS1 metabolic feature table (peak table) includes the mass-to-charge 2 
ratio (m/z), retention time (RT, second), peak abundances for all the samples, and other information. This 3 
MS1 metabolic feature table is used for the subsequent data cleaning using the masscleaner package from 4 
the tidyMass project21. Briefly, the features detected in less than 20% QC samples were removed as noisy 5 
from the metabolic feature table. Then the missing values (MV) were imputed using the k-nearest neighbors 6 
(KNN) algorithm. Then the metabolic feature table is used for subsequent statistical analysis. 7 
  8 
Data availability 9 
The LC-MS data (mzXML format, RPLC positive mode) were deposited to the NIH Common Fund’s 10 
National Metabolomics Data Repository (NMDR) website, the Metabolomics Workbench, and the project 11 
ID is PR000918 (https://doi.org/10.21228/M81H58). The metabolic feature and pseudo-MS images are 12 
provided on the deepPseduoMSI project website (https://www.deeppseudomsi.org/#case_study), and the 13 
metabolic feature tables also are provided as Supplementary Data 1 and 2. 14 
  15 
Code availability 16 
The code of deepPseudoMSI and all the code for data processing, statistical analysis, and data visualization 17 
in this study have been provided on GitHub (https://github.com/jaspershen/deepPseudoMSI) under the MIT 18 
license for noncommercial use. All the statistical analyses were written by R, also provided as 19 
Supplementary Data 3.  20 
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