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ABSTRACT 4 

Crowd-sourced biodiversity databases provide easy access to data and images for ecological education 5 

and research. One concern with using publicly sourced databases; however, is the quality of their 6 

images, taxonomic descriptions, and geographical metadata. To address this concern and allow 7 

researchers and educators to make informed decisions about using crowd-sourced data, I developed a 8 

suite of pipelines to evaluate taxonomic consistency, how well geo-tagging fits known distributions, and 9 

image quality of crowd-sourced biodiversity data of the order Araneae (spiders) from iNaturalist. This 10 

pipeline allows users to analyze multiple images from iNaturalist and their associated metadata; to 11 

determine the level of taxonomic identification (family, genera, species) for each occurrence; whether 12 

the taxonomy label for an image matches accepted nesting of families, genera, and species; and 13 

whether geo-tags match the distribution of the taxon described using occurrence data from the Global 14 

Biodiversity Infrastructure Facility (GBIF) as a reference. Additionally, I assessed image quality with the 15 

MatLab algorithm, BRISQUE. I used entries from the order Araneae (spiders) as a case study.  At the time 16 

of my analyses (July 2021), I found that iNaturalist contained at least one observation for 124 of the 129 17 

families of Araneae, and 115 families had three or more unique observations, with relatively similar 18 

quality of metadata and image quality across families. Taxonomic consistency was similar for 19 

observations identified at the genus and species level, but lower in observations with only family level 20 

identification. Observations with species level identifications had higher precision for geo-tags 21 

compared to those identified to the family or genus level and the highest image quality according to the 22 

BRISQUE scores. Overall, the results suggest that iNaturalist can provide large metadata and images sets 23 
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for research. Given the inevitability of some low-quality observations, this pipeline provides a valuable 24 

resource for researchers and educators to evaluate the quality of iNaturalist and other crowd-sourced 25 

data.   26 

Keywords: biodiversity, iNaturalist, GBIF, metadata, pipeline, database, community science 27 

INTRODUCTION 28 

In the past ten years, biodiversity, conservation, and taxonomical research has increasingly utilized 29 

community science initiatives, including virtual platforms of user-uploaded biodiversity observations 30 

(Ryan et al., 2018; Cull, 2021; Mesaglio & Callaghan, 2021). These large, crowd-sourced biodiversity 31 

databases contribute to scientific advancement, with posted observations providing evidence of 32 

unknown species, surveillance of field sites, and newly documented animal behaviors (Wilson, Pan, 33 

David, General, & Koch, 2020). For animal groups that are difficult to locate in the wild or whose 34 

collection would prove too time consuming and costly, crowd sourced observations could provide 35 

information on species ranges or invasions. For example, the first occurrence of Pseudeuophrys erratica 36 

(Araneae: Salticidae: Euophryini), outside its native range was documented by non-experts on 37 

biodiversity databases (Kaldari, 2019).  Since observations from crowd-sourced data are usually 38 

accompanied by geographic information, comparison of these observations against known ranges can 39 

help highlight observations made well outside the known range. Streamlining the use of free and crowd-40 

sourced biodiversity databases could make detection of new species faster and more efficient. 41 

 iNaturalist, one such crowd-sourced biodiversity database, provides a large platform for gathering 42 

global biodiversity data. Founded in 2008 by Nate Agrin, Jessica Kline, and Ken-ichi Ueda as part of a 43 

graduate school project for the University of California, Berkeley School of Informatics Master's project 44 

(Agrin, Kline, & Ueda, 2014), iNaturalist has grown in popularity, and now contains more than 68 million 45 

observations. Using iNaturalist and its accompanying mobile app, users can post images of organisms 46 
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and provide a geo-tagged location for that observation. Once a user posts an image, an image-based, 47 

machine learning algorithm suggests a taxonomic identification. Users can then vote in agreement with 48 

that identification or suggest an alternative identification until one proposed taxonomy receives enough 49 

votes for general acceptance. The program labels observations with agreed upon taxonomic 50 

identification and higher quality images as “Research grade” (Agrin et al., 2014). 51 

Like iNaturalist, the Global Biodiversity Information Facility (GBIF) is an open-access infrastructure that 52 

provides observational data of species using a range of published sources (Michonneau & Paulay, 2014; 53 

‘What is GBIF?’, 2021). The observation records from GBIF come from participating institutions and 54 

publications. The curated data are available publicly, but unlike iNaturalist, contributions are limited to 55 

only approved organizations, making the data, in theory, more robust (‘What is GBIF?’, 2021), but also 56 

more limited.  57 

 Image and metadata quality remains a concern when using crowd-sourced data (Moudrý & Devillers, 58 

2020; Cull, 2021). Though sites implement some quality control, the volume of entries prevents more 59 

detailed scrutiny of the data. If the data are of high enough quality, iNaturalist could be used as a digital 60 

alternative to physical collections for rigorous morphological comparisons (Mugford et al., 2021). These 61 

tasks would require consistently labeled images, no duplicate entries, correct geo-tags, and image 62 

quality high enough to permit accurate identification and comparison (Hochmairid, Scheffrahn, Basille, 63 

& Booneid, 2020). Currently, researchers and educators must evaluate entry quality manually. Given the 64 

millions of observations recorded for any given taxonomic group, this process is time and resource 65 

intensive and represents the biggest barrier for using crowd-sourced data. This study seeks to address 66 

this barrier by providing a pipeline to quantify and assess the quality of data currently available on 67 

iNaturalist using the order Araneae as a case study (Figure 1). Fully assessing datasets acquired from 68 

iNaturalist (and similar databases) can illuminate areas that may still need to improve and how the 69 

research community may create a more accurate and robust database.  70 
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METHODS AND MATERIALS 71 

Data Acquisition 72 

I applied the pipeline to observations from iNaturalist for the order Araneae as a case study. Spiders 73 

constitute a valuable, yet understudied order of invertebrates (Nyffeler, Sterling, & Dean, 1994; 74 

Schwerdt, Elena de Villalobos, & Miles, 2018). Difficulties associated with locating, observing, and 75 

collecting spider specimens partly account for the deficit of data on species ranges and diversity, and the 76 

lack of information on habitat and behavior (Cardoso, Erwin, Borges, & New, 2011). Community science 77 

initiatives (projects that partner researchers with community volunteers) help researchers expand 78 

arachnid research while also providing public outreach and education (Cull, 2021).   79 

While this pipeline was originally meant to be used with iNaturalist, its potential use with other 80 

databases necessitates acquiring images and their accompanying metadata before using the pipeline, as 81 

each database varies on how users access data. For the Araneae case study, I searched for and 82 

downloaded observations for each family under the order Araneae on iNaturalist on July 21, 2021 83 

Figure 1: Overall workflow. iNaturalist observations taxonomic coherence were evaluated using an original bash code and R 

studio using the World Spider Catalogue taxonomies as reference. The image quality was scored using the MatLab program 

BRISQUE, which is a no-reference image quality program. Images from GBIF were also scored using BRISQUE. Finally, the 

geo-tagged locations of the observations were compared to the occurrences at the genus and species level (if present for the 

observation) using a confusion matrix.  

 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 1, 2022. ; https://doi.org/10.1101/2022.04.29.490112doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.29.490112
http://creativecommons.org/licenses/by-nd/4.0/


(‘iNaturalist’, 2014). I then searched for and downloaded observations classified only to the order level. I 84 

obtained GBIF occurrence coordinates and image URLs  using the Search Occurrences function for the 85 

order Araneae (‘GBIF.org’, 2021) 86 

The pipeline uses an input file in a .csv format. The input file for iNaturalist observations and GBIF 87 

occurrences must include columns for: observation ID, time of observation, date of observation, time 88 

zone, latitude, longitude, the images’ current grade label, the image URLs, taxonomic guess provided by 89 

the machine learning algorithm, and taxonomic labels at the family, genus, and species level. The input 90 

file is then read into Rstudio for analysis. The resulting dataframe for iNaturalist observations is then 91 

queried for duplicate observations. Observations are considered duplicate entries if two observations 92 

have the same time of observation and location (Hochmairid et al., 2020).  93 

iNaturalist does not currently provide a method that allow users to bulk download images.  Instead, the 94 

image URLS are extracted from the input file into a separate URL list. Images are downloaded using the 95 

list of URLs with an original bash script included in the pipeline (RStudio, 2020).  96 

Taxonomic Consistency 97 

To evaluate the consistency of the taxonomic data from iNaturalist, a taxonomic reference file is 98 

needed. Several databases exist that can provide necessary taxonomic information on specific groups of 99 

animals, such as The Global Lepidoptera Names Index (Beccaloni et al., 2003), The Mammal Diversity 100 

Database (Zenodo, 2022), and The Reptile Database (Uetz & Hallermann, 2021). I downloaded an 101 

updated species list from World Spider Catalogue (WSC) on July 30th, 2021, as a taxonomic reference for 102 

the case study. WSC collects arachnology literature and publications and maintains updated taxonomic 103 

lists (Natural History Museum Bern, 2019). The input file for taxonomic reference should include 104 

columns for the highest classification being used in the pipeline, with consequent columns for all lower 105 
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classifications (Supplemental 2). Taxonomic identification for the highest order of classification and all 106 

subsequent lower classifications are compared to the taxonomic reference file.  107 

 The percentage of observations that include taxonomic labels at each level of classification and the 108 

consistency of the assigned taxonomic names for each observation are then analyzed. If the 109 

identification given for an observation matches the recognized taxonomic names at the appropriate 110 

level and was consistent with accepted higher order names as they appear on the taxonomic reference 111 

file, then it is recorded as correct. Correct labels are given one point per name. If the name on the 112 

observation is either entered incorrectly, at the incorrect taxonomic level (such as the genus taxonomy 113 

being recorded as the species) or does not align with the accepted higher order labels (i.e., the genus 114 

does not belong to the family assigned to the observation) it is recorded as incorrect. Incorrect or 115 

missing labels are given a score of zero. The awarded points are then divided by the number of 116 

taxonomic levels, to produce an overall score (Figure 2).   117 

Figure 2: Taxonomic consistency workflow. Each observation could earn a maximum of three-points. Points were award as 

follows: iNaturalist observations were checked for family-level identification. If a family level identification was present, and 

the taxon given agreed with the current World Spider Catalogue (WSC), the observation was awarded one-point. The 

observation was checked for a genus-level identification. If one was present, the given genus taxon was checked for 

agreement with the WSC genera and the family taxon. If these conditions were met, the observation was awarded an 

additional point. Lastly, observations were checked for species-level identification. If present, the given species taxon was 

checked for agreement with the WSC species, and the genus and family taxon's. If these conditions were met, the 

observation was awarded one more point. To calculate the percent-correct the total number of observation positive for a 

level of identification was multiplied by three and then divided into the sum of all the scores for observations with each level 

of taxonomic identification.  
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Geo-Tagging  118 

To assess geo-tagging data of observations, coordinates from iNaturalist and GBIF are filtered through 119 

the Clean Coordinates R-package, which removes coordinates with common errors found in biological 120 

and paleontological datasets (Zizka et al., 2019). These errors include location at museum and zoo 121 

facilities, zero set coordinates, and coordinates that fall outside of any coordinate values, such as a 122 

latitude large than 90° (Zizka et al., 2019).  123 

A list of genera and species for observations from GBIF and iNaturalist are created and cross-referenced 124 

so only families, genera, and species that appear on both remain. A subset of coordinate data for both 125 

GBIF and iNaturalist are created, first by genera then by species. Comparisons are made at the family, 126 

genus, and species level. A Raster file is created using GBIF occurrences in the R-program Raster and the 127 

raster polygon is divided into a grid GBIF and iNaturalist coordinates are converted to spatial points and 128 

placed on the grid. A confusion matrix is created using the confmat function in the RStudio package 129 

GMDH2 (Dag, Karabulut, Alpar, & Kasikci, 2021) based on the results of each cell using the following 130 

parameters from Austen et al. (2018) (Figure 3): 131 

 132 

Figure 3: Geo-tagging Workflow. Plotting Coordinates: GBIF occurrence records was cleaned using the R-package, Clean 

Coordinates. Comparisons of occurrence records (including latitudes and longitudes) for iNaturalist observations were made 

using the family-level of identification, the genus-level of identification, and the species-level of identification. For each taxon 

rank, occurrence data was obtained from the Global Biodiversity Information Facility (GBIF) for the order Araneae and 

subsetted in Rstudio by taxon rank. The subsetted occurrence records were used to create polygon maps, that were then 

converted to raster maps. GBIF and iNaturalist occurrence records were added to the cells of the raster map. A confusion 

matrix was used to calculate the accuracy and precision of the iNaturalist occurrence records.  
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• True Positive: GBIF observation is present and iNaturalist 133 

• True Negative: No observations present 134 

• False Positive: iNaturalist observation present but not GBIF 135 

• False Negative: GBIF observation present but not iNaturalist 136 

Accuracy and precision scores from the confusion matrix are reported for each taxonomic level.  137 

Image Quality  138 

Image quality is assessed using the MatLab program BRISQUE.  For the Araneae case study, I used 139 

MatLab Batch Image Processing to upload and run both the iNaturalist and GBIF images (Mittal et al., 140 

2012). BRISQUE scores the distortion in an image without the use of a reference image, to create a final 141 

quality score based on a comparison between the image and a default set of natural images (which are 142 

images captured directly from a camera without any post processing) with similar distortions (Mittal et 143 

al., 2012). Images are evaluated and assigned a score that usually falls between 0 (higher quality) to 100 144 

(lower quality) (Figure 4).  Not all observations from iNaturalist included images with copyright 145 

permissions that allow them to be downloaded and some observations included multiple images, each 146 

with an individual score. Images are grouped by the highest shared taxonomic order and an average 147 

score is reported. This process is repeated for images with identification at lower taxonomic levels and a 148 

mean average score is calculated.  149 

In addition to an overall average score, the image scores for the Araneae dataset are given at the family, 150 

genus, and species level.  To determine if a relationship existed between the level of taxonomic 151 

identification and the BRISQUE image score, I examined the normality of the data using Q-Q plots, 152 

residual plots, and a Shapiro-Wilks test. As the data were non-normally distributed, I used a Kruskal-153 

Wallace test to compare the scores from the GBIF images, images with at most a family identification, 154 

genus identification, and species identification. All means are presented with ±1 standard error of the 155 

mean. 156 
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RESULTS 157 

Data Acquisition 158 

For the order Araneae, I found 156,842 downloadable observations on iNaturalist. I found 78,310 unique 159 

observations for the order Araneae on iNaturalist. Of the 129 families in the order Araneae recognized 160 

by the WSC, 122 had observations (Natural History Museum Bern, 2019). I found no observations for 161 

Araneidae, Barychelidae, Huttoniidae, Mecicobothriidae, Myrmecicultoridae, Synaphridae, and 162 

Tetrablemmidae. Users of iNaturalist identified 49.91% of observations to at least the family level and so 163 

could be found searching by a specific family. Agelenidae (“Grass spiders”) had the most observations, 164 

with 41,716. Mean number of observations per family was 259.56 ±19.86. Archoleptonetidae and 165 

Penestomidae both had only one observation.  166 

Taxonomic Consistency 167 

I found 158,129 of the 156,842 downloadable observations with a family level identification, of which 168 

79.15% were consistent with the taxonomic families listed on WSC. 99.86% of the 58,241 observations 169 

identified to the genus level and 99.74% of the 27,500 observations identified to the species level were 170 

consistent with established taxonomic names.  171 

I removed 2,170 of 425,950 records after cleaning the coordinates. iNaturalist observations with a family 172 

level identification were 49.95% accurate and 99.90% precise. I found comparable results at the genus 173 

and species levels, with the genus level resulting in an accuracy of 49.97% and precision of 99.85%, and 174 

the species level resulting in an accuracy of 63.10% and precision of 99.87%. 175 

Image Quality  176 
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BRISQUE evaluated 118,834 images on MatLab. Mean image quality score was 29.94 ±0.03 (n = 177 

115,093). Images of Periegopidae received the highest average BRISQUE score (n = 4, mean = 41.01 178 

±1.16), with a higher score indicating lower quality images. The family with the highest score and > 10 179 

observations was Leptonetidae (n = 13, mean = 39.21 ±1.77). Hexurellidae had the lowest (n = 3, mean = 180 

15.76 ±4.05). The family with the lowest score and > 10 observations was Dipluridae (n = 175, mean = 181 

24.59 ±0.81).  182 

 183 

DISCUSSION 184 

Here, I present a method for assessing the metadata and image quality for data acquired from 185 

iNaturalist, a crowd-sourced database. Using the order Araneae, both the metadata and images 186 

associated with observations in iNaturalist demonstrate that this platform provides a diverse dataset for 187 

Figure 4: BRISQUE Image Quality. A comparison between images with a low BRISQUE score (A and B) and high BRISQUE 

scores (C and D). A was given a BRISQUE score of 2.932 and B was given a score of 3.042, while C was given a BRISQUE score 

of 67.155 and D was given a BRISQUE score of 60.657.  A side-by-side comparison of these images demonstrates how visual 

assessment of image quality can be inaccurate and subject to individual preference and vision. Providing a BRISQUE score 

helps to quantify the quality of an image used. [A: Dunbar, 2014), B: (Miseroy, 2017), C: (Cuarenta, 2017), D: (veravilla, 

2017).] 

 checked for agreement with the WSC species, and the genus and family taxon's. If these conditions were met, the 

observation was awarded one more point. To calculate the percent-correct the total number of observation positive for a 

level of identification was multiplied by three and then divided into the sum of all the scores for observations with each level 

of taxonomic identification.  
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spiders (Order Araneae). This data assessment method was able to determine that, with few exceptions, 188 

nearly every family in the order had some level of representation on iNaturalist. Automizing a check of 189 

taxonomic labels against accepted taxonomic names permits quick removal of occurrences with 190 

inconsistent labels. Additionally, it provides researchers that use these data to report a quantifiable 191 

assessment of the taxonomic consistency in a dataset. 192 

Similarly, comparing geo-tagging data from iNaturalist observations to GBIF occurrences allows for a 193 

quantifiable evaluation of that data via the confusion matrix results. Another benefit to using this 194 

pipeline to compare geo-tagging data is the insight into the accuracy of the observations taxonomic 195 

labels it can provide. Observations that fall outside the raster generated by the occurrence data from 196 

GBIF can be seen as outside the area where that organism has previously been shown to live. This could 197 

also aid in determining if the iNaturalist taxonomic labels are accurate. Conversely, this method of 198 

evaluating geo-tagging could help identify if a species was observed within a new range. While an 199 

occurrence could fall outside of the GBIF raster for reasons unrelated to range expansion, once the 200 

raster polygon is created using the GBIF occurrences, iNaturalist observations outside of the raster are 201 

easily separated from the dataset and further investigated.  202 

One major concern with using publicly sourced biodiversity photos is that without knowing the quality of 203 

the images, reproducibility is difficult. iNaturalist categorizes images as either “research grade”, “needs 204 

ID”, or “NA.” iNaturalist’s current method for assigning an observation as “research-quality” or not 205 

“research quality” requires that an observation reach a threshold of three votes from users to confirm 206 

an identification. Images currently marked “needs ID” could receive the consensus on their taxonomic 207 

idea and be relabeled “research grade.” I found relatively consistent image quality across families and 208 

between research grade and non-research grade observations (“needs ID” and “NA”).  While this system 209 

of categorization does provide some information on the quality of an image, presenting a mean score 210 

for image sets on databases may help clarify the results researchers obtain using iNaturalist (or other 211 
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database) images, especially in the cases of machine learning programs. The method presented for 212 

image assessment could also be used to set a threshold score, allowing only images that meet a specific 213 

quality standard to be included in a set of images.  214 

Additionally, this study highlights the importance of using quantifiable, image quality assessment tools 215 

like BRISQUE, especially for methods that use images for morphological evaluation of computer learning 216 

software for identification. While not conducted here, it would be beneficial to perform a BRISQUE 217 

assessment on any image used for research and to report the score or average score of images, 218 

especially when sourced from public collections. Image quality could impact evaluations of coloring and 219 

morphological structures. From a visual assessment of an image, the quality of that image may not be 220 

obvious. Additionally, visual assessment of an image may be subject to personal bias or visual acuity 221 

(Wang et al., 2004). Providing a quantitative score, such as a BRISQUE does, permits a uniform 222 

understanding of the images being used. In the future, it would be beneficial to compare the BRISQUE 223 

scores of images obtained from iNaturalist to those on image databases that only host published 224 

images, such as GBIF.  225 

One drawback to using crowd-sourced observations, however, is how usage patterns could affect the 226 

metadata and number of high-quality images available for a specific group of animals. For example, 227 

differences in the number of observations per family of Araneae might result from geographic areas 228 

with a higher or lower user number of iNaturalist users, variation in numbers of people with access to 229 

camera phones or reflect actual relative abundances.  230 

Increasing the number of observations at the family level or lower is the best way to increase the 231 

number of images and amount of metadata available to researchers from iNaturalist, since a lack of 232 

identification, lack of consensus for that identification, or no lower order identification represent the 233 

most common deficits for most observations. To help increase the diversity and quality of the 234 
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observations, researchers should employ methods to contribute to iNaturalist, such as educational 235 

initiatives that engage students with the platform and encourage them to contribute images or by 236 

making a habit of offering taxonomic identifications to images that require taxonomic identification.  237 

For researchers to become more engaged with iNaturalist, however, some changes may be necessary. 238 

For example, limits on how many observations could be downloaded at one time make broad studies, 239 

such as the one using Araneae, more time consuming than necessary. iNaturalist has recently launched 240 

an Amazon Web Services (AWS) platform, but this platform does not include the image files from the 241 

database, which limits the type of analyses researchers can conduct. In addition to a more economical 242 

method to bulk download images, incorporating an image assessment algorithm like BRISQUE into the 243 

metadata would greatly increase the utility of iNaturalist to researchers. Providing a BRISQUE score 244 

would allow users to filter downloads for a specific image quality without having to run the algorithm on 245 

large image datasets. Finally, while not an issue for iNaturalist observations, problems exist in 246 

downloading images from GBIF in bulk and keeping the image file names associated with the taxon. 247 

Other database may experience similar problems.  248 

Several databases are available for researchers to access occurrence data and images (Cull, 2021a; 249 

Mason Heberling et al., n.d.; Moudrý & Devillers, 2020b; Shirey et al., 2019). iNaturalist provides a user-250 

friendly, crowd-sourced database of images with the potential for broad research applications 251 

(Hochmairid et al., 2020; Mesaglio & Callaghan, 2021; Nugent, 2020). It should be noted that any 252 

research that uses images or metadata from iNaturalist should include methods that screen the data for 253 

duplicates, incorrectly geo-tagged observations, and image quality.  254 

The usefulness of this pipeline may be limited for systems with few observations on iNaturalist or GBIF 255 

(who must have at least 3 occurrences to generate a raster polygon). Systems that lack a taxonomic 256 
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database could also present a challenge, since this would require the user to generate the taxonomic 257 

reference file from scratch.  258 

Taken together, this study demonstrates that iNaturalist can provide large metadata and image datasets 259 

for research. This pipeline can be used to assess the taxonomic consistency, relationship to known 260 

distributions, and image quality of large datasets of crowd-sourced data.  This is a reliable method to 261 

quickly analyze the data quality for specific taxa.  With appropriate quality-controls in place, the wealth 262 

of knowledge supplied through crowd-sourced biodiversity databases can be more reliably used for 263 

scientific discovery. 264 
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