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Abstract 
The 3D organization of the genome and epigenetic marks play important roles in gene expression, DNA repair, and 
chromosome segregation. Understanding how structure and composition of the chromatin fiber contribute to function 
requires integrated analysis of multiple genomics datasets from various techniques, experimental conditions, and cell 
states. Genome browsers facilitate such analysis, yet currently visualize only a few regions at a time and lack statistical 
functions that are often necessary to extract meaningful information. Here, we present HiCognition, a visual exploration 
and machine-learning tool based on a new genomic region set concept, which enables detection of patterns and 
associations between 3D chromosome conformation and collections of 1D genomics profiles of any type. By revealing 
how transcriptional activity and cohesin subunit isoforms contribute to chromosome conformation, we showcase how the 
flexible user interface and machine learning tools of HiCognition can help understand the relationship between structure 
and function of the genome. 

Regulated expression, maintenance, and propagation of the 
genetic information depends not only on the DNA sequence, but 
also on the thousands of different proteins and posttranslational 
modifications that enrich at specific sites of the genome. The 
regulation and function of genomes further depends on an 
intricate organization of DNA in 3D space1,2, established by 
DNA looping3, chromatin phase separation4–6, and potentially 
other processes. How 3D genome organization relates to local 
variation in chromatin composition, DNA sequence, and 
physiological functions are key questions that will be important 
to answer for understanding the function of complex genomes. 
The advent of techniques mapping function, composition, and 
3D organization genome-wide provides rich sources of complex 
data to address this challenge. Curated public repositories of 
various functional and 3D genomics data, e.g., Encyclopedia of 
DNA Elements (ENCODE)7,8 and 4Dnucleome9, provide 
opportunities for experimentalists to assess their data in the 
context of multi-dimensional epigenetic and spatial signatures. 
However, the challenge of extracting meaningful information 
from large sets of complex data has hampered progress. 

A common approach towards identification of biologically 
relevant patterns is by studying relationships between multiple 
independent experiments, representing different assays, 
molecular components, cell states, or treatments. For example, 
the observation that the protein complex cohesin enriches at 
insulation sites of transcriptional regulation10 and at the 
boundaries of topologically associated domains (TADs)11 has 
inspired models for how the genome is organized by cohesin-
mediated loop extrusion12–14, with broad implications for various 
processes3. Detecting associations between multiple genomics 
datasets is facilitated by genome browsers such as the UCSC 
genome browser15–17, which provide side-by-side views of 
functional genomics data and support user interaction by 
panning and zooming. However, available genome browsers 

visualize only a small number of regions at a time, which 
restricts the assessment of large genomes and highly 
heterogeneous signals in genomic profiles. To facilitate 
visualization and grouping of small multiples of genomic 
regions, a set of tools has been recently developed to leverage 
the concept of visual piling18,19. While these tools allow 
detection of patterns in single genomic tracks, they do not 
support integration of different data sources and have 
performance limitations with large sets of genomic views. 

Systematic analysis of correlations in multiple independent 
genomics datasets often starts by defining a specific type of 
genomic region based on a common function (e.g., genes) or 
experimental observation (e.g., ChIP-seq peaks). Owing to the 
necessity to interface different datatypes and to combine 
algorithms from different sources, the analysis of genomic 
region sets is typically performed by script-based approaches20–

22. While script-based analysis provides flexible access to 
powerful statistics and machine learning tools23–25, it often takes 
a lot of time and requires advanced programming expertise to 
adapt workflows for investigation of new biological questions. 
Many wet-lab biologists have limited expertise in scripting or 
programming and therefore delegate advanced data analysis 
tasks to dedicated computer scientists, which represents a severe 
bottleneck in testing and developing new hypotheses. 

Here, we present HiCognition, a tool for interactive 
visualization and statistical analysis of 3D genomics data and 
other (epi)genetic profiles based on a region set concept. 
HiCognition combines a visual exploration interface with high-
performance data processing and statistical and machine learning 
tools. Thereby, HiCognition allows biologists without 
programming skills to systematically explore their large multi-
dimensional genomics data, providing unprecedented 
opportunities for discovering fundamental mechanisms 
underlying the organization and function of the genome. 
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Results 

Exploring genomic region sets in multi-dimensional 
feature space 
In contrast to conventional 3D genome browsers like JuiceBox17 
or HiGlass16, which visualize a specific subregion of the genome 
that can be panned or zoomed, HiCognition has been designed 
for interactive analysis of large sets of genomic regions that are 
pre-defined by the user before data exploration. The genomic 
region set approach of HiCognition allows users to address 
biological questions about how a specific type of region is 
composed, regulated, and organized in 3D space. The genomic 
region set can be freely defined by the user, for example, based 
on a common function (e.g., genes, enhancers, or origins of 
replication), based on molecular composition (e.g., regions with 
specific histone modifications or enrichment sites of proteins), or 
based on 3D organization (e.g., loops or topologically associated 
domains). The region set is provided as input data to 
HiCognition by a file containing genome coordinates. 
HiCognition then allows the user to explore associations 
between the genomic region set and large collections of 
genomics features, which can be downloaded from public 
repositories or from lab-internal experiments. 

In HiCognition, genomic features can contain any type of 
numerical data associated with genomic coordinates26–28, 
including two-dimensional data like chromosome conformation 
contact maps (e.g., from Hi-C29 or SPRITE30,31), or one-
dimensional data such as protein binding profiles (e.g., ChIP-
seq32 or Cut&Run33 read densities), chromatin accessibility 
measurements (e .g . , ATAC-seq34 or MNase-seq35) , 
transcriptional activity (e.g., GRO-seq36), or replication timing 
measurements (e.g., Repli-seq37). Moreover, genomic features 
can contain data from unperturbed conditions as well as data 
obtained after genetic or chemical treatments, or data from 
different cell states (e.g., cell cycle stage or differentiation state), 
thereby enabling queries of how specific types of regions 
respond to perturbations or state transitions. HiCognition 
combines an intuitive and configurable graphical user interface 
with statistics and machine learning methods to enable 
interactive exploration of multi-dimensional genomics data 
within versatile workflows. 

HiCognition supports data analysis by three basic approaches 
(Fig. 1a):  
1. Exploring average distributions: HiCognition visualizes 

average magnitudes of genomic signals within the region 
window, whereby the features can be interactively selected 
by the user. 

2. Exploring region heterogeneity: HiCognition visualizes 
genomic signals of individual regions to visually explore 
heterogeneity in the region set. Moreover, multi-dimensional 
cluster analysis and visualization of region distributions in 
embedding plots allows identification of region sub-sets with 
common properties. 

3. Enrichment analysis: HiCognition automatically detects 
features that are enriched or depleted in the specific region 
set under investigation relative to the genome-wide average. 
It further shows where within the genomic region window, 
individual features are particularly enriched or depleted. This 
enables the discovery of regulatory, functional, or spatial 
patterns characteristic for the region set under investigation.  

The user interface of HiCognition is based on a widget 
architecture that allows easy configuration of views. These 
widgets represent genomic features and are arranged within 
widget collections that are associated with a specific genomic 
region set (Fig. 1b). This arrangement maps the abstract region 
set concept to a specific user interface component, allowing 
users to construct views that integrate different genomic features 
to understand the properties of a genomic region set. 
Specifically, following import and pre-processing of region and 
feature data sets, HiCognition widgets generate average feature 
signal plots of all regions, as well as stacked representations of 
individual regions, whereby the graphical user interface allows 
interactive adjustment of region size, resolution, look-up table, 
contrast, etc. For automatic detection of genomic features 
enriched in the region set, HiCognition provides a widget for 
locus overlap analysis (LOLA38), which is displayed as a ranked 
feature plot. For the analysis of heterogeneity within the region 
set, a clustering and embedding widget automatically groups 
regions based on similarity in multi-dimensional feature space 
and represents their distribution in embedding plots. The 
embedding plots are interactive and display feature patterns for 
individual region clusters to allow fast, interactive exploration of 
heterogeneity within the region set. Overall, this widget 
architecture with interactive visualization integrates improved 
versions of domain-specific tools38 and creatively applies state-
of-the-art machine learning for embeddings39 and clustering.  

HiCognition is implemented as a web-based tool that allows 
performant analysis of large datasets and interactive exploration 
of aggregation results. The software is open source and fully 
containerized, such that it can run on centralized servers or 
locally. An integrated database for region sets and features 
makes HiCognition a hub for various data types from public or 
private sources, whereby a session concept allows sharing of 
insights as fully customizable views and analysis workflows 
with others. A showcase server for hands on experience can be 
accessed at https://www.hicognition.com/app. 

Revealing common patterns in region sets 
To exemplify the power of HiCognition’s region set approach, 
we analyzed the chromatin fiber organization around all 
transcriptional start sites (TSS) of protein-coding genes 
annotated in the human genome40. TSS are known to frequently 
contact upstream and downstream regions; at the same time, TSS 
insulate against contacts between upstream and downstream 
genomic regions41–45. Using published ChIP-seq data from HeLa 
cells8,46, we first visualized the distribution of two key 
architectural regulators, cohesin (based on its subunit Structural 
Maintenance of Chromosomes 3, SMC3) and CCCTC-binding 
factor (CTCF) using HiCognition’s 1D average widget. A 
prominent enrichment of both proteins at TSS (Fig. 2a, panel i) 
supports a role of cohesin-mediated DNA looping in shaping the 
conformation around TSS10,41,47,48. 

To assess the 3D organization of protein-coding genes, we 
next visualized the genome-wide average contact probability 
around TSS using the 2D average widget and published Hi-C 
data49 (Fig. 2a, panel ii). Prominent stripes emerging from the 
TSS towards upstream and downstream regions indicate frequent 
interactions of TSS with distal genomic regions. Moreover, 
contacts within regions upstream or downstream the TSS were 
much more frequent than between upstream and downstream 
regions (Fig. 2a, visible as red and blue areas, respectively), as 
previously observed41–44. Thus, HiCognition allows simple 
visualization of genome-wide averages for region-type-specific 
conformations. 
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To assess the functional role of cohesin-mediated looping to 
the conformation at TSS, we next used the 2D average widget to 
visualize published Hi-C data obtained from cells depleted of 
Nipped-B-like protein (NIPBL)49, a cofactor essential for 
cohesin-mediated loop extrusion50,51 (Fig. 2a, panel iii). The 
stripes emerging from TSS and the squared regions containing 
high contact probability that were characteristic for unperturbed 
controls were almost completely suppressed in the Hi-C maps 
obtained from NIPBL-depleted cells, indicating a key role of 
cohesin-mediated looping in establishing these structures, 
consistent with previous observations41,48. Thus, HiCognition 
enables fast and interactive side-by-side visualization of 
genome-wide average profiles across various techniques and 
experimental conditions. 

Understanding heterogeneity within region sets 
Understanding the relationship between chromatin fiber 
composition, 3D conformation, and physiological function has 
remained challenging owing to the heterogeneity of regions 
defined by a common feature under investigation. HiCognition’s 
region set approach allows fast and simple visualization of 
regional heterogeneity and supports interactive clustering of 
these regions based on multiple genomic features. To 
demonstrate how HiCognition’s flexible widget architecture can 
be used for heterogeneity analysis of region sets, we investigated 
how histone posttranslational modification patterns relate to 
chromosome conformation around genes. Using the Stacked 
lineprofiles widget, we visualized for the genome-wide set of 
TSS regions the ChIP-seq read densities of two histone 
posttranslational modifications, H3K9ac and H3K27me3, which 

3

Figure 1. HiCognition concept and graphical user interface.  a, Analysis workflows based on genomic region sets and collections of 
3D genomics/epigenetic profiles. b, Graphical user interface with freely configurable widget layout. Widgets are labeled in bold and user 
interface elements are marked in italic. Widget collections in this figure represent visualizations of different properties of the same region 
set (genome-wide set of CTCF ChIP-seq peaks) with various ChIP-seq or Hi-C datasets; for explanation of individual widgets and data, 
please see Fig. 2 and 3 and main text.
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enrich at transcriptionally active or inactive chromatin, 
respectively52,53. Sorting the line profiles by H3K9ac abundance 
showed that only about half of the TSS regions were enriched for 
this mark (Fig. 2b, panel i). Moreover, displaying stacked line 
profiles of H3K27me3 ChIP-seq read density in a separate 
widget and sharing the sort order between widgets showed that 
TSS regions enriched in H3K9ac are depleted of H3K27me3 
(Fig. 2b, panel ii). Thus, coupling multiple widgets by sorting 
allows intuitive visual assessment of correlations between 
genomic features. 

Next, we aimed to identify region subsets with distinct 
histone modification profiles for the study of the corresponding 
Hi-C conformations, considering an extended set of ten different 
histone posttranslational modifications (see methods for details). 
HiCognition’s Embedding widget visualizes regional 
heterogeneity based on multi-dimensional feature values, which 
can contain linear profiles such as ChIP-seq data or Hi-C contact 
matrices (Fig. 2b, panel iii). Besides visualizing heterogeneity, 
the Embedding widget automatically groups regions into clusters 
by feature similarity. The features enriched or depleted in each 
cluster are interactively displayed by pointing to clusters. We 

selected two clusters enriched either in marks for 
transcriptionally active chromatin or transcriptionally repressed 
chromatin (Fig. 2b-d) to create two new region subsets for 
analysis of the corresponding Hi-C conformations.  

Using the 2D average widget and the Hi-C data of HeLa 
cells, we observed pronounced high-contact stripes and 
insulation around TSS for the region subset enriched in active 
chromatin marks, whereas these Hi-C structural features were 
entirely absent in the region subset enriched in repressive histone 
marks (Fig. 2e, f, panels i), consistent with previous script-based 
analyses of mouse stem cell data41. To investigate how cohesin-
mediated DNA looping contributes to chromosome conformation 
at TSS residing in transcriptionally active or inactive chromatin, 
we visualized average Hi-C maps of NIPBL-depleted cells, using 
published data49. For the region subset enriched in 
transcriptionally active histone marks, we found strong reduction 
of stripes and insulation around TSS, whereas the region subset 
with repressive marks was unaffected by NIPBL depletion (Fig. 
2e, f, panels ii). Together, these data suggest that cohesin-
mediated DNA looping establishes a specific chromosome 
architecture around transcriptionally active TSS but not at 
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Figure 2. Exploring average profiles and heterogeneity in region sets. A genome-wide region set of protein-coding genes was 
analyzed based on published ChIP-seq and Hi-C data, centered on the TSS. Data show averages of genes localized on the forward 
strand, with the gene body facing towards the right from the TSS (center coordinate). a, Average ChIP-seq reads of CTCF and SMC3 (i), 
average Hi-C contact maps of unperturbed wildtype cells (ii), and average Hi-C contact maps of NIPBL-depleted cells (iii). b, 
Heterogeneity of histone posttranslational modifications within the protein-coding gene region set, visualized by stacked line profiles 
sorted by the read density of H3Kac (i) and displayed for H3K27me3 ChIP-seq read density (ii), with the sorting order coupled to i, and 
regional heterogeneity analysis based on 10 histone posttranslational modifications by embedding and clustering (iii). c, d, Regional 
subsets created by clustering as shown in b (iii) were analyzed for 10 different histone posttranslational modifications. Red indicates 
enrichment, blue indicates depletion. c, Cluster 1 contains TSS regions of protein-coding genes enriched in marks for actively 
transcribed chromatin. d, Cluster 2 contains TSS regions enriched in marks for transcriptionally repressed chromatin. e, f, Chromosome 
conformation analysis around TSS region subsets as shown in c, d. e, HiC average contact maps of Cluster 1 from unperturbed wildtype 
cells (i) and cells depleted of NIPBL (ii). f, HiC average contact maps as in (e) for Cluster 2.
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inactive TSS. Thus, HiCognition’s flexible widget architecture 
enables simple and powerful analysis workflows to explore 
regional heterogeneity and to detect interactions between 
different types of genomics data. 

Discovering new associations with HiCognition 
Public repositories such as ENCODE8 or the 4Dnucleome9 
contain thousands of different genomics data sets derived from 
diverse technologies, cell types, and experimental conditions. 
The difficulty to interpret such complex data has prompted the 
development of various computational methods to detect 
associations between specific types of regions and features 
describing the chromatin fiber, such as GREAT54, the Encode 
ChIP-seq significance tool55, GenometriCorr56 and Locus 
Overlap Analysis (LOLA)38. HiCognition provides an improved 
implementation of LOLA, extended by interactive exploration of 
feature enrichment in distinct genomic sub-bins obtained from a 
region set. We exemplify association analysis with HiCognition’s 
Lola widget by investigating how cohesin subunit isoforms relate 
to chromosome conformation. 

Cohesin contains three core subunits that form a ring, and an 
associated Stromal Antigen (STAG) subunit of which vertebrates 
encode two isoforms, STAG1 and STAG257–60. Previous script-

based analysis of ChIP-seq profiles and Hi-C data showed that 
STAG2-cohesin predominantly forms loops at active TSS, 
whereas STAG1-cohesin predominantly contributes to the 
formation of TADs58,61–63. Here, we aim to recapitulate these 
findings and search for new associations by the automated 
machine learning tools and interactive workflows of 
HiCognition. We created a region set centered on all 34,857 
SMC3 ChIP-seq peaks and then clustered SMC3 regions based 
on the abundance of STAG1 and STAG2, using the Embedding 
widget and published ChIP-seq data63 (Fig. 3a, b). Comparing 
ChIP-seq read densities with the 1D average widget showed that 
the region subset enriched in STAG1 contained less SMC3 than 
the region subset enriched in STAG2 (Fig. 3c, d).  

To visualize the chromosome conformation around these 
region subsets, we used the 2D average widget and published 
Hi-C data49. Strikingly, the STAG1-enriched sites had much 
more pronounced long-range contacts than the STAG2-enriched 
sites (Fig. 3c, d, panels iii), despite the lower abundance of the 
core cohesin subunit SMC3 at STAG1-enriched sites (Fig. 3c, d, 
panels ii). To determine in which genomic context STAG1- or 
STAG2-enriched sites predominantly reside, we used the Lola 
widget to analyze 11 region sets including histone 
posttranslational modifications, TAD boundaries, and the 
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Figure 3. Detecting associations with HiCognition. a, b, Visualization of regional heterogeneity and clustering with the Embedding 
widget for 34,857 SMC3 ChIP-seq peaks based on the ChIP-seq read densities of STAG1 and STAG2. a, Cluster 1, representing SMC3 
ChIP-seq peaks enriched in STAG1. b, Cluster 2, representing SMC3 ChIP-seq peaks enriched in STAG2 ChIP-seq reads. c, d, 
analysis of common patterns and associations for Cluster 1 and 2 as in a, b. c, Average read density of STAG1 and STAG2 (i) and 
SMC3 (ii), average Hi-C contact map (iii), and LOLA analysis for associations with 11 region data sets. d, analysis as in c for Cluster 2.
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cohesin-associated protein Sororin that is required for cohesion 
maintenance in G264,65. This analysis showed that STAG1-
enriched sites predominantly reside at TAD boundaries, whereas 
STAG2-enriched SMC3 peaks predominantly reside in 
chromatin bearing marks of active transcription (Fig. 3c, d, 
panels iv), supporting the previously reported distinct 
localization and function of cohesin bound to STAG1 or STAG2, 
respectively58,61–63. Moreover, STAG1-enriched cohesin sites 
also prominently overlapped with Sororin sites detected by 
ChIP-seq in G2 phase of the cell cycle46, indicating a previously 
unrecognized association between genomic sites of sister 
chromatid cohesion and genomic sites where STAG1-enriched 
cohesin forms long-range loops in G1. Importantly, 
HiCognition’s region-set-based approach and flexible widget 
architecture enable detection of such complex associations 
within a few minutes.  Thus, HiCognition allows biologists 
untrained in genomic analysis to rapidly perform their own 
analyses, discover new associations, and generate new 
hypotheses, greatly reducing the bottleneck between data 
generation and interpretation. 

Discussion 
HiCognition leverages interactive genome exploration to 
comprehensive views of genome-wide region sets defined by a 
common property. Its flexible user interface and integrated 
statistics and machine learning tools support the detection of 
common patterns, heterogeneity, and associations in complex 
genomics datasets representing 3D conformation, epigenetic 
profiles, and functional readouts. A fast and computationally 
efficient implementation allows real-time browsing through 
thousands of genomic regions, thereby accelerating hypothesis 
testing on genomics data of various experimental techniques, 
experimental conditions, or cell states.  

HiCognition’s rich online documentation and containerized 
distribution supporting desktop as well as server installations 
provide easy access for both experienced developers as well as 
beginner analysts. The integrated database and interfaces to 
widely used file formats allow assessment of a biologist’s own 
data in the context of the vast amount of public data available 
from resources like ENCODE or 4Dnucleome. HiCognition’s 
streamlined workflows and visualization concepts enable users 
to address a broad range of biological questions, yet the focus on 
usability limits customizability compared to approaches that 
simply provide a graphical interface to command-line tools66 or 
custom scripts67. Via the export of region set coordinates derived 
from clustering and association analysis, however, HiCognition 
can be seamlessly integrated with script-based analysis for 
extended functionality. Hence, HiCognition allows biologists 
lacking programming skills to rapidly reduce the space of 
possible hypotheses before applying more time-consuming 
methods. Furthermore, the software’s modular design and open-
source implementation in Python provide an extendable 
framework towards development of new machine learning 
algorithms and visualization concepts. Therefore, we foresee that 
HiCognition will serve as a bridge between the experimentalists 
who formulate biological hypotheses and specialized computer 
scientists implementing script-based analyses workflows. 

While HiCognition’s potential is exemplified here by an 
analysis of epigenetic marks and topological structures formed 
by cohesin, the software is applicable to any type of 1D or 2D 
genomics data. Its ease of use and data integration based on the 
region set concept will provide new opportunities for 
discovering relationships between structure and function of the 
genome.  
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Methods 

Software architecture 
HiCognition is a containerized application (https://github.com/
docker/compose) and designed as a server-client web app to 
minimize set-up requirements and facilitate easy usage for non-
technical users after set-up (Fig. S1a). 

The backend portion of HiCognition is implemented as a 
Flask webserver (https://github.com/pallets/flask) with NGINX 
(https://github.com/nginx) as a reverse proxy that operates in 
conjunction with a MySQL database (https://github.com/mysql) 
to persist metadata and data preprocessing results. The server 
utilizes a Redis task queue (https://github.com/rq/rq) to offload 
time-intensive computation tasks to an adjustable number of 
worker containers. The communication between these workers 
and the main server is implemented via network requests (when 
submitting a task) and the MySQL database (when registering a 
task as complete). This organization allows the operation of the 
worker containers on separate machines that could, in principle, 
be started on demand. 

The frontend part of HiCognition is implemented in 
JavaScript and uses the Vue.js framework (https://github.com/
vuejs/vue) to manage components and implement reactivity. The 
visualizations are custom-designed for each type of data widget 
(see below for details) and are implemented either using the 
data-driven visualization library D3.js (https://github.com/d3/d3) 
or in case of more demanding visualizations using PixiJS 
(https://github.com/pixijs/pixijs). 

For implementation details of the HiCognition architecture, 
see the GitHub repository (https://github.com/gerlichlab/
hicognition) and the accompanying documentation page (https://
gerlichlab.github.io/hicognition/docs/). 

Point- and interval-regions 
As genomic data frequently span multiple length-scales 16,17, 
visualization concepts have to adapt to this challenge. 
HiCognition solves this problem by precomputing a "resolution-
stack" for each genomic region-set (Fig. S1b). This 
precomputation is adapted for two types of genomic regions 
supported by HiCognition: 

Point-regions are specified by center coordinates and the 
region surrounding the center position can be adjusted 
interactively for analysis and visualization. This enables the user 
to zoom in and out of genomic regions when viewing data to 
discover genomic effects at multiple length scales. 

Interval-regions are specified by start and end coordinates 
and each region includes 20% neighboring regions on either 
side. The processing bin size for this region type is adjusted by 
normalization to the interval size, and thus different for 

differently sized regions. Interval regions allow to investigate 
length-independent patterns, as for example profiles of genes 
that are scaled to transcription start and termination sites. 

Data management and preprocessing 
HiCognition contains a dataset manager that stores available 
datasets as well as finished pre-computations in a MySQL 
database. The user interface of HiCognition distinguishes 
between two principal types of data – genomic regions of 
interest and genomic features that are available for 
precomputation (Fig. S2a). Users can add and view datasets in 
an interactive table that allows filtering and editing (Fig. S2b).  

HiCognition supports the most common input data formats 
for genomic regions and features. Specifically, genomic regions 
can be added as bed-files15, 1D-features as bigwig files68 and 
2D-features as cooler files20. These files can be uploaded one at a 
time or using a bulk upload feature (see our documentation at 
https://gerlichlab.github.io/hicognition/docs/data_management/ 
for details). 

To select a region-set of interest, the user can submit 
preprocessing tasks using the preprocessing dialogues and get an 
overview of running and finished computations via the dataset 
viewer of the genomic regions (Fig. S2c). Once pre-computation 
of a combination of a region-set of interest and a genomic 
feature has finished, it is available for display.   

Many preprocessing steps involve analysis of genomic 
feature collections, for example, when calculating enrichment 
amongst a set of candidate features or embedding regions based 
on the values of multiple features (see below for details). In 
HiCognition, users can create feature collections in a specific 
dialogue window and select them for preprocessing and display. 

HiCognition also supports adding and managing multiple 
genome assemblies to analyze and compare data generated for 
different genome assemblies and species. 

Data and workflow sharing 
HiCognition’s allows storing specific arrangements of widgets, 
widget collections, and the corresponding data under display as 
named sessions. This is possible due to an implementation of the 
HiCognition analysis view as declarative configurations stored in 
the Vuex frontend storage (https://github.com/vuejs/vuex/). Here, 
the arrangement, settings, and data sources loaded in a particular 
widget are stored as JavaScript objects, and HiCognition reacts 
to changes therein by adjusting the displayed view. This makes it 
easy to restore saved sessions from configuration objects stored 
in the database and to share saved sessions with collaborators 
through a static link. 

Widgets and visualization concepts 
HiCognition uses widget-collections as a container to display 
specific visualizations (Fig. 1b). A widget collection has a single 
region-set that is shared by all its contained widgets. Each 
widget in the collection represents a genomic feature or a 
collection of genomic features and provides a suitable 
visualization for the respective data (Fig.  1b).  

1D-average widget 
The 1D-average widget displays the average magnitude of a 1D 
genomic feature, as for example ChIP-seq reads, for the selected 
region set in the widget collection as a line plot. The 
preprocessing algorithm extracts snippets of the relevant 
genomic feature for each genomic region and calculates the 
average value over all snippets along the relative genomic offset. 
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2D-average widget 
The 2D-average widget displays the average magnitude of a 2D-
genomic feature, for example a Hi-C contact probability map, for 
the selected region set in the widget collection as a 2D heatmap. 
The preprocessing algorithm extracts snippets of the 2D-
genomic feature for each rectangular genomic region and 
calculates the average value over all snippets for each pixel. 

Stacked line profile widget 
The stacked line profile widget displays individual examples of 
1D-genomic features for the selected region set in the widget 
collection as a 2D heatmap. Within this heatmap, each row 
represents a specific genomic region. The preprocessing 
algorithm extracts the relevant genomic feature snippets for each 
genomic region (subsampled to contain a maximum of 1000 
regions) and "stacks" them vertically to form a matrix for 
display. 

1D-feature embedding widget 
The 1D-feature embedding widget displays the distribution of 
genomic regions based on a collection of 1D genomic features. 
The results are displayed as a 2D-histogram, where points close 
on the plot represent genomic regions with similar feature 
profiles. The dimensionality reduction algorithm UMAP39 is 
used with default parameters to embed the high-dimensional 
regions into a two-dimensional space suitable for display.  

This widget also automatically groups region neighborhoods 
by k-means clustering, with 10 ("large neighborhood") or 20 
("small neighborhood") clusters, respectively, in the embedded 
space. The normalized intensity of the features for each cluster is 
then calculated and used to interactively display the distribution 
of features within the selected clusters by mouse hovering. Users 
can create new regions from interesting subsets by clicking on a 
subset and giving it a name in the relevant dialogue.  

2D-feature embedding widget 
The 2D-feature embedding widget displays the distribution of 
genomic regions using a single 2D genomic feature. The results 
are displayed as a 2D-histogram, where points next to each other 
exemplify genomic regions with similar 2D-feature values. The 
widget implements a hover interaction that shows the 2D 
average with respect to the selected genomic feature for the 
selected subset. Users can create new regions from interesting 
subsets by clicking on a subset and giving it a name in the 
relevant dialogue. 

The preprocessing algorithm extracts snippets of the 2D 
genomic feature for each genomic region in the region set. These 
snippets are then smoothed using a Gaussian filter and down-

sampled to be of size 10 x 10. Here, the smoothing kernel size 
and standard deviation depend on the interpolation factor: 

 

 

 

Where  is the interpolation factor,  is the size of the quadratic 
snippet,  is the target size of the down-sampled matrix (in this 
case 10), K is the size of the smoothing kernel, and  is the 
standard deviation of the Gaussian filter. The smoothing and 
down-sampling operations are done using OpenCV (https://
github.com/opencv/opencv). Note that since the snippets can be 
of different sizes (see above for details), the interpolation factor 
and smoothing function can differ for different extracted 
snippets. The down-sampled matrix is then flattened and treated 
as image features for each of the genomic regions, resulting in a 
matrix where each row corresponds to a genomic region in the 
region set and each column to one of the pixel features (100 in 
total). Then, the matrix is embedded into a 2D space using 
UMAP39  (https://github.com/lmcinnes/umap), and clustering is 
performed as for the 1D-feature embedding widget. The 
representation for each cluster that is displayed to the user is the 
2D average of all contained matrix snippets in the original pixel 
space. 

Association widget 
The association widget allows users to quantify for a given 
region set the extent by which other sets of independent genomic 
regions overlap, based on the LOLA method38. This allows to 
detect associations between different types of genomics data, as 
for example ChIP-seq peaks and Hi-C structures like boundaries 
of TADs.  

This widget consists of two visualizations, where the upper 
bar chart shows quantification of the maximum enrichment of all 
regions within a collection, and the lower chart indicates the 
enrichment values for a selected bar ranked by enrichment. A 
significantly faster python reimplementation of LOLA38 (https://
github.com/Mittmich/pylola) allows calculating the association 
not just on the region of interest level but for each individual bin 
of these regions. Specifically, we use a bin as the target region, 
the regions in the selected collection as query regions, and all 
genomic-wide bins of that size as a universe. The reported values 
correspond to the odds ratio of the underlying contingency table 
for each combination of target, query, and universe. 

I = ⌊ m
f ⌋ 

K =  ⌊ I + 1
2 ⌋

σ = 4K + 1

I m
f

σ
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Use-cases 

Data sources 
All data sets used for analysis in the current study have been obtained from public repositories as listed in the following table: 

Preparation of datasets for HiCognition 
All ChIP-seq data were directly imported into HiCognition based on data from public repositories, except for the SMC3 and Sororin 
ChIP-seq peaks, which were detected by the following procedure in the published ChIP-seq read profiles from Ladurner et al.46: 

Deep (Illumina) sequencing results of ChIP-Seq libraries were downloaded from ENA (ID: SAMEA5988740) and mapped against 
the human hg19 reference assembly using bowtie resp. bowtie2 (http://bowtie-bio.sourceforge.net/bowtie2/index.shtml) counting 
only uniquely mappable reads with 0 - 2 mismatches allowed. Resulting alignments from two replicates each were processed with 

Name Repository ID Reference

SMC3 Chip-Seq reads ENA SAMEA5988740 and 
SAMEA5988741

Ladurner et al.46

Sororin Chip-Seq reads ENA SAMEA3716450 and 
SAMEA3716449

Ladurner et al.46

CTCF read density GEO GSM733785 Encode Consortium8

G2 Hi-C data WT GEO GSM4613674 Mitter et al.49

G2 Hi-C data NIPBL depleted GEO GSM4613678 Mitter et al.49

Stag1 Chip-Seq read density GEO GSM4106803 Wutz et al.63

Stag2 Chip-Seq read density GEO GSM4106804 Wutz et al.63

H3K4me1 Chip-Seq peaks GEO GSM798322 Encode Consortium8

H3K4me2 Chip-Seq peaks GEO GSM733734 Encode Consortium8

H3K4me3 Chip-Seq peaks GEO GSM733682 Encode Consortium8

H3K9me3 Chip-Seq peaks GEO GSM1003480 Encode Consortium8

H3K9ac Chip-Seq peaks GEO GSM733756 Encode Consortium8

H3K79me2 Chip-Seq peaks GEO GSM733669 Encode Consortium8

H3K27ac Chip-Seq peaks GEO GSM733684 Encode Consortium8

H4K20me1 Chip-Seq peaks GEO GSM733689 Encode Consortium8

H3K36me3 Chip-Seq peaks GEO GSM733711 Encode Consortium8

H3K27me3 Chip-Seq peaks GEO GSM733696 Encode Consortium8

H3K27me3 Chip-Seq read density GEO GSM733696 Encode Consortium8

H3K9me3 Chip-Seq read density GEO GSM1003480 Encode Consortium8

H3K4me3 Chip-Seq read density GEO GSM733682 Encode Consortium8

H3K9ac Chip-Seq read density GEO GSM733756 Encode Consortium8

H3K36me3 Chip-Seq read density GEO GSM733711 Encode Consortium8

H3K79me2 Chip-Seq read density GEO GSM733669 Encode Consortium8

H3K27ac Chip-Seq read density GEO GSM733684 Encode Consortium8

H4K20me1 Chip-Seq read density GEO GSM733689 Encode Consortium8

H3K4me2 Chip-Seq read density GEO GSM733734 Encode Consortium8

H3K4me1 Chip-Seq read density GEO GSM798322 Encode Consortium8

gencode.v38lift37.basic.annotation.gtf GENCODE Release38 GRCh37 Gencode Consortium40

G2 Hi-C data WT TADs Github github.com/gerlichlab/
scshic_analysis/blob/
master/data/
TADs_final.bedpe

Mitter et al.49
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MACS peak calling algorithm (version 1.4.2) with a P-value threshold of 1e-10 resp. 1e-5 adding control inputs from the same cell 
line. Peak overlaps were calculated by using multovl 1.3 (https://github.com/aaszodi/multovl) while treating overlaps as unions and 
including unique peaks from both replicates. Since occasionally two neighboring peaks from one dataset overlap with a single peak 
in another dataset, the output of such overlap is displayed as a connected genomic site and merged into one single data entry. 

To derive protein-coding genes split along their direction of transcription, the GENCODE annotations for hg19 (GRCh37) were 
downloaded and filtered for entries that were of type "gene" and of gene type "protein_coding". These genes were then split into 
genes with strand "+", named "forward", and genes with strand "-", named "reverse". The transcriptional start sites for these genes 
were then defined to be the start or end of these intervals respectively and saved as bed files. The script for this preprocessing step 
can be found in the HiCognition GitHub repository (https://github.com/gerlichlab/hicognition/blob/master/publication/scripts/
convert_genes.ipynb). For the use-case figures, the transcriptional start sites of "forward" oriented genes were used. 

Showcase server 
To provide readers a fast hands-on experience of HiCognition, we implemented a showcase server (https://www.hicognition.com/
app). On this server, the login for individual users is deactivated. We uploaded and preprocessed all the datasets in this paper so the 
reader can explore them independently and provide all saved sessions used for the figures in this paper. On this server, the upload and 
preprocessing functionality is deactivated. 
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Supplementary Figure 1. Implementation of HiCognition. a, HiCognition is a single-page application connected to an API backend 
server. The backend components are orchestrated and containerized via docker and consist of a NGINX web server, the Flask API 
server that dispatches high-performance precomputation tasks into a Redis queue, and a MySQL database for persistence. The 
frontend is based on the Vue.js JavaScript framework. The user interface is built with "Vue Material" components. The custom 
visualizations are built with the d3.js visualization library and the pixi.js rendering library.  b, HiCognition precomputes a resolution stack 
with different window sizes and resolutions around a genomic region set to allow real-time exploration of its multi-scale neighborhood.  
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Supplementary Figure 2. User interface for data set management. a, HiCognition provides conceptual separation between genomic 
regions of interest and genomic features. This is captured in the data management functionality by separating the options to upload, 
preprocess and edit genomic regions and features. b, HiCognition provides an interactive dataset table for managing genomic datasets. 
This includes selecting genome assemblies, filtering on metadata, searching for datasets, and modifying and deleting datasets. c, 
Within the dataset table, the processing state of genomic features for a specific genomic region set can be viewed within a processing 
dialogue.
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