Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Statistical correction of input gradients for black box models trained with categorical input features

Antonio Majdandzic, View ORCID ProfilePeter K. Koo
doi: https://doi.org/10.1101/2022.04.29.490102
Antonio Majdandzic
1Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Peter K. Koo
1Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Peter K. Koo
  • For correspondence: koo@cshl.edu
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Data/Code
  • Preview PDF
Loading

ABSTRACT

Gradients of a deep neural network’s predictions with respect to the inputs are used in a variety of downstream analyses, notably in post hoc explanations with feature attribution methods. For data with input features that live on a lower-dimensional manifold, we observe that the learned function can exhibit arbitrary behaviors off the manifold, where no data exists to anchor the function during training. This leads to a random component in the gradients which manifests as noise. We introduce a simple correction for this off-manifold gradient noise for the case of categorical input features, where input values are subject to a probabilistic simplex constraint, and demonstrate its effectiveness on regulatory genomics data. We find that our correction consistently leads to a significant improvement in gradient-based attribution scores.

Competing Interest Statement

The authors have declared no competing interest.

Footnotes

  • ↵* majdand{at}cshl.edu and koo{at}cshl.edu

  • https://doi.org/10.5281/zenodo.6506787

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
Back to top
PreviousNext
Posted May 01, 2022.
Download PDF
Data/Code
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Statistical correction of input gradients for black box models trained with categorical input features
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Statistical correction of input gradients for black box models trained with categorical input features
Antonio Majdandzic, Peter K. Koo
bioRxiv 2022.04.29.490102; doi: https://doi.org/10.1101/2022.04.29.490102
Reddit logo Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Statistical correction of input gradients for black box models trained with categorical input features
Antonio Majdandzic, Peter K. Koo
bioRxiv 2022.04.29.490102; doi: https://doi.org/10.1101/2022.04.29.490102

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Bioinformatics
Subject Areas
All Articles
  • Animal Behavior and Cognition (4372)
  • Biochemistry (9561)
  • Bioengineering (7075)
  • Bioinformatics (24800)
  • Biophysics (12581)
  • Cancer Biology (9929)
  • Cell Biology (14306)
  • Clinical Trials (138)
  • Developmental Biology (7935)
  • Ecology (12085)
  • Epidemiology (2067)
  • Evolutionary Biology (15965)
  • Genetics (10910)
  • Genomics (14716)
  • Immunology (9850)
  • Microbiology (23597)
  • Molecular Biology (9463)
  • Neuroscience (50750)
  • Paleontology (369)
  • Pathology (1537)
  • Pharmacology and Toxicology (2675)
  • Physiology (4003)
  • Plant Biology (8646)
  • Scientific Communication and Education (1506)
  • Synthetic Biology (2388)
  • Systems Biology (6417)
  • Zoology (1345)