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Abstract

Motivation: Somatic evolution plays a key role in development, cell
differentiation, and normal aging, but also diseases such as cancer,
which is now mainly thought of as a disease of genetic and epigenetic
modification. Understanding mechanisms of somatic mutability —
variant types and frequencies, phylogenetic structure, mutational sig-
natures, and clonal heterogeneity — and how they can vary between
cell lineages will likely play a crucial role in biological discovery and
medical applications. This need has led to a proliferation of new tech-
nologies for profiling single-cell variation, each with distinctive capa-
bilities and limitations that can be leveraged alone or in combination
with other technologies. The enormous space of options for assaying
somatic variation, however, presents unsolved informatics problems
with regards to selecting optimal combinations of technologies for de-
signing appropriate studies for any particular scientific questions. Ver-
satile simulation tools are needed to make it possible to explore and
optimize potential study designs if researchers are to deploy multiomic
technologies effectively.
Results: In this paper, we present a simulator allowing for the gen-
eration of synthetic data from a wide range of clonal lineages, vari-
ant classes, and sequencing technology choices, intended to provide a
platform for effective study design in somatic lineage analysis. Our
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simulation framework allows for the assessment of study design setups
and their statistical validity in determining different ground-truth can-
cer mechanisms. The user is able to input various properties of the
somatic evolutionary system, mutation classes (e.g., single nucleotide
polymorphisms, copy number changes, and classes of structural vari-
ation), and biotechnology options (e.g., coverage, bulk vs single cell,
whole genome vs exome, error rate, number of samples) and can then
generate samples of synthetic sequence reads and their corresponding
ground-truth parameters for a given study design. We demonstrate
the utility of the simulator for testing and optimizing study designs
for various experimental queries.
Contact: russells@andrew.cmu.edu
Availability: https://github.com/CMUSchwartzLab/MosaicSim

1 Introduction

Advanced sequencing technologies have made it possible to profile ge-
netic variation at the single-cell level on population scales, revealing
in part that the human body is a continuously evolving genetic mosaic
(11; 46; 1). Genetic and epigenetic modifications in somatic cells over
many generations of cell growth and replication result in heterogeneity
between cells, tissues, and organs in normal aging and development.
Somatic mosaicism can also produce disease phenotypes, such as neu-
rodegeneration and, most notably, cancer (29; 35). Profiling somatic
mutations is an active area of research for biological discovery. It is
also rapidly becoming a standard practice in cancer care, where clini-
cians now commonly utilize gene panels to screen for common “driver”
mutations (43; 18). Accumulating genomic data has made it apparent
that somatic mutability is much more complicated than early mod-
els of tumor clonal evolution first suggested (5) and far more exten-
sive in even healthy tissues (c.f.,(4; 7)). Somatic variation produces
complex patterns of “mutational signatures” (14; 2; 21) reflecting dif-
ferent endogenous (e.g., DNA replication processes) and exogenous
(e.g., UV light) mechanisms of mutability. In cancers and other pre-
cancerous conditions, high levels of somatic mutability are frequently
observed due to damage to cell replication on error-correction machin-
ery (28; 27; 39). They further may include not just single nucleotide
variations (SNVs) but potentially extensive copy number alterations
(CNAs) and structural varations (SVs), including complex mutation
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events rarely seen in conventional population genetics, such as chro-
moplexy and chromothripsis (26).

As we have come to understand the extent and importance of so-
matic evolution, enormous effort has been put into developing biotech-
nological tools for profiling somatic variability at ever greater scales,
precision, and accuracy (8; 40). No one technology is able to compre-
hensively characterize somatic variability across a complex tissue and
do so with precision and accuracy and at low cost. Rather, investiga-
tors attempting to characterize somatic variation processes now have
available to them a vast array of technologies — e.g., short read vs.
long read vs. single-cell sequencing, liquid biopsy vs. tissue biopsy,
whole genome vs. whole exome vs. targeted sequencing — each with
distinctive different properties and tradeoffs (42). Current work in-
creasingly depends numerous possible multiomic data combinations
(e.g., long-read and short-read or bulk and single-cell data), along
with various other study design choices (e.g., number of replicates,
depth of coverage), with uncertain knowledge of how these choices to-
gether with different choices of analysis software will influence one’s
ability to quantify any particular feature of the somatic evolution pro-
cess (32; 20). There is currently little empirical or theoretical basis
on which an investigator planning a study can select a combination of
technologies and study design well suited for any particular investiga-
tion.

Simulation presents a viable solution to these issues by allowing
for efficient tests of various study designs with direct knowledge of
most biological parameters of interest. Various sequencing simulators
have been developed that make it possible in principle to test a study
design before the potentially large expense of executing it in the lab.
For example, the popular BAMSurgeon simulator (10; 23) imposes
variation onto existing BAM alignment files for realistic tumor reads.
Most such simulators focus on generating accurate reads from existing
sequencing technologies and companies (9; 49). While these simula-
tors are useful in benchmarking tools, they are not generally designed
for the purpose of considering different study designs, particular ones
that involve hybrid sequencing modalities or broad coverage of variant
types. To our knowledge, no existing simulator allows for the testing of
broad forms of genetic variation, sampling strategies, and hypothetical
sequencing properties. Most sequence simulators to date are targeted
towards population genetics evolutionary problems and fail to cap-
ture the broad ranges of mutation mechanisms and rates observed in
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somatic evolution, particularly in hypermutable conditions frequently
seen in cancers. The simulators created specifically for cancerous con-
ditions, on the other hand, tend to focus on one specific technology or
aspect of the cancerous condition. For example, Mallory et al. (30)
designs a simulator specifically for copy number analysis in single-cell
sequenced data, and Nicol et. al (33) focus primarily on the spatial
distribution of mutations.

Here, we seek to meet the needs of sequencing study design for
somatic variation studies through a new clonal evolution simulator.
Our simulator links a coalescent model of clonal evolution to a ver-
satile model of read generation with user-configurable variant classes,
mutation rates, evolutionary models, sequencing setups, and study
design decisions. Our framework focuses on general properties of se-
quencing that allow for the design of better experiments and future
sequencing technologies. It also introduces a wide variety of features
important to somatic variation studies that are not, to our knowledge,
found in any other current simulator, such as capturing broad classes
of variation like breakage-fusion-bridge, chromothripsis, and chromo-
plexy that have been implicated in certain cancers (45). A detailed
feature comparison between our simulator and related simulators is
shown in Table 1 (47; 31; 36; 10). We demonstrate utility of this
simulator through application to a series of hypothetical questions in
testing and optimizing study design for somatic evolution studies.

2 Materials and Methods

The complete simulator consists of four main modules: 1) sampling
an evolutionary lineage tree for the clonal evolution, 2) sampling mu-
tation events on the lineage tree, 3) simulating sequence reads, and
4) sampling reads based on experimental design decisions. Below, we
describe each module in turn. Each module has a number of user-
tunable parameters to control different biological parameters of the
presumed cell lineages as well as experimental parameters of the se-
quencing strategy. The main tunable parameters of the simulator are
summarized in Table 2. We describe the individual modules in more
detail in the subsequent subsections. Full pseudocode for these mod-
ules can be found in the appendix.
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Our Simulator pSITE CellCoal BAMSurgeon
Lineage Properties ✓ ✓ ✓ ✗

Single Cell ✓ ✓ ✓ ✗

Mutational Signatures ✓ ✗ ✓ ✗

Variable Read Length ✓ ✗ ✗ ✗

Variable Error Rate ✓ ✗ ✗ ✗

SNP/Indel Variation ✓ ✓ ✓ ✓

Resource Usage Medium Medium Low Medium
Multiple Sites/Samples ✓ ✗ ✓ ✗

Runtime length Medium High Low Medium
Copy Number Variation ✓ ✓ ✗ ✓

Rare Structural Variation ✓ ✗ ✗ ✓

Whole Genome Reads ✓ ✓ ✗ ✓

Whole Exome Reads ✓ ✓ ✗ ✓

Targeted Sequencing Reads ✓ ✗ ✗ ✓

Mutation Frequencies ✓ ✓ ✓ ✗

Mutation Distributions ✓ ✗ ✓ ✗

Clonal Frequency Parameters ✓ ✗ ✓ ✗

Sequencer Quality Consideration ✗ ✓ ✓ ✓

RNA Sequencing ✗ ✗ ✗ ✓

Liquid Biopsy ✓ ✗ ✗ ✗

Table 1: A feature comparison between our simulators and a few other
sequencing simulators with related functions.
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Parameter Symbol Units Description
Effective Popu-
lation Size

Ne Cells Total cellular population of the
region to be sampled. Impacts co-
alescent times

Number of
Clones

k Clones Number of distinct genetic so-
matic cell populations to be sam-
pled

Mutation Rate
Lists

Mi Mutation events
per locus per cell
division

Lists for each variant class, defin-
ing rates per locus per cell divi-
sion

Mutation Size
and Location
Distributions

S, z(x) Number of
Bases, None

Each mutation type can be tuned
over size distributions and single
base substitutions can be tuned
over signature distributions

Number of Tu-
mors

t Tumors Number of distinct sites of so-
matic evolution to be sampled

Number of Sam-
ples

s Samples Number of distinct tissue biopsies
(regions) to be drawn from each
“tumor” site

Read Length rl Bases Size of reads to be generated from
sequencer

Fragment
Length

fl Bases Defines a superstring from which
reads are derived during the se-
quencing process

Depth/Coverage c Reads per Base Average number of times each
nucleotide of the genome is se-
quenced

Error Rate e Fraction of
Incorrectly Se-
quenced Bases

Rate of Incorrectly sequenced nu-
cleotides

Dirichlet Con-
centration,
Clonal Fre-
quency Distri-
bution

α, g(k) None, None Parameter of a Dirichlet process
which is used to derive the con-
centration of the baseline distri-
bution in a sample. A high value
will lead to approximately uni-
form sampling of clones during
sequencing, whereas a low value
would favor very uneven clonal
frequencies. The clonal frequency
distribution is the baseline distri-
bution at high α

Number of Sin-
gle Cells

n Cells Number of individually se-
quenced cells per sample

Paired-
End/Single-end

1(Paired) Boolean Binary parameter describing
whether the reads are paired end
or single end. Paired-end reads
have two related reads derived
from the same fragment.

Whole
Genome/Whole
Ex-
ome/Targeted
Sequencing

1(Genome) Boolean Binary parameter describing
whether the sequencer extracts
genes from the entire genome or
only a subset of the genome

Liquid Biopsy 1(LiquidBiopsy) Boolean True or false parameter to pro-
duce liquid biopsy sequenced
reads

Sampling Num-
ber

GN Genome Posi-
tions

Number of random positions on
the genome to sample to build a
hash table for approximate string
matching for exon/targeted se-
quencing.

Table 2: Summary of the main tunable parameters
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2.1 Lineage Simulation

For each simulation, we generate a cell lineage assuming that muta-
tions are selectively neutral and generally follow the assumptions of
the standard coalescent model (34). User-definable parameters in-
clude a total population size (Ne), set to 8 × 108 cells by default, as
well as a number of clones (k) to be sampled. Coalescent sampling of
tree topologies and edge lengths is implemented using msprime (17).
The unit of time we use is a generation, i.e., the time of a single cell
division.

2.2 Mutation Events

The simulator supports commonly discovered types of somatic varia-
tions, particularly those implicated in the development of cancer (44;
6). These currently include the following: single nucleotide varia-
tion (SNVs), copy number abberations (CNAs), insertions, deletions,
kataegis, chromothripsis, chromoplexy, aneuploidy, translocations, in-
versions, and breakage fusion bridge cycles (BFBs). Table 3 sum-
marizes these mutation types. Each mutation type is implemented
by sampling from various probability distributions for location and
length while simultaneously maintaining constraints encapsulating our
knowledge of the mechanism for each mutation type. The scale of
many of these forms of variations can be tuned, but with default val-
ues set based on estimated distributions of sizes found in current stud-
ies of cancer genomes (26). Size distributions for structural variants
are modeled as a truncated mixture of negative binomials to represent
small, medium, and large scale events. More detail on implementa-
tions for these mutation types are listed in the supplementary mate-
rials. Each mutation type also has a rate at which that mutation ap-
pears which we assume may differ between tumor stages and in healthy
tissues per the “mutator phenotype” hypothesis (27). The simulator
also currently supports simulating mutations drawn from single base
substitution signatures derived from the COSMIC dataset. As more
signatures are discovered and validated, these can be readily incorpo-
rated into the current mutation framework. Similarly, distributions
over mutation location and size are flexible.

Once a lineage is simulated, we apply mutations to this lineage
going forward from the most recent common ancestor of all the clones
to be sampled. Mutation rates for each class of variation are defined
as a uniform discrete distribution of potential rates, Mi. For each edge

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 2, 2022. ; https://doi.org/10.1101/2022.05.01.487551doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.01.487551


8

Mutation Type Description
Single Nucleotide Variation(SNV) A single base is changed to a dif-

ferent nucleotide
Single Base Signature A single base is mutated with

frequency according to its trinu-
cleotide context, termed a muta-
tional signature

Copy Number Variation(CNV) A random region of the genome is
repeated a number of times

Inversion A random region of the genome
has its nucleotide sequence re-
versed

Deletion A random region of the genome is
removed

Translocation A trailing portion of one chromo-
somal sequence is either added or
exchanged with a trailing part of
another chromosome sequence

Insertion A random sequence of a given
length is inserted at a random po-
sition in the genome

Aneuploidy A chromosome is either deleted or
copied a random number of times

Kataegis Within a randomly sampled re-
gion of the genome, a particular
type of single base substitution
(e.g., C>T) occurs with high fre-
quency

Chromothripsis A region of a single chromosome
is broken into many pieces, these
pieces are deleted with a certain
frequency, and finally rearranged
randomly to replace the selection
region.

Chromoplexy Multiple chromosomes are shat-
tered into pieces and rearranged
in an order consistent with telom-
ere endings

Breakage Fusion Bridge A chromosome loses a telomeric
segment and proceeds to repeat-
edly break and fuse with itself to
create new chromosomes

Table 3: Description of Available Mutation Types
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of the lineage, a specific rate is generated via ri ∼ Mi and mutation
times are generated via a Poisson process, with rate ri. This is done for
each edge of the phylogeny independently for each class of mutation.
The end result of this process is a list of times for each mutation type
and its occurrence on each edge of the phylogeny. Next, the simulator
imposes each of these mutations on a reference genome to establish
the sequences of clones at all nodes of the lineage tree. Given that
mutations were independently simulated for each mutational class, we
first merge and sort the mutational events. For a user selection of k for
the total number of clones, there are 2k− 1 total nodes, including the
root node. We first use the tree data-structure to compute all root-to-
leaf paths in the tree, which allows us to generate all potential clonal
genomes. We start with the root node as the reference and impose
sorted mutations for each root-to-leaf path. Once an internal node
has been computed, it is never recomputed so as to save computation.
The end result of this process is a stored genomic sequence for each
clone, including those at internal nodes, that is later sampled in the
sequencing step.

2.3 Sequencing Implementation

Sequencing procedures differ depending on the type of sequencing cho-
sen (e.g., whole genome sequencing or targeted sequencing). The gen-
eral strategy, however, is similar. First, a clone from the tree is sam-
pled from a Dirichlet process, i.e. k ∼ G ∼ DP (g(k), α). The sampled
clone may be either a leaf node or an internal node, but not the root
node. For this selected clone, stochastic fragment lengths are drawn
following fl ∼ TruncatedNegBin(rl). That is, we draw samples from
a negative binomial with expectation rl, and discard fragments with
length below 30. Using these fragment lengths, operations are per-
formed on fragmented clonal reads defined by the user-parameters.
Specifically, clone k is loaded, “chopped” according to fl, subsetted
based on rl and 1(Paired), seeded with errors according to e, and
written to a FASTQ file. After this particular clone is sequenced, the
coverage of the simulator is updated according to the fraction of the
genome covered depending on the read and fragment length. This
process repeats with independent repeats of each stochastic process
until coverage c is reached.

The process for exome and targeted sequencing requires addition-
ally identifying reads that align to exon or targeted gene sequences.

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 2, 2022. ; https://doi.org/10.1101/2022.05.01.487551doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.01.487551


10

This approximate string matching problem is computationally infea-
sible over every possible read so we make a few simplifying assump-
tions. First, we create k-mer sets for each of our target sequences and
use locality sensitive min-hashing to index these sequences for fast
lookup (41; 37). Then, for genome locations surrounding our target
sequence intervals, we calculate whether reads originating from these
genome locations match some target sequence in the hashing index
above a certain threshold. If this location matches some sequence,
then we add it to a list of locations. We repeat this sampling GN

times, and use this list combined with the original sequence locations
to generate a discrete probability density to sample read locations.
Without large scale disruptions to genome structure, the user may
opt to set GN to zero, implying that the original exon locations serve
as good approximations for read matches. We sample reads from this
generated list with the given read length while simultaneously sam-
pling different clones until our desired coverage is reached. Targeted
sequencing is performed in much the same way as exon sequencing, but
the target sequences are defined by a different text file of chromosome,
start, and end locations.

Modifications also occur for single cell sequencing, where we do not
continually re-sample cell clones, but instead sample only once and
use the given clone until the desired coverage is reached. Finally, for
liquid biopsy, we perform a similar iterative clonal sampling procedure,
but do not chop the sequence uniformly. Rather, we draw random
fragments from the genome strings of each clone and mix them at
some frequency with reference DNA then return these in a read file.

2.4 Experimental Decisions

The full simulation is defined by looping the three modules — lineage
generation, mutation sampling, and read generation — over tumors
and samples. Specifically, we independently define and execute a sepa-
rate lineage sampling and mutational frequency sampling t times, one
for each tumor. Similarly, we configure parameters related to sequenc-
ing decisions (rl/fl, c,n, 1(Paired), etc.), and execute the procedures
listed in Section 2.3, s times per tumor. A note with respect to single-
cell sequencing is that a number of single cells is defined for a single
sample, and a subdirectory is created for that sample. By default, we
assume that each run of the simulator creates a “reference” sample,
which is simply a single-cell sample on the root node of the tree. The
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final result of the simulator is a labeled directory with sub-directories
corresponding to reference reads, tumor reads, and sample reads as
depicted in Figure 1. Each of these directories holds ground truth
parameters with information about the tumor and sequencing param-
eters.

While we described the simulation method for singular values of
the parameters listed in Table 2, the practical implementation of the
simulator encodes most of the parameters as a list of values and sam-
ples from each list to generate the total simulation. This random
sampling procedure allows for grid search exploration of study design
spaces more easily. We refer to each parameter with a subscript to
denote the sample number. For example, ni would denote the number
of single cells on the ith sample. In cases where we survey multiple
sites of somatic evolution, we use a double subscript to remove ambi-
guity. For example, cij would denote the coverage of the jth sample
on the ith tumor.

2.5 Runtime and Space Analysis

The runtime of the program is generally dominated by the sequencing
steps rather than the coalescent or mutation steps. Defining cij as the
sequencing coverage of the jth sample on tumor ti, nij as the number
of single cell samples drawn on the on the jth sample of tumor ti,
and si as the number of samples drawn on tumor ti. The run time is
approximately proportional in O(

∑t
i=1

∑si
j=1 cij(1 + nij)), which ap-

proximately calculates the amount of times we traverse and sequence
the genome.

The maximum memory of the program is constrained by the batch
and subblock size as well as read length and sequencing type. At its
minimum value of one and with standard read sizes in the range of 75
to 1000 base pairs, the maximum memory is a small constant factor
(generally around 5-10x) of the largest stored clonal genome. If the
user wants to minimize memory footprint, then he or she should set
the batch and subblock size to 1, and/or avoid generating long-read
exome sequenced data.

The amount of non-volatile (disk) storage of the program is bounded
by the storage of the clonal genomes during the mutational process
as well as the sequencing FASTQ files. This is approximately propor-
tional to O([

∑t
i=1 ki +

∑t
i=1

∑si
j=1 cij(1 + nij)] × d), where d is the

genome size, ki denotes the number of clones in tumor ti and cij and
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Figure 1: Sample computer output of the simulator is shown above. Direc-
tories are depicted as boxed text, whereas files are shown in ovals.

nij are defined as above. Many of the files are intermediary and can
be removed after post-processing, if desired.

2.6 Computational Implementation and Re-
source Requirements

Code for the simulator is available in Python, with additional analysis
code in Python scripts. Executing one run of the simulator involves
changing/setting the parameters and running the python command.
Multiple simulations can be performed in parallel on separate threads,
provided the system has enough memory. Simulations can also be
distributed across a multi-node cluster for large scale data generation.
All our tests were performed on an multi-node Ubuntu system with
184 cores, 850GB of memory, and 10TB of storage. A single run of the
simulator only uses one core. As a reference point, three 30x-paired
WGS samples take around 3.5 hours to generate on our system and
use around 250-300GB of disk storage and less than 40G of memory.

3 Experimental Results

In this section, we demonstrate the utility of our simulator in evaluat-
ing or optimizing sequencing study designs for profiling clonal evolu-
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tion. A primary motivation of this simulator is to plan study designs
for evaluating questions about differences in somatic mutability be-
tween subsets of samples. The questions for study design are to test
whether a difference can be detected between two subsets of samples
under a given study design or to find a study design optimizing power
to detect such differences. Here, study design might include changes
in the types of sequencing applied, the informatics software used to
evaluate it, and features such as the number of tumors and tumor sites
or regions to be examined. We would then assume that the study is
being used to test for differences in biological parameters between sub-
sets of samples. Such biological parameters might include mutation
rate differences, presence of rare variations, variation in mutational
signatures, phylogeny structures, or clonal frequencies – although we
mainly focus on mutation rate variations and variant calling in our
present tests.

3.1 Notation and Performance Measures

For the analyses presented here, we take the sequencing read out-
puts from our simulator and perform alignment to the hg38 reference
genome, after which we call several forms of variation for analysis.
The aligners used were minimap2 (25), Bowtie (22), and bwa-mem
(24); the callers used were Strelka (19) and Delly (38). Throughout
the tests, we reference our study design, which we formally define as
a collection of matrices X = {X1, ..., Xt}, where t denotes the number
of tumors. The matrices Xi denote the sequencing decisions taken
on tumor i and encapsulate every sample. Namely, each matrix Xi

is of dimension 7× si, where si denotes the number of samples taken
on tumor i. The columns of Xi denote sequencing and informatics
choices on a single sample si. That is, the matrix is of the form:

xi =



rli/fli
ci

1− ei
ni

1(Paired)i
1(Genome)i

1(Informatics)i


Xi =

 | | |
... xi ...
| | |

 (1)

The collection of matrices representing our study design is mostly
relevant for an experimenter hoping to test combinations of sequenc-
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ing and repeated tumor biopsy draws within a patient with multiple
neoplastic sites. In our experimental tests, we often consider the sin-
gle tumor, single sample case. With this instance, we can collapse the
collection of matrices down to a single vector x.

To judge a study design’s utility, we require performance measures
that assess whether the design is recovering a signal related to the
intended hypothesis. In our experiments, this often meant assessing
the accuracy with which one or more variant call files aligned with
the reported set of mutations from the simulation. The problem of
assessing a variant call report in a heavily mutated cancer sample is
a challenging problem in its own right due to issues of temporality
and location consistency. Temporality issues obscure the location of
any particular variant, making any final reported variant difficult to
trace back to its origin. For example, if a SNV occurred in a region
afflicted by a chromothriptic event, the final reference-aligned reported
SNV would be at a distinct location from the SNV location on the
simulated genome. High fidelity structural variant recovery is even
more challenging because the field has not settled on a consistent set
of genomic rearrangements, nor ways to reproducibly label these with
respect to a linear reference genome. We designed measures derivable
from variant call files based on these assumptions. For mutation rate
tests, we simply used the raw count of each variant reported in each
VCF as an estimate for the amount of each form of variation. The
assumption underlying this is that even mislocated or false positive
variants are indicative of the overall mutation rate of the sample and
relatively consistent across samples. To assess the actual accuracy of
SNV tests, we used two primary measures. The first is simply recall,
or the proportion of the actual events that we recovered, i.e.: Recall =
TP
TM , where TP defines the count of true positive mutations and TM
is the total number of ground truth mutations. We favor recall as
a measure in highly mutated or error-prone samples, where callers
will return a high fraction of false positives. The alternative measure
we use is the F1 score which provides a more detailed view of the
classifier accounting for false positives, that is: F1 = TP

TP+0.5(FP+FN) ,
where TP stands for the true positive counts, FP for false positive
counts, and FN for false negative counts. Some of the false positive
counts may actually be correct variants, but the location mapping
with respect to variants on sequentially simulated clonal genomes is
difficult to recover. For structural variants, we designed a measure
with the assumption that any particular reported event is more likely
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to be referring to a ground truth event if they overlap. Call the output
of the variant calling software for chromosome i, Ci = {(a, b)}, and
call our ground truth set of structural variant locations, Di = {(c, d)},
where tuples (a, b), (c, d) represent all starting and ending locations of
reported structural variants. The measure is then defined as:

J =
∑
i

|Ci +Di|∑
i |Ci +Di|

∑
j∈Di

1(|j ∩ Ci| > 0)

|Di|

, i.e., we weight the fraction of ground truth events that overlap with
called events using the total mutation count over chromosomes. No-
tably, all of these measures have their range in the unit interval [0, 1]
which allows for straightforward construction of more nuanced mea-
sures.

3.2 Statistical Test for Mutation Rate Varia-
tion

As a first proof-of-concept demonstration, we evaluate whether a given
study design would be able to detect a difference in mutation rates be-
tween tumors for single nucleotide variation. A motivating hypothesis
for these tests is the idea that cancerous and precancerous tissues
should typically exhibit hypermutability phenotypes, that is elevated
rates of particular kinds of variation that lead to genetic heterogeneity
across cells. We would then wish to detect whether a specific study de-
sign would be powered to detect a hypothetical difference in mutation
rate between two samples indicative of a hypermutability phenotype
specific to one sample.

We assume that we have two independently sampled tissues, and
we wish to determine whether the mutation rates of various mutation
classes is different between these two tissues. To create a specific
hypothetical scenario, we generated two sets of SNV data, one where
the average rate was high and the other where it was comparatively low
(denote the rates as λ1 ≈ 10−8, λ2 ≈ 10−10 mutations per nucleotide
per generation). We specifically tested whether a 30x WGS screen on
both tissues would be statistically powered to detect the mutation rate
difference. All other parameters were kept equal at reasonable values
(0 error rate, paired-end sequencing, 0 single cells, with 1 sample per
tissue). We assume that the first tissue has mutation count generated
as M1 ∼ Poisson(λ1t1) and the second tissue has mutation count
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generated as M2 ∼ Poisson(λ2t2). A hypothesis test that can be
used to test for a rate difference is then represented by the following
null and alternative hypothesis: H0 : λ1

λ2
≤ 1 and H1 : λ1

λ2
> 1. In

our setting, we have an estimate of the mutation counts M1 and M2

from the output of our variant calling software, and we estimate t1
and t2 as biologically plausible tumor formation times as described
below. Several statistics can be used to establish p-values for a two-
sample Poisson rate test (c.f., (12)), but for the present example favor
a conditional test based on the fact that the conditional distribution of
M1 given M1+M2 is binomial. Under the assumptions of the problem,
this expression, which we denote p(t1, t2) to emphasize its dependence
on each time, is:

2min(P (X1 ≥M1|n = M1+M2, p =
t1/t2

1 + t1
t2

), P (X1 ≤M1|n = M1+M2, p =
t1/t2

1 + t1
t2

))

. These values are both computed easily using binomial cdf computing
packages.

In our empirical test case, 244 mutations were called in the higher
SNV rate dataset and 2 were called in the lower SNV rate dataset.
Times t1 and t2 are estimated, with uncertainty, as depths of somatic
lineages which could plausibly lead to a tumor; we assign them random

variables t1, t2
ind.∼ Unif [1, 30] years. Current evidence suggests that

the time from a normal cell to clinical cancer sequencing could be as
high as many decades, though studies are in their nascence for somatic
charting in healthy and precancerous tissues (15). To generate a p-
value, we want the expectation of our p-value function with respect
to the times, i.e.

Et1,t2 [p(t1, t2)] =

∫ 30

1

∫ 30

1
p(t1, t2)dt1dt2 ≈

1

N

∑
i∈[N ]

p(ti1, ti2)

. Since we lack an elementary closed form expression for p(t1, t2), we
numerically approximate the integral via a bootstrap procedure. In
our test case we took 500 random draws of times t1, t2 and computed
an average p-value of 6.9×10−7 with a variance of 1.4×10−10. There-
fore, we can conclude in this test case that the given study design
should be powered to provide a strongly significant detection of the
given rate variation.
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3.3 Evaluating Study Parameter Choices

A more involved use of the simulator would be to test a range of study
designs and identify those powered to detect a hypothesized effect. To
provide a concrete example of such a study design question, we first
evaluate how varying coverage would change our ability to call single
nucleotide variants. To do this, we generated eight sets of data, each
with an average SNV rate of approximately 10−8, and a lower rate
of approximately 10−10 for deletion and inversion variants. The read
lengths for the dataset were fixed at 125, the error rate at 0, zero single
cells were generated, one tumor was generated with eight samples from
that tumor, and paired-end whole genome sequencing was performed.
All biological parameters were fixed. The depth of coverage parameter
was sampled from the set {1, 2, 5, 10, 15, 25, 30} for each of the eight
samples. The F1 score for variant calling as a function of depth of
coverage is visualized in Figure 2, with the main takeaway being that
a coverage below 15 has a significant negative effect on our ability
to call SNVs, whereas more incremental gains can be seen above 15x
coverage.

3.4 Optimizing a Study Design

The most involved intended use of the simulator is to optimize a study
design to evaluate a particular hypothesis about somatic variability.
Researchers may be interested in studying a particular attribute of a
cancer to gain insight into the system. For instance, one might be
interested in variability in chromothriptic events, while another could
be interested in changes in clonal diversity. Our ability to answer each
of these questions, or a combination of these questions, is dependent
on study design choices made before data is gathered. For example,
some study designs (e.g., if coverage is not sufficient) would not be
sufficiently statistically powered to detect an accurate signal. At the
same time, resource limitations will affect the feasibility of possible
designs. The presumed goal is to design a study that is optimally
powered to detect the hypothesized signal within available resource
constraints. Here, we demonstrate the use of our simulator to answer
such a study design question to find an approximately optimal study
design for a particular hypothesis.

The prior premise can be framed as the following optimization
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Figure 2: F1 score for SNV calling accuracy on simulated bulk sequencing
data as a function of depth of coverage.
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Figure 3: Visualizations of various parameters and their impact on the effi-
cacy of a study design. Read length showed the strongest positive correlation
with study design score, and similarly whole genome sequenced data had a
higher score than exome sequenced data. Higher coverage had a generally
positive, but not entirely consistent, effect on the study design score. Higher
error rates also generally produced lower scoring study designs, but high error
rates did not preclude a study from having a high score.
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problem:

argminx Eq∼Q[c(x) + λLq(x)] (2)

s.t. x ≤ b (3)

x ≥ 0 (4)

Here x is the study design vector defined in Equation (1), though
in practice only a subset of the variables in x may be relevant. c(x)
is a cost function for a particular study design and b is a maximal
budget vector which constrains the amount of each resource in the
study design we can use. Constraint (4) enforces non-negativity of
each of the study design variables. We also define an unknown loss
function Lq(x), which describes the error with which the study design
answers the question we pose. Lq(x) is generally our focus, and is a
flexible function dependent on the questions we want to answer. If
we were concerned with phylogenetic structure and variant calling ac-
curacy, our loss function could be some combination of tree inference
and variant calling precision. If we were concerned with mutational
rate differences across tissues, we could use some loss function de-
rived from a hypothesis test. The λ tuning parameter determines the
amount with which we prioritize this loss function. The subscript
q and the expectation term over the distribution Q are used to em-
phasize that instances of our simulator are evaluated on a biological
parameter vector q drawn from a stochastic high-dimensional biologi-
cal parameter distribution Q. The number of clones, clonal frequency
in each sample, mutation rates/types, and mutation locations are all
part of this distribution Q, and each simulator run draws some par-
ticular value qi ∼ Q which we evaluate with the loss function. Since
we lack a closed form expression for the distribution Q, the expecta-
tion can be approximated by Monte-Carlo methods, where a singular
study design, x would be evaluated on multiple instances qi, and the
result averaged, i.e. 1

N

∑N
i=1 c(x) + Lqi(x)

To provide a tractable test case for optimal study design, we as-
sume that our study design variable x can vary only in numerical
read length, coverage, and error rate, and a binary decision of whole
genome versus whole exome sequencing. We assume the study is de-
signed to recover inversions, deletions, and SNVs in a sample, so we
define a scoring function intended to provide a balanced measure of
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performance at these tasks:

Score = 1− Lq(x) = 0.4× [
3Recallsnv + F1snv

4
]+

0.4× [
Jdel + Jinv

2
]+

0.2 ∗ 1(Recallsnv > 0.1 ∧ Jdel > 0.1 ∧ Jinv > 0.1)

. This scoring function gives a greater priority to identifying correct
variants by over-weighting recall; it also provides a “bonus” for study
designs able to detect all three types of variation at a significant rate.
We fix our callers as strelka and delly, fix most biological param-
eters, and fix our number of samples at 1 (i.e. no multi or merging
sampling). We assume that all study designs have fixed cost c(x) = 0
and constrain our study design as follows: rl ∈ [75, 2000]; c ∈ [2, 30],
e ∈ [0, 0.001], 1(Paired) ∈ {True}, 1(Genome) ∈ {True, False},
n ∈ {0}. We replicated tumors independently with fixed biological
parameters, fixing k = 5, Ne = 8e8, α = 10, and sampling SNVs,
inversions, and deletions with rates in the range [10−14, 10−8]. For
evaluation, approximately 75 study design vectors x were generated
and evaluated from around 15 tumors. The score function was aver-
aged across all tumors with respect to study design to generate a final
score for each study design.

Our top 3 choices for the constrained optimal study design were:
(2000, 25, 0.0, T rue), (2000, 30, 0.001, T rue), (2000, 10, 0.0, T rue), where
we represent the study design as the vector (rl, c, e,1(Genome)). The
best and worst four non-zero score study designs are reported in Ta-
ble 4. As expected, the best study designs were mostly whole genome
sequenced, which allowed the recovery of more variants across non-
coding regions of the genome. We might expect that resource con-
straints or a scoring function that penalized for the higher resource
usage of whole-exome sequencing could reach different conclusions.
Similarly, high coverage did seem to boost the power of the design,
but there did not appear to be a large difference between 10x and 30x
coverage. Extremely low coverage, however, did result in poor scores.
Increasing the read length boosted our ability to detect structural vari-
ants in samples, in both exome and genome sequenced samples. The
error rate parameter did impact the rate of false calls and the ability
to detect SNVs, but the overall scores were not heavily affected by the
error rate. This was somewhat by design, as we mainly prioritized the
sensitivity to detect variants in a sample as opposed to accounting for
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false positives. As expected, we saw three orders of magnitude more
false SNV calls in 0.001 error rate samples as compared to lower error
values. However, with respect to structural variation, the larger error
rate samples did not appear to do significantly worse. This meant that
long-read high error-rate designs did well with respect to our scoring
measure. The worst study designs were often exome-sequenced, had
poor coverage, or completely failed to recover a particular variant type
due to noise. Figure 3 visualizes tradeoffs between score and the model
design parameters in our exploration of the search space.

Aside from finding useful study design vectors and study design
parameters, our simulations yielded a number of tangentially interest-
ing results. One finding that may have implications for future cancer
informatics development was the effect of hypermutability and rear-
rangements on our ability to recall variants. High frequency structural
events (e.g. deletions and inversions) introduced a substantial amount
of noise in our SNV caller report. While this may be expected due to
the sensitivity of the Strelka caller, it also may have ramifications in
the clinical use case. The simulator may also be over-reporting these
false calls by placing a uniformly high quality score on all bases in the
simulation process since presumably bases with errors may have lower
quality scores which may then be accounted for by the variant soft-
ware. As expected, the task of calling layered structural variation at
various frequencies was more challenging than that of single nucleotide
variation. Predefined coordinates with respect to a linear genome may
not be the most effective way to classify these events; other abstrac-
tions that consider temporal orderings of various rearrangement events
in flexible genome collections may provide further insight into the na-
ture of mutability. For example, Zeira et al. (48) have made progress
in this direction of identifying sequences of rearrangement events that
generate tumor genomes. Regardless of analysis type, the patterns
that large scale hypermutability, high error, and imbalanced clonal
samples can induce on sequencing reads should likely be considered
when developing the next generation of cancer informatics tools. A
final unrelated note is that a brief examination of variant reports re-
inforces common variant calling practices with respect to ensembling,
i.e. merging the results of calls on independent samples increased the
recall of variants present in the tumor. However, care must be taken
as a number of false calls were introduced, especially with higher error
rate sequencing.
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Read Length Coverage Error Rate Exome Sequenced Score

2000 25 0.0 False 0.587395
2000 30 0.001 False 0.496574
2000 10 0.0 False 0.391434
150 25 0.0 False 0.283998

Read Length Coverage Error Rate Exome Sequenced Score

500 2 0.0001 True 0.001818
150 30 0.001 True 0.005085
75 10 0.00001 True 0.011801
2000 2 0.00001 True 0.018933

Table 4: Top Four Scoring and Bottom Four(non-zero) Scoring Study De-
signs

3.5 Comparison to Real Cancer Reads

We finally sought to examine the ways in which our simulated reads
were similar to and different from those produced by a real sequenc-
ing study. For this evaluation, we used an Ion Torrent targeted cancer
sequencing panel in a colorectal cancer patient, found in the sequenc-
ing read archive(SRA Access Key: SRX9731615). This particular case
used single end reads in the read-length range 50-300 base pairs. For a
comparison case, we generated 150 base pair exome-sequenced reads.
The GC content distributions as well as the GC percentage of the
reads in the real reads seemed to closely mirror that in our simulated
reads. Namely the real reads had a GC content of 46 percent whereas
ours had a GC content of 44 percent. This was somewhat surpris-
ing as one might expect the GC content of real sequencing reads to
differ somewhat from our uniform fragmenting procedure. However,
this observation seems to make sense in light of the fact that GC bias
seems more pronounced for Illumina sequencing platforms (3). The
read length distribution for the Ion Torrent reads were more spread
out than in our simulated data, having a range of [25, 354], whereas
ours ranged in [0, 150] by design. In our sequencing case, we did two
forms of truncation on the fragments and reads, not generating frag-
ments that were too small (except at the end of chromosomes), and
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also only writing sequences of the prescribed length on that fragment.
The distributions over read lengths can be adjusted in our simulation
to allow for broader, and uncapped, ranges. The final noteworthy dif-
ference was with respect to quality scores. In our simulator we placed
a uniform quality score on all bases. While this is a naive assump-
tion it did not prove to be extremely different than that of the real
sequencing case. In particular, the real sequencing case had fairly
uniform sequencing quality scores for bases until the reads became
extremely long, after which point the quality dropped.

While the simulated read files do not exactly mirror the distribu-
tions found in current sequencing technology platforms, we are mainly
concerned with invariance with respect to sequencing attributes. That
is, a shift in signal accuracy caused by simulated sequencing param-
eters (say, read length), should produce a similar shift in accuracy
in real sequencing technologies under that same shift in sequencing
parameters. In a loose sense, our simulated reads can be viewed as
a limiting case of current sequencing platforms, which does not over-
represent parts of the genome and has a more defined distribution of
read lengths. This is not necessarily an issue for the purpose of this
simulator, as it is conceivable that future technologies/sequencing pro-
tocols could be developed that do not possess the same read length
distributions, read overrepresentations, or sequencing quality scores.
Additionally, these distributions vary depending on the sequencer and
random stochasticity – they could, however, be plausibly integrated
into the simulator in future iterations.

4 Discussion and Conclusion

In this paper, we introduced a new simulation toolkit to generate se-
quencing reads from somatic variation processes under a wide range
of biological and technological parameters. We used a bottom-up ap-
proach, encoding various aspects of somatic evolution and sequencing
with user customizable probability densities. We demonstrated the
utility of our simulator for several hypothetical questions in evaluat-
ing and optimizing study designs for profiling somatic variability in
cell lineages.

A downside of our approach is that in the service of modeling
general classes of technologies, we may not encode some unique prop-
erties of specific sequencing platforms. Details such as distributions
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over sequencing quality and exon error tolerance are somewhat crudely
approximated by our simulator and might need to be customized to
specific current platforms in future work. In the exon sequencing case,
we try to find subsets of reads that may match exon sequences well,
but this is done in an inexact way due to computational considera-
tions. Another approximation in our experimental tests was the de
facto alignment to a linear reference genome as the first part of our
experiments. In the case of highly rearranged cancer genomes, align-
ments may not provide high quality insights into the original mutation
sources. Alternatives such as graph-based alignments or reference-free
sketching ideas that could be explored in the future. In the case of
ultra-long reads, it may be computationally feasible to assemble the
genome, raising further questions not explored here such as the lengths
at which assembly becomes feasible.

The simulator might also be extended in various ways in future
work. While DNA sequencing has come to be the standard lens
by which researchers view the cancer evolutionary system, a growing
body of work on epigenetic theory demonstrates that some neoplasms
may use epigenetic modifications to generate a selective advantage
(16). Incorporating various forms of epigenetic modifications – 3D
genome alterations, methylation, etc.– and the technological methods
used to probe these changes could be a valuable addition to our simu-
lator. As our knowledge of the mechanisms of somatic evolution and
mutagenesis change, modifications could be made to our simulation
system to incorporate these novel patterns. For instance, progress
in understanding complex patterns of structural variations and the
mechanisms by which they arise in somatic cells is still in its infancy,
with new patterns of structural variation continuing to be discovered
(13). It may be possible for future iterations of the simulator to en-
code arbitrary rearrangements in the genome rather than those that
come in defined arrangements. Additionally, novel mutational sig-
natures are being discovered with a wide variety of endogenous and
exogenous causes. Novel mutational signatures and alternative forms
of structural variation could be readily incorporated into our current
framework by modifying the distributions over genome lengths and fre-
quencies of mutation. Evolutionary modeling is another potential area
of improvement. We utilized a neutral coalescent model to represent
the evolutionary process stemming from a single cell, and a Dirichlet
process to model the clonal frequencies in each sample. There is room
here to incorporate various selection pressures, clonal dynamics, drift,
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and bottleneck effects with greater knowledge of how these processes
act in the cancerous setting.

The primary goal of this simulator is to allow thorough exploration
and optimization of spaces of study design decisions and evaluate their
impacts on our power to detect significant patterns of somatic evo-
lution. We are particularly interested in our ability to reconstruct
evolutionary lineages, find their characteristic mutational signatures
and rates, and detect patterns of structural variation. An important
task going forward is to provide user-friendly software for study-design
inquiries. This software would allow a user to input properties they
wish to detect in a cancer sample along with cost settings; the software
would then return sets of study design parameters which allow for their
detection under minimal cost. Ideas from Bayesian hyper-parameter
optimization will likely prove useful in our optimization goals since
each iteration of our output function is expensive to obtain. Ideally,
we wish for a symbiotic loop between sequencing technology develop-
ment and simulation study-design optimization. That is, simulations
could produce realistic sets of data of a neoplastic process, optimiza-
tion techniques could then produce feasible sets of technological pa-
rameters with which details of this process are revealed, and finally
sequencing technological development could then be targeted towards
parameter sets that provide maximal amounts of information.
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code at https://github.com/CMUSchwartzLab/MosaicSim

References

[1] Abascal, F., Harvey, L.M., Mitchell, E., Lawson, A.R., Lensing,
S.V., Ellis, P., Russell, A.J., Alcantara, R.E., Baez-Ortega, A.,
Wang, Y., et al.: Somatic mutation landscapes at single-molecule
resolution. Nature 593(7859), 405–410 (2021)

[2] Alexandrov, L.B., Kim, J., Haradhvala, N.J., Huang, M.N., Ng,
A.W.T., Wu, Y., Boot, A., Covington, K.R., Gordenin, D.A.,
Bergstrom, E.N., et al.: The repertoire of mutational signatures
in human cancer. Nature 578(7793), 94–101 (2020)

[3] Benjamini, Y., Speed, T.P.: Summarizing and correcting the
gc content bias in high-throughput sequencing. Nucleic acids re-
search 40(10), e72–e72 (2012)

[4] Colom, B., Herms, A., Hall, M., Dentro, S., King, C., Sood,
R., Alcolea, M., Piedrafita, G., Fernandez-Antoran, D., Ong, S.,
et al.: Mutant clones in normal epithelium outcompete and elim-
inate emerging tumours. Nature pp. 1–5 (2021)

[5] Coorens, T.H., Moore, L., Robinson, P.S., Sanghvi, R.,
Christopher, J., Hewinson, J., Przybilla, M.J., Lawson, A.R.,
Spencer Chapman, M., Cagan, A., et al.: Extensive phylogenies
of human development inferred from somatic mutations. Nature
597(7876), 387–392 (2021)

[6] Dentro, S.C., Leshchiner, I., Haase, K., Tarabichi, M., Winter-
singer, J., Deshwar, A.G., Yu, K., Rubanova, Y., Macintyre, G.,
Demeulemeester, J., et al.: Characterizing genetic intra-tumor
heterogeneity across 2,658 human cancer genomes. Cell 184(8),
2239–2254 (2021)

[7] Dou, Y., Gold, H.D., Luquette, L.J., Park,
P.J.: Detecting somatic mutations in normal
cells. Trends in Genetics 34(7), 545–557 (2018).

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 2, 2022. ; https://doi.org/10.1101/2022.05.01.487551doi: bioRxiv preprint 

https://github.com/CMUSchwartzLab/MosaicSim
https://doi.org/10.1101/2022.05.01.487551


28

https://doi.org/https://doi.org/10.1016/j.tig.2018.04.003,
https://www.sciencedirect.com/science/article/pii/

S0168952518300738

[8] Ellis, P., Moore, L., Sanders, M.A., Butler, T.M., Brunner, S.F.,
Lee-Six, H., Osborne, R., Farr, B., Coorens, T.H., Lawson, A.R.,
et al.: Reliable detection of somatic mutations in solid tissues
by laser-capture microdissection and low-input dna sequencing.
Nature Protocols 16(2), 841–871 (2021)

[9] Escalona, M., Rocha, S., Posada, D.: A comparison of tools for
the simulation of genomic next-generation sequencing data. Na-
ture Reviews Genetics 17(8), 459–469 (2016)

[10] Ewing, A.D., Houlahan, K.E., Hu, Y., Ellrott, K., Caloian, C.,
Yamaguchi, T.N., Bare, J.C., P’ng, C., Waggott, D., Sabel-
nykova, V.Y., et al.: Combining tumor genome simulation with
crowdsourcing to benchmark somatic single-nucleotide-variant
detection. Nature methods 12(7), 623–630 (2015)
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A Appendix

Algorithm 1: Pseudocode for Read Generation for Whole Genome
Sequencing

1 Input: Coverage c, Read length r, Fragment length f , Paired Sequencing
Boolean p, Single Cell Boolean s, Dirichlet concentration α

2 Output: File containing reads, f or Paired Files containing reads f1, f2
3 if p then
4 Initialize empty file f to hold all reads
5 end
6 else
7 Initiliaze empty files f1,f2
8 end
9 if s then

10 pick clone c from dirichlet process distribution with parameter α
11 end
12 while coverage < c do
13 fl← NegativeBinomial(f)
14 if !s then
15 pick clone c from dirichlet process distribution with parameter α
16 end
17 if p then
18 g ← load clone c from disk
19 end
20 for chromosome in c do
21 if Unif(0, 1) < 0.5 then
22 chromosome← reverse complement of chromosome
23 end

24 end
25 Break chromosome into strings of length fl, assign this to a list reads

for read in reads do
26 Mutate reads according to error rate using Poisson Approximation
27 Generate random alphanumeric reads of length 15 for an identifier
28 Generate a uniform high quality score
29 if p then
30 Write first rl characters to f1 with identifier and quality score
31 Write last rl characters to f2 with identifier and quality score

32 end
33 else
34 Write read to f with identifier and quality score
35 end
36 if p then
37 fraction← 2 ∗ r

f

38 end
39 else
40 fraction← r

f

41 end
42 coverage← coverage+ fraction

43 end

44 end
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Algorithm 2: Pseudocode for Read Generation for Whole Ex-
ome/Targeted Sequencing

1 Input: Coverage c, Read length r, Fragment length f , Paired Sequencing
Boolean p, Single Cell Boolean s, Dirichlet concentration α, List of
Exon/Gene Intervals I, Number of times to scan over exon sequence
repeats

2 Output: File containing reads, f or Paired Files containing reads f1, f2
3 if p then
4 Initialize empty file f to hold all reads
5 end
6 else
7 Initiliaze empty files f1,f2
8 end
9 Create k-mer sets of sequences in interval file I

10 Hash these intervals via locality-sensitive hashing into buckets
11 Sample sequences from the genome at random and check if they match

sequences in our hashing dictionary
12 Create sampling list L with original intervals and matching sequence

locations
13 genome frac← sum of interval lengths in L over total genome length
14 if s then
15 pick clone c from dirichlet process distribution with parameter α
16 end
17 while coverage < c do
18 fl← NegativeBinomial(f)
19 if !s then
20 pick clone c from dirichlet process distribution with parameter α
21 end
22 for interval in L do
23 for 1 : repeats do
24 Pick position around interval
25 Generate string with length fl
26 Mutate string with error rate
27 Write random alphanumeric ID and uniform quality score
28 Write first r and last r characters to files f1, f2 if p or write

first r chracters to f if not
29 end

30 end
31 if p then
32 fraction← 2 ∗ repeats ∗ genome frac ∗ r

f

33 end
34 else
35 fraction← repeats ∗ genome frac ∗ r

f

36 end
37 coverage← coverage+ fraction

38 end
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Algorithm 3: Generate Mutational Events

1 Input: List of Rate lists r, Coalescent Tree T, Mutation types 1, ..., q
2 Output: List of event times e
3 Initialize e = []
4 Define edges e1, ..., em over tree T
5 for mut type in 1 : q do
6 Randomly sample rates r1, ..., rm from rmut type associated with edges

e1, ..., em
7 for i← 1 : m do
8 Initialize t = 0, Edge event list zi = []
9 while t < length(ei) do

10 t← t+ Exp( 1
ri
)

11 zi.append(t)

12 end
13 e.extend(zi)

14 end

15 end
16 Sort times of each list in e keeping track of which mutational events

generated these times
17 return e
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Algorithm 4: Generate Clonal Genomes

1 Input: Reference Genome, G; Coalescent Tree, T; List of lists of
ordered mutational events on edges of T,E

2 Output: m saved mutated genomes, where m is the number of
nodes in T

3 Initialize disk location list b = [“”] ∗m for each node of the tree T
4 Initialize list of lists to denote root to leaf paths, paths = []
5 for leaf in T do
6 Initialize empty list i = []
7 while leaf.parent = True do
8 i.append(leaf.parent)
9 leaf ← leaf.parent

10 end
11 paths.append(i)

12 end
13 Set b[0] to a root path string
14 Save the reference genome G to b[0] for path in paths do
15 for node1, node2 in path do
16 if b[node2] == “” then
17 Get list e∗ from E corresponding to edge(node1, node2)
18 Load genome← b[node1] from disk
19 for mutation event ∈ e∗ do
20 genome← mutation event(genome)
21 end
22 Set b[node] to a labeled path to store genome
23 Save genome to path b[node]

24 end
25 else
26 continue
27 end

28 end

29 end
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Algorithm 5: Single Nucleotide Polymorphism Implementation

1 Input: List of Strings representing a genome, G
2 Output: Mutated genome G, list with mutation information L
3 chromosome← Unif(0, len(G)− 1)
4 SNP location← Unif(0, len(chromosome)− 1)
5 bases = [‘A′, ‘C ′, ‘T ′, ‘G′]
6 Initialize random base with a random choice from bases
7 while G[chromosome][SNP location] == random base do
8 set random base to a random choice from bases
9 end

10 G[chromosome][SNP location]← random base
11 return G, [chromosome, SNP location]

Algorithm 6: Copy Number Variation Implementation

1 Input: List of Strings representing a genome, G, Lower Bound on
length of copied segment lb, Upper Bound on length of copied
segment ub

2 Output: Mutated genome G, list with location information L
3 chromosome← Unif(0, len(G)− 1)
4 start location← Unif(0, len(chromosome)− 1)
5 segment len = Unif(lb, ub)
6 segment = G[chromosome][start location,min(start location+

segment len, len(chromosome)− 1)]
7 number of copies = randint(2, 5)
8 G[chromosome]← G[chromosome][: start location] + segment ∗

number of copies+G[chromosome][min(start location+
segment len, len(chromosome)− 1) :]

9 return
G, [chromosome, start location, segment len, number of copies]
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Algorithm 7: Deletion Implementation

1 Input: List of Strings representing a genome, G, Lower Bound on
length of deleted segment lb, Upper Bound on length of deleted
segment ub

2 Output: Mutated genome G, list with location information L
3 chromosome← Unif(0, len(G)− 1)
4 start location← Unif(0, len(chromosome)− 1)
5 segment len = Unif(lb, ub)
6 G[chromosome]← G[chromosome][:

start location] +G[chromosome][min(start location+
segment len, len(chromosome)− 1) :]

7 return G, [chromosome, start location, segment len]

Algorithm 8: Inversion Implementation

1 Input: List of Strings representing a genome, G, Lower Bound on
length of inverted segment lb, Upper Bound on length of inverted
segment ub

2 Output: Mutated genome G, list with location information L
3 chromosome← Unif(0, len(G)− 1)
4 start location← Unif(0, len(chromosome)− 1)
5 segment len = Unif(lb, ub)
6 segment = G[chromosome][start location,min(start location+

segment len, len(chromosome)− 1)]
7 segment = reversed string of segment
8 G[chromosome]← G[chromosome][:

start location] + segment+G[chromosome][min(start location+
segment len, len(chromosome)− 1) :]

9 return G, [start location, segment len]
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Algorithm 9: Aneuploidy Implementation

1 Input: List of Strings representing a genome, G, upper bound on
number of chromosome repeats ub

2 Output: Mutated genome G, list with location information L
3 chromosome← Unif(0, len(G)− 1)
4 repeats len = Unif(0, ub)
5 if repeats == 0 then
6 G.remove(chromosome)
7 end
8 else
9 for i in 1:repeats do

10 G.append(chromosome)
11 end

12 end
13 return G, [chromosome, repeats]

Algorithm 10: Insertion Implementation

1 Input: List of Strings representing a genome, G, Lower Bound on
length of inverted segment lb, Upper Bound on length of inverted
segment ub

2 Output: Mutated genome G, list with location information L
3 chromosome← Unif(0, len(G)− 1)
4 start location← Unif(0, len(chromosome)− 1)
5 segment len = Unif(lb, ub)
6 bases = [‘A′, ‘C ′, ‘T ′, ‘G′]
7 segment =′′ for i in 1:segment len do
8 segment+ = random.sample(bases)
9 end

10 G[chromosome]← G[chromosome][:
start location] + segment+G[chromosome][start location :]

11 return G, [start location, segment len]
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Algorithm 11: Chromothripsis Implementation

1 Input: List of Strings representing a genome, G, Lower Bound on
length of chromothripsis segment lb, Upper Bound on length of
inverted segment ub, deletion probability d, number of fragments n

2 Output: Mutated genome G, list with location information L
3 chromosome← Unif(0, len(G)− 1)
4 start location← Unif(0, len(chromosome)− 1)
5 segment len = Unif(lb, ub)
6 segment = G[start location :

min(start location+ segment len, len(G[chromosome])− 1)
7 Sample n− 1 breakpoints in the range {0, ..., len(segment)},

t1, ...tn−1

8 Initialize list t = []
9 for i in 1:(n-1) do

10 if Unif(0, 1) < d then
11 t.append(segment[ti, ti+1])
12 end

13 end
14 Randomly permute list t
15 Merge t into a new string, new segment
16 G[chromosome]← G[chromosome][: start location] +

new segment+G[chromosome][min(start location+
segment len, len(G[chromosome])− 1) :]

17 return G, [chromosome, segment len]
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Algorithm 12: Kataegis Implementation

1 Input: List of Strings representing a genome, G, Lower Bound on
length of kataegis segment lb, Upper Bound on length of kataegis
segment ub, Substitution type S, Probability value p

2 Output: Mutated genome G, list with location information L
3 chromosome← Unif(0, len(G)− 1)
4 start location← Unif(0, len(chromosome)− 1)
5 segment len = Unif(lb, ub)
6 segment = G[start location :

min(start location+ segment len, len(G[chromosome])− 1)
7 Label start base in S as p1 and end base as p2
8 for every character z in segment, if z == p1, swap z to p2 with

probability p and assign this resultant string to variable
new segment

9 G[chromosome]← G[chromosome][: start location] +
new segment+G[chromosome][min(start location+
segment len, len(G[chromosome])− 1) :]

10 return G, [chromosome, start location, segment len]

Algorithm 13: Breakage Fusion Bridge Implementation: TODO

1 Input: List of Strings representing a genome, G
2 Output: Mutated genome G, list with information L
3 chromosome← Unif(0, len(G)− 1)
4 number of cycles← Unif(2, 5)
5 for i in number of cycles do
6 G[chromosome] is reassigned by first splitting G[chromosome]

into two pieces and recombining the first piece with its inverse
7 end
8 return G, [chromosome, number of cycles]
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Algorithm 14: Chromoplexy Implementation

1 Input: List of Strings representing a genome, G, number of
chromosomes to shatter c, number of breakpoints b

2 Output: Mutated genome G, list with information L
3 num chroms← Unif(3, c)
4 Pick num chroms chromosomes from G
5 Pick number of breakpoints randomly with expectation b and shatter

each chromosome into b+ 1 pieces
6 Label start fragment and end fragment of each chromosome
7 Build each new num chroms chromosomes by picking a start

fragment and end fragment at random then any random subset of
the remaining b+ 1(num chroms)− 2(num chroms) pieces

8 return G, [num chroms]
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