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Figure 4: Predicting perceived intensity from discriminability for five different sensory
attributes. For each attribute, we fit a three-parameter generalized form of Weber’s
Law (Eq. 4, blue curves, optimal parameters as indicated) to measured discrimination
thresholds (black points). We set this equal to the Fisher Discriminability relationship of
Eq. (1), and combined this with the mean-variance relationship of the modulated Poisson
noise model (Eq. 3) in order to generate predictions of µ(s). The predictions (red curves)
depend on the choice of g in the noise model, as well as an additive integration constant
and overall multiplicative scale factor, all three of which are adjusted to best fit average
perceptual rating scale measurements (black points). The three smaller graphs at bottom
of each panel depict predictions of µ(s) for alternative noise models: constant standard
deviation, standard deviation proportional to mean, and variance proportional to mean.10
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of authors suggest that perceptual intensities and discrimination reflect different stages of
processing, bridged by an additional nonlinear transform. Specifically, [17] proposes a type
of sensory adaptation, [18] reflects additional sensory processing, and [21] incorporates an
additional cognitive process. Our framework offers a parsimonious resolution of these dis-
crepancies, by postulating that perceptual intensity and discriminability arise from different
combinations of the mean and variance of a common representation.

It is worth noting that while Fechner’s integration hypothesis is inconsistent with Stevens’
power law measurements, it appears to be consistent with many types of super-threshold
comparison of stimulus differences. Specifically, experimental procedures involving many
suprathreshold comparative judgements (e.g. maximum likelihood difference scaling, cat-
egorical scales and bisection [16, 36, 53, 61]) seem to reflect integration of local discrim-
inability, whereas experimental procedures that require absolute judgements (e.g. rating
scales [16, 45, 62]) seem to reflect the mean of internal representation, which is only equal
to integrated discriminability when noise variability is constant.

This subtle distinction between comparative and absolute judgement is at the heart of
multiple debates in perceptual literature. For example, it arises in discussions of whether
perceptual noise is additive or multiplicative in visual contrast (e.g. [36, 40, 63]). We
have proposed that mean and variance of internal representations can be identified through
the combination of absolute and discriminative judgements, because the two measurements
reflect different aspects of the representation. On the other hand, if super-threshold com-
parative judgements reflect integrated local discriminability, they do not provide additional
constraints on internal representation, and combining such measurements does not resolve
the identifiability issue. This gives, for example, a consistent interpretation of the analysis
in [36], which shares the logic of our approach in seeking an additional measurement to re-
solve non-identifiability of discrimination measurements, but reaches a different conclusion
regarding consistency of additive noise.

Our examination of the particular combination of Weber’s Law discriminability with power-
law intensity percepts led to the conclusion that the amplitude of internal noise in these
cases should vary in proportion to the mean response. While such “multiplicative noise”
has been proposed previously as an explanation for Weber’s Law [3, 31–33], it has generally
been proposed in the context of a linear transducer (as in Fig. 1). In our framework, we find
that this form of proportional noise is sufficient to unify Weber’s and Stevens’ observations
for power-law transducers, regardless of exponent.

Moreover, this form of proportional noise offers a potential interpretation in terms of un-
derlying physiology of neural responses. We considered, in particular, recently proposed
“modulated Poisson” models for neural response which yields noise whose variance grows
as a second-order polynomial of the mean response. The noise of the summed response over
a population of such neurons would have the same structure (see Appendix A). At high lev-
els of response, this allows a unification of Weber’s Law and Stevens’ power law. At lower
levels, it produces systematic deviations that lead to consistent predictions of ratings for a
number of examples (Fig. 4). Recent generalizations of the modulated Poisson model may
allow further refinement of the perceptual predictions [64]. For example, at very low levels
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of response, sensory neurons exhibit spontaneous levels of activity that are independent of
stimulus drive [30], suggesting that inclusion of an additive constant in Eq. 3 could provide
predictions of perceptual detection thresholds [65].

We’ve restricted our examples to perceptual intensity attributes that obey Weber’s Law,
but the proposed framework is more general. In particular, the bound on Fisher information
holds for any noisy representation, and has, for example, been applied to representation of
sensory variables in the responses of populations of tuned neurons [23, 25, 26]. In some cases,
these attributes exhibit Weber’s Law behavior, which may be attributed to heterogeneous
arrangements of neural tuning curves rather than noise properties of individual neurons. For
example, neurons in area MT that are selective for different speeds have tuning curves that
are (approximately) shifted on a logarithmic speed axis [66]. In this case, an independent
response noise model yields Fisher Information consistent with Weber’s Law [67–71]. More
generally, changes in a stimulus attribute may cause changes in both the amplitude and the
pattern of neuronal responses, which, when coupled with properties of internal noise, yield
predictions of discriminability through Fisher Information. Specifically, the abstract inter-
nal representation that we have assumed for each perceptual attribute corresponds to the
projection of high-dimensional noisy neuronal responses onto a decision axis for perceptual
judgements (e.g. [49, 72, 73]). Although discrimination judgements for an attribute s are
generally insufficient to uniquely constrain underlying high-dimensional neuronal responses,
the one-dimensional projection of these responses provides an abstract but useful form for
unifying the perceptual measurements.

Our framework enables the unification of two fundamental forms of perceptual measurement
– absolute judgement and discrimination – with respect to a common internal representa-
tion. However, the study of perception is diverse and mature, with numerous additional
perceptual measurements [74] whose connection to this framework might be explored. The
descriptive framework outlined here also raises fundamental questions about the origin of
this relationship between internal representation mean and noise. The forms of both noise
and transducer may well be constrained by their construction from biological elements, but
may also be adapted to satisfy normative goals of efficient transmission of environmental
information under constraints of finite coding resources [70, 75, 76]. Exploration of these
relationships provides an enticing direction for future investigation.
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Methods

Fisher information

Fisher Information provides a measure of the precision with which stimuli are encoded in
noisy measurements [1]. In statistics and engineering communities, it is often used in the
context of the Cramer-Rao bound, which states an upper bound on the precision (inverse
variance) attainable by an unbiased estimator [2]. It was first proposed as a means of
quantifying perceptual discrimination by Paradiso [3], and further elaborated for neural
populations by Seung and Sompolinsky [4]. In this context, the square root of Fisher
information provides a bound on perceptual precision (discriminability) [5], and may be
viewed as a generalization of “d-prime”, the traditional metric of signal detection used in
psychophysical studies [6].

For a stimulus attribute s, the Fisher Information is derived from a stochastic model of
responses, p(r|s), and the Fisher bound on discriminability may be written as:

δ(s) =

√√√√E

[(
∂ log p(r|s)

∂s

)2 ∣∣∣∣s
]
. (5)

The expression captures the relative change in measurement distribution when the stimulus
is perturbed. This definition relies only on the differentiability of the measurement dis-
tribution with respect to s and some modest regularity conditions [2], but does not make
assumptions regarding the form of the response density. Moreover, both s and r can be
vector-valued, but for our purposes in this article, we assume a one-dimensional stimu-
lus attribute, and thus the internal representation r that is relevant to the discrimination
experiment is also effectively one-dimensional.

The three examples shown in Figure 1 are each consistent with Weber’s Law discriminability,
but differ markedly in their response distributions: a fixed-variance Gaussian density (“ad-
ditive noise”), a variable-variance Gaussian density (“multiplicative noise”), and a discrete
Poisson distribution. Below, we derive each of these.

Additive noise. Assume the internal representation has mean response µ(s), and is con-
taminated with additive Gaussian noise of fixed variance:

p(r|s) = (σ
√

2π)−1 exp[−(r − µ(s))2/(2σ2)].

Substituting into Eq. (5) and simplifying yields δ(s) = |µ′(s)|/σ. Weber’s Law states
that δ(s) ∝ 1/s, and thus we require a transducer such that |µ′(s)| ∝ 1/s. If we assume
monotonicity, the transducer is uniquely determined (up to a proportionality factor) via
integration: µ(s) ∝ log(s) + c.
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Multiplicative noise. Assume a representation with identity transducer µ(s) = s and
Gaussian noise such that the amplitude scales with the mean, σ(s) =

√
as:

p(r|s) = (
√

2πas)−1 exp[−(r − µ(s))2/(2as2)].

Substituting into Eq. (5) and simplifying again yields Weber’s Law: δ(s) = (
√

2 + 1/a)/s.

Poisson noise. Assume the internal response r is an (integer) spike count, drawn from
an inhomogeneous Poisson process with rate µ(s), a widely-used statistical description of
neuronal spiking variability. Then

p(r|s) =
µ(s)r exp[−µ(s)]

r!
.

In this case, δ(s) = |µ′(s)/|
√
µ(s). If δ(s) follows Weber’s law, we can again derive the form

of of the transducer: µ(s) ∝ [log(s) + c]2 for some constant c.

Fisher discriminability

In general, Fisher information for arbitrary distributions can be difficult to compute and
often cannot be expressed in closed form. But for arbitrary distributions, a lower bound for
the square-root of Fisher information, which we term “Fisher discriminability”, is readily
computed and interpreted, because it depends only on the mean and variance of the distri-
bution. Specifically, we define Fisher discriminability as δ(s) ≡ |µ′(s)|/σ(s). Its role as a
lower bound can be derived using a modified form of Cauchy-Schwartz inequality:

∫
f(y)2py(y)dy ≥

[∫ ∫
g(x)f(y)pxy(x, y)dxdy

]2∫
g(x)2px(x)dx

. (6)

We then make the following substitutions:

∫
f(y)2py(y)dy =

∫ {
∂ log p(r|s)

∂s

}2

p(r|s)dr∫
g(x)2px(x)dx =

∫
[r − µ(s)]2 p(r|s)dr.

(7)
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The left-hand side of Eq. (6) is the Fisher information, and the bound arises after simplifi-
cation of the right-hand side:

IF (s) ≥

{∫
[r − µ(s)] ∂ log p(r|s)∂s p(r|s)dr

}2

∫
[r − µ(s)]2 p(r|s)dr

=

{∫
[r − µ(s)] ∂p(r|s)∂s dr

}2

σ(s)2

=

{
∂
∂s

∫
rp(r|s)dr − µ(s) ∂∂s

∫
p(r|s)dr

}2
σ(s)2

=
µ′(s)2

σ(s)2
.

(8)

Fisher discriminabiliity generalizes to a multi-dimensional response vector (eg., a neural
population), by replacing the inverse variance with the Fisher information matrix, and
projecting this onto the gradient of the log likelihood [7]. The derivation of the full bound
for the multi-dimensional case (both stimuli and responses) may be found in [8].

In the three examples of Fig. 1, the lower bound is exact: Fisher discriminability is equal
to the square-root of Fisher information. An equivalent expression for Fisher discriminabil-
ity has also been obtained by assuming a minimal-variance unbiased linear decoder [9].
Compared to our interpretion as a lower bound, this interpretation has the advantage of
being an exact expression, but the disadvantage of relying on restrictive assumptions about
decoding.

Internal representations consistent with Weber’s law and Stevens’ Power law

Using Fisher discriminability and assuming monotonicity of µ(s), Weber’s law can be ex-

pressed as: µ′(s)
σ(s) ∝

1
s . Because both µ(s) and σ(s) are functions of s, neither is uniquely

constrained by the discriminability. To identify µ(s) and σ(s), we must combine Weber’s
law with some other measurement that constrains µ(s), σ(s), or some other combination of
the two. In this paper, we analyzed one example measurement – magnitude ratings, which
we assume provides a direct measurement of µ(s). For many intensity variables, magnitude
ratings follow a power-law sα. Assuming µ(s) ∝ sα, we can substitute the derivative of the
power-form µ(s) into Eq. (1), which yields σ(s) ∝ sα. That is, Weber’s Law results when
both µ(s) and σ(s) follow a power law with the same exponent, α. Note that this result
holds for all exponents.

Data Fitting

To examine the validity of our framework beyond Weber’s range, we assume an internal
representation that has a mean-variance relationship consistent with a modulated Poisson

20

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 4, 2022. ; https://doi.org/10.1101/2022.04.30.490146doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.30.490146
http://creativecommons.org/licenses/by-nd/4.0/


distribution [10]:

σ(s)2 = µ(s) + g2µ(s)2. (9)

We combined this mean-variance constraint with a generalized form of Weber’s Law [11]:

δ(s) =
w

(s− d)β
, (10)

in which d is an additive constant that can be either positive or negative, β is a non-negative
exponent, and w is a non-negative scaling factor.

We analyzed five stimulus domains in the main text and make prediction of perceptual
intensities (rating measurements) in two steps. First, we fit Eq. (10), optimizing parameters
{d, β, w} to minimize squared error of the measured inverse discrimination (thresholds).
Then, we combined the fitted discriminability model with the mean-variance relationship
of Eq. (9) to generate rating predictions. In this second step, we optimize three parameters
(by minimizing squared error with the log-transformed rating data). The first is g, which
governs the transition from Poisson to super-Poisson noise behavior (large g indicates an
early transition). The second parameter is c, an integration constant that arises from solving
the differential equation (Fisher discriminability) for µ(s) (see below). The last parameter
is a scale factor, which adjusts the predicted intensity values to the numerical range used
in the associated rating experiment.

The transducer µ(s) is obtained by solving the differential equation that arises from equating
the Fisher discriminability of Eq. (1) with the generalized form of Weber’s law of Eq. (10):

µ′(s)√
µ(s) + g2µ(s)2

=
w

(s− d)β
(11)

The solution is a hyperbolic function:

µ(s) = sinh2

{
g(s− d)−β[w(d− s) + c(s− d)β]

2(β − 1)

}/
g2. (12)

Note that an overall scaling (proportionality) factor is needed to fit this functional form of
µ(s) to rating data.

For comparison, we computed rating predictions from three other noise models: additive
Gaussian noise, Poisson noise, and a generalized form of multiplicative noise. The fitting
procedures for these three noise models are detailed below.

Additive Gaussian noise. As for modulated Poisson model, we first fit the generalized
Weber’s law to discrimination data, and lock the parameters {d, β, w}. Then we solve
a differential equation arising from equating Fisher discriminability with the generalized
Weber’s Law:

µ′(s)

σ
=

w

(s− d)β
, (13)
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and solve for µ(s). The solution for µ(s) in this case also has a closed form:

µ(s) =
wσ(s− d)1−β

1− β
+ c (14)

The integration constant c and overall scaling factor are estimated by fitting the expression
for µ(s) to the rating data (minimizing the squared error between logarithmically trans-
formed rating data and the function).

Poisson noise. Following a similar procedure for the case of additive Gaussian noise, we
find a closed-form solution for µ(s) using Poisson noise and Fisher discriminability:

µ(s) =
(s− d)−2β[w(d− s) + (β − 1)c(s− d)β]2

4(β − 1)2
(15)

Again, the integration constant c and an overall scaling factor are optimized to fit the rating
data.

Generalized multiplicative noise. Here, we assume a noise mean-variance relationship
σ(s)2 = g2µ(s)2, which is the choice that enables the co-existance of Weber’s law and
Stevens’ power law. As in previous cases, we plug this into the expression for Fisher
discriminability to obtain a prediction for µ(s):

µ(s) = exp

[
gw(s− d)(1−β)

1− β

]
c. (16)

Note that, as for the full noise model of Eq. (9), fitting involves estimation of three param-
eters: the noise parameter g, an integration constant c, and a scaling factor.
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Appendices
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A. Connecting noise parameters estimated for perception and for
neuronal responses

In this section, we analyze how parameter g of the modulated Poisson noise model, when
estimated from perceptual data, can be related to noise properties of underlying individual
neurons.

In the modulated Poisson model [1], each neuron’s response is captured by a Poisson dis-
tribution parameterized by µi(s):

p(ri|s) =
µi(s)

rie−µi(s)

ri!
(S.1)

Unlike a standard Poisson model, µi(s) is also a random variable that is constructed as
a product of two components: µi(s) = fi(s)G. The function fi(s) captures the stimulus-
dependent input drive, and G is a random variable, with mean E(G) = 1 that represents a
multiplicative modulator, that capture the combined effects of noisy feedback or recurrent
inputs.

Because neuronal responses fluctuate due to both the modulator and the Poisson spiking
process, they are more variable than those arising from a Poisson model. Indeed, we can
partition response variance into two additive components, one from the input-drive, which
follows a Poisson description (variance proportional to the mean), and the other from the
modulator:

σ(ri|s)2 = µi(s) + σ2Gµi(s)
2 (S.2)

For further analysis, we assume the modulator distribution is the same for all neurons.
Conditioning on a single modulator G, all neurons share a single modulator variance, σ2G.
This assumption is reasonably consistent with data analyzed from neuronal population in
LGN, V1, V2, and MT [1].

The relationship between mean and variance in a single modulated-Poisson spiking neuron
may be tied to the assumed mean-variance relationship for intensity perception in the main
text. For simplicity of analysis, we assume independent responses so that the variance of a
population is the sum of variance in individual cells:

N∑
i

σ(ri|s)2 =

N∑
i

µi(s) + σ2G

N∑
i

µi(s)
2. (S.3)

We further assume that perception is the consequence of summing this set of neuronal
responses. Because the population is assumed independent, percept, µp(s), corresponds to

the sum of individual mean response rate: µp(s) =
∑N

i µi(s). Perceptual variance, σ2P , is

the sum of individual response variance
∑N

i σ(ri|s)2. So we can re-write the mean-variance
relationship assumed for perceptual noise in the main text as:

∑
i

σ(ri|s)2 =
∑
i

µi(s) + g2

[∑
i

µi(s)

]2
. (S.4)
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Now we can find a connection between perceptual noise parameter g (in equ. S.4), and the
noise parameter in individual neurons σG (in equ. S.3). These two parameters are generally
different, because summing the squared mean responses is generally different from the square
of the sum (right hand side of equ. S.3 and equ. S.4).

Suppose perception is the consequence of a homogeneous neuronal population’s response.
Within this population, each neuron shares the same response to a stimulus s, and µi(s) =
µ(s). When the population has N number of neurons,

∑N
i µi(s)

2 = Nµ(s)2. For perceptual

noise, (
∑N

i µs)
2 = N2µ(s)2. As a consequence, the perceptual noise parameter g relates to

the neuronal noise parameter σG via g = σG/
√
N .

In general, when neuronal responses are assumed independent, the perceptually estimated
noise parameter g is a lower bound for neuronal noise parameter σG. The perceptual noise
parameter exactly matches the neuronal parameter when perception is the consequence
of a single neuron’s response. In general, the lower bound is tighter when the neuronal
population sparsely responds to a stimulus, i.e. most neurons do not respond to the stimulus.
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