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 2 

Abstract 24 
Urine cytology is commonly used as a screening test for high grade urothelial carcinoma for 25 
patients with risk factors or hematuria and is an essential step in longitudinal monitoring of 26 
patients with a prior bladder cancer history. However, the semi-subjective nature of current 27 
reporting systems for urine cytology (e.g., The Paris System) can hamper reproducibility. For 28 
instance, the incorporation of urothelial cell clusters into the classification schema is still an item 29 
of debate and perplexity amongst expert cytopathologists, as several previous works have 30 
disputed their diagnostic relevance. Recently, several machine learning and morphometric 31 
algorithms have been proposed to provide quantitative descriptors of urine cytology specimens in 32 
an effort to reduce subjectivity and include automated assessments of cell clusters. However, it 33 
remains unclear how these computer algorithms interpret/analyze cell clusters. In this work, we 34 
have developed an automated preprocessing tool for urothelial cell cluster assessment that 35 
divides urothelial cell clusters into meaningful components for downstream assessment (i.e., 36 
population-based studies, workflow automation). Results indicate that cell cluster atypia (i.e., 37 
defined by whether the cell cluster harbored multiple atypical cells, thresholded by a minimum 38 
number of cells), cell border overlap and smoothness, and total number of clusters are important 39 
markers of specimen atypia when considering assessment of urothelial cell clusters. Markers 40 
established through techniques to separate cell clusters may have wider applicability for the 41 
design and implementation of machine learning approaches for urine cytology assessment. 42 
 43 
 44 
 45 
  46 
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Introduction 47 

Urine cytology (UC) specimens are essential for bladder cancer detection and screening yet are 48 

challenging to assess given the complexity of the specimen. Screening is often accomplished 49 

through application of The Paris System (TPS) criteria, which assigns four main ordered 50 

categories (negative, atypical urothelial cells, suspicious for high grade urothelial carcinoma, 51 

positive for high-grade urothelial carcinoma, HGUC) based on the following criteria for a 52 

positive diagnosis: 1) at least 5 malignant urothelial cells,  2) a nuclear-to-cytoplasm (NC) ratio 53 

at or above 0.7, 3) nuclear hyperchromasia,  4) markedly irregular nuclear membrane, and 5) 54 

coarse/clumped chromatin 1,2. Specimens with definitive diagnoses (negative, positive) are often 55 

easier to assess than atypical (hedged against negative diagnosis) and suspicious (hedged against 56 

positive diagnosis; less than five malignant cells needed) specimens. Predictably, these two 57 

indeterminate diagnoses are hindered by poor interobserver variability as compared to negative 58 

or positive diagnoses 3–5.  59 

 60 

TPS does not explicitly establish urothelial cell clusters as separate assessment criteria for the 61 

final cytologic diagnosis. Instead, clusters are judged by their constituent cells, where 62 

cytomorphological assessments for each cell in the cluster must satisfy atypical criteria and 63 

combined with the individual cell assessments. However, the significance of cell clusters for 64 

urothelial cancer has not been fully elucidated. Whether and how urothelial clusters are assessed 65 

during bladder cancer screening potentially impacts diagnostic reproducibility. Several studies 66 

have found no association between number and type of cell cluster and urothelial carcinoma, 67 

whereas others have demonstrated a statistically significant positive association between the 68 

number of clusters and urothelial carcinoma 2,6–10. One such study established three architectural 69 
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types of urothelial cell clusters: 1) non-overlapping cells, 2) overlapping cells, densely packed, 70 

lacking distinguishable cell borders (dense regions), and 3) overlapping cells with 71 

distinguishable cell borders 6. While the study authors were able to identify that the number of 72 

clusters, irrespective of cluster type, were associated with specimen atypia, presence of urothelial 73 

carcinoma was not associated with any cluster type alone. As another example, tissue fragments 74 

and papillary clusters with a fibrovascular core as an indication for urothelial carcinoma (i.e., 75 

low-grade carcinoma) yet are rare. Presence and type of cell clusters and tissue fragments in 76 

urine specimens may also be an artifact of specimen preparation (e.g., ThinPrep® associated 77 

with higher presence of clusters), previous reports of tissue biopsy, urothelial stones, etc., all of 78 

which potentially impact exfoliation of cell clusters. Specimens containing cell clusters are 79 

typically classified as atypical, favor reactive or low grade urothelial neoplasm diagnosis, even 80 

without the fibrovascular core 2. Previous studies have deemphasized the diagnostic utility of 81 

urothelial clusters in favor of individual cell analysis 8,11,12. However, prevalent diagnostic 82 

criteria have been established almost exclusively based on inspection of voided specimens, while 83 

significant differences have been documented between types of specimen preparation (e.g., 84 

cystoscopic, voided, upper tract, instrumented, neobladder, etc.). 85 

 86 

Several computational, image analysis and machine learning methods have been developed to 87 

quantitatively assess urine cytology specimens to generate an automated summary 13–21. In brief, 88 

these methods can parse digitized representations of cytology slides (Whole Slide Images; WSI) 89 

into their constituent cellular components. Parsed cells are independently assessed using 90 

morphometric and machine learning approaches to quantify features of atypia (e.g., NC ratio, 91 

hyperchromasia, clumped chromatin, etc.). Features are then tabulated across all cells in the slide 92 
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to measure the overall atypia burden of the specimen in order to predict the presence of high-93 

grade urothelial carcinoma. Automation tools for urine cytology could provide both rapid and 94 

objective screening and have the potential to improve diagnostic accuracy and disease 95 

management by assessing every cell in a given specimen, a prescreening task normally assigned 96 

to cytotechnicians prior to final assessment from the cytopathologist22. Cytotechnologists, 97 

although ostensibly expected to screen every cell on a given slide, realistically do not perform 98 

such an exhaustive assessment. As compared to cytopathologists, they perform a more 99 

regimented screening, combining single cell assessment and gestalt impressions over the entire 100 

slide area.  101 

 102 

While existing image assessment techniques have either uncovered new or recapitulated 103 

previously known specimen malignancy predictors, the handling of clusters is still inadequately 104 

addressed. For instance, a previous machine learning technique used density-based clustering 105 

methods to identify cell clusters, which were then validated using a neural network. However, 106 

the sensitivity and specificity of the clustering method for identifying cell clusters was not 107 

validated in the paper and information was not explicitly provided on how clusters factored into 108 

the final assessment other than to report the number of clusters in the specimen 13. In addition, 109 

associations between cluster scores and outcomes were not made available. Another technique 110 

used nucleus-centric watershed-based methods to segment urothelial cells for the calculation of a 111 

cluster-specific NC ratio 14. Such techniques assume cell borders do not overlap and may provide 112 

imprecise atypia estimates. Furthermore, the performance of the water shedding technique to 113 

delineate urothelial cells from other cell types in the cluster was not discussed. Nonetheless, 114 

these methods present a significant advancement from previous modes of assessment. 115 
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 116 

In this study, we detail the development of an Artificial Intelligence (AI) tool for urothelial cell 117 

cluster analysis that can accurately localize urothelial cells, overlapping cell boundaries, dense 118 

regions of significant overlap and identify visual markers of urothelial atypia. By breaking 119 

clusters into their constituent architectural components 6 and isolating cells with overlapping cell 120 

borders, this preprocessing tool can facilitate downstream association studies and development of 121 

predictive algorithms that explicitly incorporate cluster architecture and assess the 122 

cytomorphology of overlapping cells for atypia. As a demonstration of this approach, we use our 123 

tool to associate the quantitative cluster-level features with high-grade urothelial carcinoma. The 124 

goal of this work was to build more precise quantitative descriptors of urine clusters. In the 125 

future, we plan to use the cluster tool as a preprocessing mechanism for an automated workflow 126 

that enables rapid screening of all types of cytology specimens.  127 

 128 

 129 

Methods 130 
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 131 
Figure 1: Methods Overview: A) Training, validation and internal test set clusters are collected 132 
and B) annotated for squamous (red), inflammatory (green), negative urothelial cell (purple), 133 
atypical urothelial cell (blue), and dense regions (orange); C) Cell border detection model 134 
identifies candidate cells cytoplasmic borders within cluster; D) significantly overlapping cells 135 
types, as defined by their intersection over union (IoU), are E) filtered by their objectiveness 136 
score (e.g., squamous cell predicted in same area as urothelial cell but with higher score) and 137 
remaining predicted squamous and inflammatory cells are additionally removed to reveal 138 
negative and atypical urothelial cells and dense regions of urothelial cells; F) urothelial clusters 139 
are called if the number of remaining elements exceed the minimum cell number; G) number of 140 
clusters (urothelial, atypical, dense) are totaled per specimen and totals are then tabulated across 141 
the specimens to reveal associations with UC atypia 142 
 143 
Data Collection and Image Scanning 144 

We collected 1,277 urine specimens across 141 patients from 2008 to 2019 at our institution, 145 

Dartmouth-Hitchcock Medical Center (DHMC). Specimens were prepared through ThinPrep® 146 

and Pap-staining prior to microscopic examination. Urine slides were scanned using a Leica 147 

Aperio-AT2 scanner at 40x resolution and stored as full-resolution SVS files representing WSI.  148 

 149 

Annotation of Cell Clusters for Training, Validation and Internal Test Set 150 
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Candidate cell clusters were separated from background in each WSI through a connected 151 

components analysis that assigns each cell/cluster a separate identifier. For each cell/cluster, 152 

remaining background was masked out and images of each candidate cluster were stored as 153 

PNG/TIFF files (Figure 1A). Candidate cell clusters were subsequently filtered based on cluster 154 

size and number of predicted nuclei using an updated version of a previously developed nuclei 155 

segmentation tool configured for NC ratio estimation 14. Two cytopathologists (LJV and XL) 156 

were presented with 800 candidate cluster images for annotation that were not utilized for held-157 

out evaluation. Of the 800 candidate clusters, 633 were confirmed urothelial clusters. The 158 

cytopathologists annotated each of these cell clusters by outlining all cell boundaries, where 159 

possible, and individual cells were assigned to the following classes: 1) squamous (red), 2) 160 

inflammatory (green), 3) negative urothelial cell (purple), 4) atypical urothelial cell (blue), and 5) 161 

dense regions of overlapping yet indistinguishable cell borders (orange) which were circled as a 162 

group by the cytopathologist (Figure 1B). Of the images used to develop the urothelial cell 163 

cluster algorithm, 474 clusters were partitioned to the training/validation dataset and 159 clusters 164 

served as the internal test set, corresponding to a total 8,123 cells annotated (Table 1). Both 165 

cytopathologists were given Microsoft Surface tablets and a touch pen to annotate cells, by 166 

circling the cell borders and tagging with the relevant cell type / architecture as aforementioned. 167 

Note that cell boundaries were annotated here, which is entirely different from the task of 168 

annotating cell nuclei. Annotation of cell borders was done using ASAP software 169 

(https://computationalpathologygroup.github.io/ASAP/). 170 

 171 
Table 1: Break down of training/validation and internal test set clusters; by number of 172 
clusters and number of annotations for each cell type across clusters  173 
Cell Type Annotated Training/Validation Sets Internal Test Set 
Negative Urothelial Cell 4050 1546 
Atypical Urothelial Cell 568 144 
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Dense Architecture 203 83 
Squamous Cells 724 231 
Inflammatory Cells 459 115 
Total Cells Annotated 6004 2119 
Total Clusters 474 159 

 174 
Object Detection Model Training and Postprocessing for Training/Validation Clusters 175 

For each candidate cell cluster, we aimed to localize individual cells (squamous, inflammatory, 176 

negative/atypical urothelial cells) and cluster architectures (dense regions of overlapping 177 

urothelial cells without smooth cell borders), while locating the cell borders, even if overlapping. 178 

We were able to accomplish this aim through training of an object detection neural network 23–26. 179 

In brief, this neural network simultaneously detects multiple objects or instances in the image by 180 

proposing and filtering regions of interest (i.e., boxes), providing an “objectness” score between 181 

0-1 that ascribes confidence in its prediction, then “tags” each object dynamically with the 182 

appropriate label, and finally outlines the object borders using a segmentation neural network, 183 

that predicts within the object on a pixel-by-pixel basis the object’s precise boundary (Figure 184 

1C). In contrast, water shedding and DBSCAN are unable to perform these tasks and lack the 185 

precision required to locate cells/dense architectures which may or may not have overlapping 186 

boundaries. Our object detection network was trained on the training/validation set using the 187 

Detectron2 framework 27. The model was trained for 1000 epochs using NVIDIA V100 GPUs. 188 

Training images were augmented (e.g., randomly flipped, rotated, resized, color jitter) during 189 

training to improve the model fitness.  190 

 191 

After model training, predicted clusters underwent post-processing to remove potentially 192 

spurious predictions. Briefly, regions of interest for separate objects may overlap, which is 193 

helpful for identifying urothelial cells with overlapping boundaries. However, cell calls with 194 

significant overlap, more so than expected with overlapping cytoplasmic boundaries, were 195 
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filtered using non-maximum suppression (NMS) 28, which selects the cell type with the greatest 196 

“objectness score” where two objects overlapped (Figure 1D-E). Detected squamous cells and 197 

inflammatory cells were removed during this filtering process to focus the assessment on 198 

urothelial cell atypia and architecture (Figure 1E).  199 

 200 

Evaluation of Internal Test Set 201 

Validation of the internal test set clusters were accomplished by calculating concordance 202 

statistics between the cytopathologists’ cellular annotations and the model’s predictions. This 203 

was accomplished in several ways.  204 

 205 

First, we calculated cell-level statistics for the internal test set of clusters: how well did 206 

individually localized cells and dense regions align with the annotations? To this end, we 207 

calculated the average percentage of urothelial cells per cluster that accurately aligned to ground 208 

truth urothelial cell annotations, as defined by the intersection over union (IoU) score (Figure 209 

1D) to associate each ground truth annotation with the prediction with the greatest overlap. Then, 210 

for each cluster, we merged all detected dense regions and calculated the average IoU between 211 

the predicted and ground truth dense regions, weighted by the size of each dense region, as a 212 

measure of detection accuracy. Finally, we assessed the sensitivity and specificity of the 213 

approach for instances where the detection model may have conflated non-overlapping and 214 

overlapping urothelial cells with dense overlapping regions through cross tabulating predicted 215 

urothelial cells and dense regions with their associated ground truth annotations. 216 

 217 
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Aside from ensuring that the cell-level predictions were accurately calibrated, we also sought to 218 

assess cluster level measures (e.g., does the cluster exhibit cytological and/or architectural 219 

atypia?) for the internal test set. We wanted to evaluate whether these metrics were associated 220 

with urothelial carcinoma assignments across the held-out test WSI. Assuming our cell border 221 

detection tool was well attuned, our tool could estimate associations that are not subject to rater 222 

subjectivity. First, we calculated the number of urothelial cells per cluster, predicted and actual. 223 

We then calculated the spearman’s correlation coefficient to measure agreement between the 224 

number of predicted and true urothelial cells per cluster. We additionally measured the ability to 225 

detect a urothelial cluster (as codified by the ability to accurately detect at least 3 urothelial cells) 226 

through calculation of the C-statistic. Similar C-statistics were calculated for the ability to detect 227 

whether the cluster was negative (i.e., at least 3 negative urothelial cells) and atypical (i.e., at 228 

least 3 atypical urothelial cells). Finally, concordance between predicted and ground truth dense 229 

regions were established through calculation of the spearman’s correlation coefficient for area 230 

estimates of the dense regions and calculation of the C-statistic for the ability to detect whether 231 

the cluster contained a dense region.  232 

 233 

We calculated 95% confidence intervals for all cell-level and cluster-level concordance statistics 234 

using 1000-sample non-parametric bootstrapping.   235 

 236 

Curation and Automated Cytological Assessment of Clusters in the Held-Out Test Set 237 

Staff cytopathologists assessed the original urine cytology glass slides for evidence of urothelial 238 

carcinoma. Olympus microscopes were utilized for pathologic examination. Cytology specimens 239 

were assigned primary diagnoses at the time of collection by one of 10 cytopathologists, and 240 
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secondarily from a reassessment while utilizing The Paris System (TPS) criteria from one of 5 241 

cytopathologists (note: no two cytopathologists assessed the same slide). TPS was officially 242 

adopted by DHMC in 2018, so TPS criteria was applied during reexamination of the specimens. 243 

In order to eliminate confounding from specimen preparation, only voided urine specimens were 244 

considered. Slides that were nondiagnostic were removed from the external assessment, as were 245 

slides that contained scanning artifacts and other artifacts that could impact manual and digital 246 

assessment (e.g., abundant blood, neobladder, etc.). Specimens corresponding to WSI with an 247 

excess of 5 million objects (much of them corresponding to debris) during WSI preprocessing 248 

were removed from the analysis. A representative sample of WSI were selected from this dataset. 249 

We assessed a total of 430 WSI spanning across 105 patients (Table 2). All image processing 250 

techniques were implemented in Python v3.7 and large-scale image processing was 251 

accomplished in parallel using high-throughput job submission via the Dartmouth College 252 

Discovery Research Computing Cluster. 253 

 254 

For each WSI, in contrast to previous works, we included urothelial cell clusters whose predicted 255 

number of urothelial cells surpassed a specific threshold (denoted as minimum cell number; a 256 

proxy for the overall sizes of urothelial clusters considered in the analysis) (Figure 1F). Clusters 257 

were labeled as atypical if they harbored a minimum number of atypical cells (i.e., at least 10% 258 

of the minimum cell number). Clusters were labeled as dense if they contained a dense region of 259 

overlapping urothelial cells without a definitive cell border. For a given minimum cell number, 260 

we tabulated the total number of clusters, atypical clusters, and dense clusters for a given 261 

specimen to form slide-level cluster measures. Based on the cytopathologist’s rating, we also 262 

dichotomized whether the specimen was assessed to be high risk (suspicious or positive), which 263 
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carry certain disease management implications (e.g., ordering of cystoscopy or biopsy for 264 

histological diagnosis), as opposed to low risk (atypical and negative), which may only 265 

necessitate longitudinal follow-up (Figure 1G). 266 

 267 
Table 2: Breakdown of diagnostic assignments in held-out test set and patient 268 
demographics 269 
History (%) N (%) Type (%) N (%) Age (Mean (SD)) 73.64 (9.81) 
Bladder Cancer 363 (84.4) Negative 232 (54.0) Number Sex = M (%) 82 (78.1) 
Hematuria 60 (14.0) Atypical 131 (30.5) Number of Patients 105 
Other 7 (1.6) Suspicious 43 (10.0)  
Total Number 
Specimens 

430 Positive 24 (5.6) 

 270 
 271 
Associations between Cluster Metrics and Cytological Atypia on the Held-Out Test Set 272 

We implemented several Bayesian hierarchical models, fit using Markov Chain Monte Carlo 273 

methods 29, to associate malignancy (whether specimen was deemed suspicious or positive) with 274 

the number of clusters, atypical clusters, and dense clusters (see Appendix, section “Modeling 275 

Number and Type of Urothelial Clusters”). We did not control for other potential confounders 276 

other than what was done through restriction of the final WSI set (detailed above). These models 277 

reported incidence rate ratios (IRR) and odds ratios (OR) and corresponding credible intervals 278 

(CI; similar to confidence interval) to describe the association between specimen atypia 279 

(suspicious or positive) and number/type of cell cluster. A CI greater than one indicates a 280 

positive relationship, whereas a CI less than one indicates a negative relationship. These CI were 281 

complemented by calculation of a “p-value”-like measure using the probability of direction, pd 282 

(𝑝 ≈ 2 ∗ (1 − 𝑝𝑑)) for reporting the existence of a positive/negative association. Model fitting 283 

was accomplished using the R v4.1 statistical language via the brms package 30. IRR/OR were 284 

reported for different minimum cell numbers in order to understand how atypia associations 285 

varied by the size of the urothelial cell clusters considered. 286 
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 287 

Results 288 

Performance of Cell Border Detection Tool 289 

Overall, the cell border detection tool was able to delineate the boundaries of negative and 290 

atypical urothelial cells with moderately high accuracy (accuracy=0.75; Table 3). Dense regions 291 

of indistinguishable cell borders were also detected with good accuracy (IoU=0.66; an IoU of 0.5 292 

is considered good). However, there were instances where these dense regions were slightly 293 

overcalled (Figure 2A,C,G,H) and truncated (Figure 1E, 2H). Note in Figure 2 instances where 294 

negative and atypical cells with distinct cell borders may have been folded into the dense regions 295 

(i.e., likely where regions were overcalled) and other instances where cells were nested in dense 296 

regions, suggesting the algorithm’s potential to conflate two distinct yet ambiguous entities. 297 

While this occurred in several instances, overall, this cross-contamination was not a significant 298 

issue (sensitivity=0.95, specificity=0.84; Table 3). Performance statistics for squamous and 299 

leukocytes were not reported as they were filtered out via the cluster postprocessing step.  300 

 301 

In determining the relationship to overall UC atypia, only cluster-level aggregate measures (i.e., 302 

whether cluster harbors atypical cells or dense regions) are considered which do not require high 303 

fidelity pixelwise localization of the cell borders. Aggregate statistics of number of urothelial 304 

cells and dense regions were in excellent concordance with the ground truth annotations. The 305 

true and predicted number of urothelial cells in each cluster exhibited high correlation (r=0.89; 306 

Table 3), as did the dense region areas reported across the internal test set clusters (r=0.91; 307 

Table 3) (Figure 3). The cell border detection tool could accurately report on the presence of a 308 

urothelial cell cluster (i.e., number urothelial cells at least 3; C-Statistic=0.98), whether a cluster 309 
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harbors atypical cells (C-Statistic=0.81) or whether a cluster contains a dense region (C-310 

Statistic=0.98) (Table 3). 311 

 312 

 313 
Figure 2: Examples of internal test set urothelial cell clusters: A-H) (left) original images; 314 
(middle) cell border detection model predictions with slight color jitter to denote distinct cell 315 
border predictions; squamous and inflammatory cells were removed from predictions during 316 
postprocessing as they were not the focus of this workflow; (right) pathologist annotations 317 
 318 
Table 3: Performance metrics on internal test set of urothelial clusters 319 

Metric Task Measure Score 2.5% CI 97.5% CI 
Cell-Level Urothelial Cell Boundary Localization Detection 

Recall  
0.75 0.71 0.81 

Dense Region Localization Weighted IoU 0.66 0.61 0.71 
Urothelial Boundary vs Dense Region Assignment Detection 

Sensitivity 
0.95 0.92 0.97 

Detection 
Specificity 

0.84 0.75 0.92 
Cluster-Level Urothelial Cell Cluster Detection (i.e., number 

urothelial cells at least 3) 
C-Statistic  0.98 0.96 0.99 
Spearman 0.89 0.83 0.95 

Negative Urothelial Cell Cluster Detection C-Statistic  0.97 0.94 0.99 
Atypical Urothelial Cell Cluster Detection C-Statistic  0.81 0.71 0.90 
Dense Architecture Cell Cluster Detection (i.e., at 
least one dense region detected) 

C-Statistic  0.98 0.95 0.997 
Spearman 0.91 0.85 0.95 

 320 
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 321 
Figure 3: Scatterplots of aggregate true and predicted cluster statistics across internal test 322 
set clusters: A) counts of urothelial cells per cluster; B) area of dense regions within each cluster 323 
 324 
Associations with Overall UC Atypia 325 

Presence and number of urothelial clusters was positively associated with specimen atypia, as 326 

were the number of clusters containing atypical cells or harboring dense regions (Table 4; 327 

Figure 4). However, these associations were modulated by the size of the urothelial cell clusters 328 

(Figure 4A). In general, the relationship between the number of urothelial/negative clusters and 329 

UC atypia strengthened based on the size of cluster considered. For instance, number of 330 

urothelial clusters containing only one urothelial cell or above (minimum cell number=1+; 331 

IRR=1.53, 95%CI: [1.52-1.53, p<0.001; Table 4) were less diagnostic for suspicious and 332 

positive as compared to number of clusters with 45 or more urothelial cells (minimum cell 333 

number=45+; IRR=3.43, 95%CI: [2.42-4.82], p<0.001; Table 4). Similarly, the number of 334 

atypical clusters containing only one urothelial cell or above (minimum cell number=1+; 335 

OR=1.05, 95%CI: [1.04-1.06], p<0.001; Table 4) were relatively nondiagnostic for suspicious 336 

and positive, whereas considering clusters with 45 or more urothelial cells were far more 337 

diagnostic (minimum cell number=45+; OR=20.09, 95%CI: [3.56-137.02], p<0.001; Table 4). 338 
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The variance of the posterior credible interval of the effect estimates also changed based on the 339 

number of cells considered for a cluster (Figure 4A) as fewer clusters per specimen could be 340 

tabulated when more cells were required to call a cluster. There was a positive association 341 

between urothelial clusters that contained dense regions of overlapping cells and UC atypia 342 

(minimum cell number=8+; OR=1.13, 95%CI: [1.07-1.19], p<0.001; Table 4).  343 

 344 
Figure 4: Graphical display of urine atypia associations with urothelial cell clusters: A) line 345 
plot depicting odds ratios/incidence rate ratios between specimen atypia and number of 346 
urothelial/atypical/dense clusters as a function of the minimum number of cells which form a 347 
urothelial cluster for recording number of clusters across specimen; horizontal line indicates no 348 
relationship (OR/IRR=1); grey regions denote 95% uncertainty/credible interval; B) grouped 349 
histogram normalized density plot of number of clusters per specimen versus whether specimen 350 
was suspicious/positive (blue) or negative/atypical (red), counts tabulated across specimen; plot 351 
was truncated to the right emphasize important relationships over outliers; demonstrates counts 352 
of urothelial cells were depleted for suspicious/positive specimen as compared to 353 
negative/atypical for lower number of cells and enriched at higher number of cells; minimum cell 354 
number was 20 for this example; C) similar plot for percentage of clusters within specimen that 355 
were rated as atypical; minimum cell number was 20 for this example; D) similar plot for 356 
percentage of clusters within specimen that contained a dense region; minimum cell number was 357 
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7 for this example; note that C-D) are unweighted by the total number of urothelial clusters in 358 
specimen 359 
 360 
Table 4: Reported associations between urine atypia and number and type of urothelial 361 
clusters in specimen; depicted are the odds ratios for number of atypical urothelial clusters and 362 
number of dense urothelial clusters per specimen and incidence rate ratios for the total number of 363 
urothelial clusters per specimen; also included are the 95% credible intervals and “p-values”; 364 
results are reported by urothelial cluster size (minimum cell number) 365 

Type Minimum Number 
of Urothelial Cells 
(i.e., Cluster Size) 

OR/IRR 2.5% 
CI 

97.5% 
CI 

p 

Number Atypical 
Clusters 

1+ 1.05 1.04 1.06 <0.001 
2+ 1.06 1.05 1.07 <0.001 
4+ 1.14 1.12 1.17 <0.001 
8+ 1.22 1.14 1.30 <0.001 
15+ 1.86 1.51 2.27 <0.001 
21+ 3.46 2.29 5.49 <0.001 
36+ 10.66 3.59 34.99 <0.001 
46+ 20.09 3.56 137.02 <0.001 

Number Dense 
Clusters 

1+ 1.13 1.13 1.14 <0.001 
2+ 1.06 1.05 1.07 <0.001 
4+ 0.90 0.88 0.92 <0.001 
8+ 1.13 1.07 1.19 <0.001 
15+ 1.13 0.94 1.36 0.19 
21+ 0.96 0.71 1.30 0.77 
36+ 0.88 0.45 1.69 0.692 
46+ 1.09 0.42 2.66 0.851 

Number Total 
Clusters 

1+ 1.53 1.52 1.53 <0.001 
2+ 1.61 1.60 1.62 <0.001 
4+ 1.47 1.46 1.48 <0.001 
8+ 1.26 1.24 1.28 <0.001 
15+ 1.54 1.44 1.64 <0.001 
21+ 1.65 1.49 1.83 <0.001 
36+ 2.44 1.96 3.04 <0.001 
46+ 3.43 2.42 4.82 <0.001 

 366 
 367 
Discussion 368 

This work sought to better comprehend the association between cytological atypia for urothelial 369 

carcinoma and the number and type of urothelial cell clusters in voided urine specimens. While 370 

previous works have explored associations between presence, number and type of urothelial cell 371 

clusters and UC diagnoses, such studies were limited in nuanced exploration of these 372 

associations as they lacked the flexibility of a computer-based digital assessment. Meanwhile, 373 

existing computational methods for urine cytology do not clearly demarcate cellular boundaries 374 

nor do they explicitly define dense overlapping cellular architecture. The current work makes use 375 

of state-of-the-art deep learning methodologies to facilitate the incorporation of cluster atypia 376 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 1, 2022. ; https://doi.org/10.1101/2022.04.30.490136doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.30.490136


 19 

and architecture into the cytomorphological slide assessment by counting urothelial cells of 377 

atypical morphologies and enumerating distinct architectures (i.e., dense regions).  378 

 379 

The study findings indicate that the cell border detection tool could accurately locate urothelial 380 

cells and dense overlapping pockets of urothelial cells within the specimen while disregarding 381 

squamous and inflammatory cells, which is a challenging task, even for a person. When 382 

evaluating cell clusters across the cohort, we recapitulated and expanded previous study findings 383 

on the importance of clusters for cytological assessment. The study findings presented in this 384 

paper confirmed the importance of assessing cytological atypia within clusters, though suggested 385 

that evaluating larger clusters may be more diagnostic 31–33. In concordance with previous 386 

findings, number of clusters within a specimen was found to be associated with specimen atypia, 387 

which may be reflective of the overall specimen cellularity. There exists ample literature 388 

documenting the effect of cellularity on specimen atypia 2,4,34. Meanwhile, this study hinted at 389 

potential relationships between the cell cluster architecture (i.e., presence of dense regions), 390 

which has been the subject of debate in existing literature, though these relationships were not as 391 

strong as the number of urothelial/atypical clusters. 392 

 393 

While the cell border detection tool developed in this study identified associations between 394 

urothelial cell clusters and specimen atypia, it was never intended to be utilized as a diagnostic 395 

decision aid, but rather was intended to be incorporated into a more comprehensive algorithm as 396 

a preprocessing tool. While this study suggests the role and importance of clusters for cytology 397 

assessment, clearly the assessment of single cells is also equally if not more valuable for the final 398 

determination. Taken together, digital analysis of both individual cells and urothelial clusters 399 
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may provide both efficient and reliable bladder cancer screening. However, there are several 400 

limitations to this study. For instance, this analysis was restricted to voided specimens prepared 401 

with ThinPrep®, and results may differ depending on the specimen type and preparation method. 402 

Other confounders and/or effect modifiers (e.g., age, sex, previous history of hematuria, stones, 403 

bladder cancer, biopsy results) may influence the associations explored in this study and warrant 404 

future exploration. As there were significantly fewer suspicious and positive diagnoses than 405 

atypical and negative, this could point to potential selection bias, especially since the number of 406 

atypical and dense clusters were only compared between groups for cases where the number of 407 

total urothelial clusters was greater than zero. Such cases were still included for findings based 408 

on number of clusters, although the number of clusters per specimen decreases as the minimum 409 

number of cells to call clusters increases (i.e., zero-inflated outcome). Findings were guided by 410 

evaluation using TPS, were done in research setting and did not incorporate information from the 411 

medical history and cytotechnologist prescreening, all of which may limit the external 412 

applicability of the study findings. Additionally, different cytopathologists may evaluate clusters 413 

differently, which presents a future area of exploration. There also exist other cell types which 414 

may have evaded assessment (e.g., seminal vesicle cells, glandular cells, etc.). Folding in 415 

atypical cells into dense clusters may also have impacted the final assessment. In some cases, 416 

pathologist annotations of the cell boundaries within clusters were coarse, which may have 417 

distorted reporting of the detection tool accuracy. Collecting additional training data and 418 

exploring new methods and other augmentation techniques present opportunities to improve the 419 

detection model. 420 

 421 
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Over the past decade, urine cytology assessment criteria have become increasingly quantitative 422 

to resolve interobserver variability in atypical and suspicious cytology assignments. Reporting 423 

reliability and promptness, as well as disease management options may be further improved 424 

through assessment of all cells within the specimen, though manual assessment on this scale is 425 

currently intractable and unfeasible given the caseload. The preprocessing cell border 426 

identification/localization tool could serve as an important upstream step for a diagnostic 427 

decision support aid, which could operate on candidate urothelial cells extracted within clusters 428 

to provide reliable atypia estimates (e.g., precisely estimate NC ratio for confirmed urothelial 429 

cells within cluster). 430 

 431 

Conclusion 432 

Building a comprehensive understanding of the relevance of urothelial cell cluster atypia for 433 

cytological bladder cancer screening is a challenging task as it requires the precise localization of 434 

cell borders within complex cellular mixtures of varying overlap. For emerging digital diagnostic 435 

aids, assessment of clusters remains an ambiguous and ad hoc accompaniment to single cell 436 

analysis. This study sought to develop a deep learning-based preprocessing tool for separating 437 

cell borders and where appropriate, registering the presence and location of dense, highly cellular 438 

architectures. While the current study pointed to associations between cluster atypia and 439 

urothelial carcinoma, we plan to incorporate the cell border detection tool into a digital workflow 440 

for rapid bladder cancer screening to investigate the degree to which such a tool can augment 441 

clinical decision making. 442 

 443 
  444 
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