
Leveraging spatio-temporal genomic breeding value estimates of

dry matter yield and herbage quality in ryegrass via random

regression models
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Abstract

Joint modeling of correlated multi-environment and multi-harvest data of perennial crop species may offer advantages in
prediction schemes and a better understanding of the underlying dynamics in space and time. The goal of the present
study was to investigate the relevance of incorporating the longitudinal dimension of within-season multiple harvests of
biomass yield and nutritive quality traits of forage perennial ryegrass (Lolium perenne L.) in a reaction norm model
setup that additionally accounts for genotype-environment interactions. Genetic parameters and accuracy of genomic
breeding value predictions were investigated by fitting three random regression (random coefficients) linear mixed models
(gRRM) using Legendre polynomial functions to the data. All models accounted for heterogeneous residual variance and
moving average-based spatial adjustments within environments. The plant material consisted of 381 bi-parental family
pools and four check varieties of diploid perennial ryegrass evaluated in eight environments for biomass yield and nutritive
quality traits. The longitudinal dimension of the data arose from multiple harvests performed four times annually. The
specified design generated a total of 16,384 phenotypic data points for each trait. Genomic DNA sequencing was performed
using DNA nanoball-based technology (DNBseq) and yielded 56,645 single nucleotide polymorphisms (SNPs) which were
used to calculate the allele frequency-based genomic relationship matrix used in all genomic random regression models.
Biomass yield’s estimated additive genetic variance and heritability values were higher in later harvests. The additive
genetic correlations were moderate to low in early measurements and peaked at intermediates, with fairly stable values
across the environmental gradient, except for the initial harvest data collection. This led to the conclusion that complex
genotype-by-environment interaction (G×E) arises from spatial and temporal dimensions in the early season, with lower
re-ranking trends thereafter. In general, modeling the temporal dimension with a second-order orthogonal polynomial
in the reaction norm mixed model framework improved the accuracy of genomic estimated breeding value prediction for
nutritive quality traits, but no gain in prediction accuracy was detected for dry matter yield. This study leverages the
flexibility and usefulness of gRRM models for perennial ryegrass research and breeding and can be readily extended to
other multi-harvest crops.

Keywords: Genomic prediction; genotype-by-environment interaction; longitudinal modeling; multi-harvest crop; reaction

norm.

Introduction
The largest portion of the world’s agricultural area is covered by grasses, with grazing systems spread
over 22% of the Earth’s ice-free land surface (Ramankutty et al., 2008). Among perennial forage grasses,
ryegrass (Lolium perenne L.) is the most widely sown species in temperate climate zones. Its breeding

Abbreviations: ADF, acid detergent fiber; ADL, acid deterged lignin; DMDig, dry matter digestibility; DMY, dry
matter yield; DNBseq, DNA nanoball sequence technology; EG, environment gradient; G×E, genotype-by-environment
interaction; GBS, genotype-by-sequence; gEBV, genomic estimated breeding value; GMR, genomic relationship matrix;
gRRM, genomic random regression model; NDF, neutral deterged fiber; NDFD, digestible NDF; Ne, effective population
size; PCA, principal component analysis; Prot, protein; REML, restricted maximum likelihood; SNP, single nucleotide
polymorphism; WSC, water-soluble carbohydrate.
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process, however, is not straightforward and can take 10–15 years from the concept to the release of
a new cultivar (Lee et al., 2012), restricting genetic gains to levels below the ones estimated for other
major crops (McDonagh et al., 2016). A first complication in Perennial ryegrass (2n = 2x = 14 [natural
occurency] or 2n = 4x = 28 [induced]) breeding arises from being a cross-pollinated, self-incompatible
species, that is bred in families or populations of related, but genetically heterogeneous, offspring, and
with large effective population size (Ne). Molecular breeding can be deployed here aiming to overcome
some of the constraints and ensure that resources will be allocated only to superior candidates. In spite
of the challenges of implementing genomic selection in outbred species with large Ne as in the case of
ryegrass (Lin et al., 2014), promising results have been shown for genome-wide marker-based prediction
of dry matter yield (Guo et al., 2018; Arojju et al., 2020), heading date (Fè et al., 2015), and nutritive
quality traits (Arojju et al., 2020).

A second complication arises from ryegrass being a perennial biomass crop, that can be harvested mul-
tiple times within a year, and across years. As is common in plant breeding, selection candidates will
additionally be evaluated in multi-environment trials, and may show genotype-by-environment interac-
tions (G×E) that can exhibit plasticity with developmental stage within a year and plant age across
years. This underlying complex (co)variance structure from the multidimensional space involved is
rarely explored in multiple harvest crop species, which results in a lack of knowledge about G×E effects
at different crop ages across environments and vice versa. Sophisticated methods to account for data
coming from multiple harvests (Faveri et al., 2015) and multiple environments (Malosetti et al., 2016)
are available but studies combining these dimensions remain scarce. A few empirical studies show im-
portant results for the combined analysis of multiple harvest-location trials (Ferrão et al., 2017; Giri
et al., 2019). In this context, variance and covariance modeling usually relies on stationary parametric
correlation and factor-analytic structures. However, no study to date has investigated the covariance
structure defined in random regression (RRM) models (Meyer & Kirkpatrick, 2005) to the analysis of
multiple harvest-location data from perennial crops.

The standard approach to analyse multi-harvest data is to use the total annual biomass production as the
response variable. This is rather a simplification and may miss biologically important aspects shaping
genotypes’ response over time, and ignores time-dependent covariates. Throughout the production year,
environmental variables change and so do the genotypes’ responses, given its level of plasticity. This
linear or higher-order reaction norm can be expressed through a regression on functions of continuous
covariables in the mixed model framework. Such models have been extensively used in animal breeding
to model lactation curves given their longitudinal characteristics, and are referred to as test-day milk
yield models. They are computationally efficient in describing trait trajectories as covariance functions
(e.g., orthogonal polynomials and splines) explicitly defining the (co)variance between records using fewer
parameters (Kirkpatrick et al., 1990; Meyer, 1998), and can be extended to multiple trait analysis. The
advances and applications of random regression models were recently reviewed by (Oliveira et al., 2019)
and include an overview of genomic prediction and genome-wide association studies based on genomic
random regression models (gRRM). The use of gRRM in plants has been limited but is gaining traction
due to the advent of high-throughput phenomics platforms that generate temporal phenotypes (Campbell
et al., 2019; Momen et al., 2019; Moreira et al., 2021; Sun et al., 2017; Campbell et al., 2018) and to
the availability of traits recorded over a continuous e.g., harvest time (do Amaral Santos de Carvalho
Rocha et al., 2018) and environment (Ly et al., 2018; Marchal et al., 2019). These authors reported
improvements when fitting gRRM models for quantitative genetic studies, demonstrating its efficacy
for the analysis of complex and longitudinal traits. In addition, prediction accuracies of longitudinal
traits were shown to be higher when simultaneously including an environmental-dependent covariate
e.g., temperature-humidity index, in animal studies (Bohlouli et al., 2019). Therefore, gRRM models
may be suited to accommodate the kind of data generated by multi-environment evaluation of ryegrass
families.

Yearly growth and regrowth dry matter yield sum of ryegrass is the target breeding trait. However,
there is a growing interest in the improvement of nutritive quality parameters e.g, dry matter digestibil-
ity (D-value), as it leads to increased animal performance (Miller et al., 2001). Forage quality traits are
essentially time-dependent, showing substantial temporal variation as above-ground biomass is removed
by sequential harvests or by animal grazing (McGrath et al., 2013), meaning they can be considered in-
finitely dimensional traits. The shape of their curves can be modeled by orthogonal polynomial functions,
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a way to model variances and covariances of a longitudinal trait (Schaeffer, 2016). Also, the existence
of significant correlations among forage quality traits (Jafari et al., 2003; McGrath et al., 2013; Wang
et al., 2015) implies that their trajectories are interrelated across seasonal plant growth and develop-
ment. Therefore, random coefficient models using Legendre polynomials can be an attractive approach
to describe the genetic variation in repeated measurements of ryegrass quality traits.

Since the conceptualization of the term reaction norm byWoltereck (1909) and the later well-known study
from Finlay & Wilkinson (1963) describing phenotypes of a quantitative trait as a continuous function of
a changing environment, substantial progress has been made towards the development of reaction norm
models for characterization of G×E in animal and plant breeding (Su et al., 2006; Lian & de los Campos,
2016). Reaction norm models can outperform conventional models in terms of accuracy of breeding value
estimates due to better exploitation of information from the target and adjacent environments (Mulder,
2016). Estimating population-level responses, individual-level reaction norms with varying coefficients,
and the flexibility of model virtually any shape of linear or nonlinear response to a changing environment,
makes gRRM models a powerful statistical tool to dissect plant plasticity (Arnold et al., 2019). In
this study, reaction norm models were explored considering environment- and time-dependent covariates
aiming to investigate the effect of modeling the temporal dimension on the relative accuracy of prediction
of ryegrass dry matter yield and spectroscopy-based quality traits. In addition, discussions are elaborated
regarding genetic parameters profiles, G×E interaction across sources of variation, and its relevance for
ryegrass breeding.

Material and Methods

Plant material, field experiments, and phenotypes
To accomplish the goal of leveraging the usage of spatio-temporal data for genomic prediction in ryegrass,
the data from the GreenSelect project was used. The dataset is characterized by 381 F2 family pools
and four commercial checks of diploid perennial ryegrass (Toddington, Sputnik, Boyne, and Abosan 1),
all developed by the breeding company DLF Seeds A/S. The F2 families were obtained by crossing 104
parents in two unconnected sparse diallel crossing schemes, instead of producing all n (n− 1)/2 pairwise
possible outcomes. The larger diallel (diallel A) comprises 88 parents, yielding 335 crosses, while the
small one (diallel B) consisted of 16 parents and a total of 46 crosses (Figure 1, A). Parental plants were
clonally propagated to allow the same genetic material to be used in more than one cross. Following
one round of seed multiplication, two field experiments were carried out in two locations in Denmark
(Figure 1, B). The experiments were sown during the fall season of 2018 at a seed rate of 22 kg ha-1.
The first harvest event took place during the spring of 2019 when plants reached the boot (R0) growth
stage (Moore et al., 1991). Subsequent harvests were performed in intervals of ∼5 weeks. Four harvests
of fresh biomass were mechanically performed each year using a HALDRUP plot combine for a total of
two testing years (2019 and 2020). Each field experiment layout consisted of entries assigned to one or
two replicates within two nitrogen (N) availability conditions: i) normal N rate (380 kg-1 N ha-1 yr-1),
and ii) low N rate (280 kg-1 N ha-1 yr-1). For the normal availability, 152 kg N ha-1 were applied in
early spring at the beginning of growth, 114 kg N ha-1 after the first cut, 76 kg N ha-1 after the second,
and 38 kg N ha-1 after the third cut. In the low-N condition, 112 kg N ha-1 were applied in early spring
at the beginning of growth, 84 kg N ha-1 after the first cut, 56 kg N ha-1 after the second, and 28
kg N ha-1 after the third cut. Irrigation was supplied right after every N fertilization. Therefore, 1,024
experimental units (plots) of the size of 12.5 m2 were evaluated in location 1 in an irregular rectangular
grid of 144 rows by eight columns, and the same number, but with a larger size (13.5 m2), in location 2
and laid out in a regular rectangular grid of 128 rows by eight columns.
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Figure 1: Graphical representation of two partial diallels crosses producing 381 F2 ryegrass families (A)
and a map of the country of Denmark highlighting the two testing sites (B). Barplot in A shows the
total number of realized crosses with each parental genotype. The map in B is annotated with a violin
plot where black dots represent the overall mean for the cumulative two years dry matter yield at two
nitrogen levels.

Phenotypes were recorded for eight traits at each harvest. Dry matter yield (DMY), expressed in grams
of dry matter per squared meter, was assessed after correcting for moisture content. The seven nutri-
tive quality traits are acid detergent fiber (ADF), acid deterged lignin (ADL), dry matter digestibility
(DMDig), neutral deterged fiber (NDF), digestible NDF (NDFD), protein (Prot), and water-soluble
carbohydrate (WSC); all measured as a percentage of DMY, except for NDFD, which is measured as
proportion of NDF. Moisture and quality parameters were measured via a near-infrared spectrometer
onboard the plot combine.

Genomic data
All F2 families and check cultivars were subjected to the genotyping-by-sequence (GBS) process for
genome-wide single nucleotide polymorphisms (SNPs) discovery. Plant genomic DNA was extracted from
young leaves of bulks with several plants on a Tecan Freedom EVO robotic system (Tecan, Switzerland)
using the MolGen PurePrep Leaf Kit (MolGen, The Netherlands), adapted for automated extraction.
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The DNA concentrations were normalized and digested with ApeKI (5-bp recognition site) and PstI
(6-bp recognition site) restriction enzymes during library preparation. The GBS libraries were prepared
according to the protocol described by Poland et al. (2012) with minor modifications. Libraries were
sequenced by Beijing Genomics Institute (BGI Tech Solutions, China) using DNA nanoball (DNBseq)
high-throughput sequencing solution with SE100 reads. Sequence reads from 385 entries were trimmed to
remove adaptors (using Scythe 0.994 - https://github.com/vsbuffalo/scythe) and low-quality reads
(using Sickle 1.33 - https://github.com/najoshi/sickle), with the quality threshold for trimming
equal to 20. Demultiplexing was performed using Sabre 1.00 (https://github.com/najoshi/sabre) af-
ter discarding reads with lengths inferior to 40 bp. Demultiplexed reads were mapped to the draft Lolium
perenne sequence assembly (Byrne et al., 2015) using BWA 0.7.5 (Li & Durbin, 2010). Variant calling
was performed using GATK 3.2.2 (McKenna et al., 2010) and only biallelic sites were retained for further
analysis. The final set of SNPs was achieved after several tests of filtering parameters and inspections of
PCA plots and consists of 56,645 markers. This set was reached following the exclusion of markers with
a missing rate above 0.5, minor allele frequency lower than 0.05, mean read depth lower than one, and
entries with more than 0.9 of missing data.

The similarity between every two entries was given by the genomic kernel of the form described in
equation 1, which is a genomic relationship matrix (GMR) [method 1, VanRaden (2008)] modified to use
allele frequencies as described by Ashraf et al. (2014).

G =
MM′

1
n

∑m
j=1 p̂j(1− p̂j)

(1)

where M is a matrix of mean-centered allele frequencies and the cross-product of this matrix is further
divided by a scaling parameter; n is the ploidy number of the breeding material and takes a value equal
to four once diploid parents were crossed to generate the evaluated F2 families; m refers to the number
of markers, and p̂j is the frequency of the jth marker. The diagonal of the relationship matrix G was
then corrected by scaling down its elements according to an inflation parameter for each entry, which
only depends on the ploidy number and the average ST (coverage depth) of the sample (Cericola et al.,
2018). A visual representation of the genomic relationship matrix is displayed as a heatmap in Figure 2
alongside annotations for trait means for every entry.
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Figure 2: Heatmap of the genomic relationship matrix (GMR) annotated with family source information
and phenotypic data from mean-centered dry matter yield (DMY) [barplot] and seven nutritive quality
traits: ADF: acid detergent fiber; ADL: acid detergent lignin; DMDig: digestible dry matter; NDF:
neutral detergent fiber; NDFD: digestible NDF; Prot: protein; and WSC: water-soluble carbohydrate
(right-hand heat ‘columns’). GMR rows and columns are clustered via hierarchical clustering using
Euclidean distance as the dissimilarity measure with the ‘complete’ (maximal intercluster dissimilarity)
linkage type.

Statistical models
The dry matter yield records were transformed by applying the natural logarithm scale (base e) to
correct for the skewed distribution, which is expected in this type of time-series data, and lower the
non-constant error variances (heteroscedasticity). Therefore and for simplicity, all models were fitted
on the (natural-)log-transformed data [log(y)]. For the set of nutritive quality traits, all analyses were
performed sustaining the original scale.

In the statistical models described below, phenotypic values of each genotype were regressed on the
environmental gradient (EG) or the combination of EG and time points covariables. Thus, random
regression coefficients are computed for every entry, hence the model designation. Environments were
ordered by mean performance to create the environmental index. Polynomial functions as the basis func-
tions were used to model both longitudinal dimensions. Orthogonal Legendre polynomials (Kirkpatrick
et al., 1990) were obtained by first rescaling the time points and environmental means to the range from
-1 to 1 using 2.

xi = −1 + 2

(
xi − xmin

xmax − xmin

)
(2)

followed by the recursive equation 3.

Pn+1(xi) =
1

n+ 1
((2n+ 1)xiPn (xi)− nPn−1 (xi)) (3)

and the normalization according to the equation 4.
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ϕ (xi) =

(
2n+ 1

2

).5

Pn (xi) (4)

In a matrix setting, Legendre polynomials can be computed as Φ = MΛ, where Φ is a matrix containing
the normalized polynomials for harvest time/environment means; M store polynomials of standardized
harvest time/environment mean values; and Λ is the matrix of Legendre polynomial coefficients of
order d + 1, where d is the degree of fit (Schaeffer, 2016). The intercept was set to 1.00 instead of√
1/2 from the full Legendre Polynomials covariates. The choice of the proper polynomial degree for

the time and environmental trajectories was made based on assessments of the goodness-of-fit criteria
Akaike information criterion - AIC (Akaike, 1974) and Bayesian information criterion - BIC (Schwarz,
1978). The final decision for the appropriate level of flexibility in the model selection process was based

on cross-validation, which allows for direct computation of test error as CVk = 1
k

∑k
i=1(yi − ŷi)

2. The
drop among the estimated test mean squared error for each polynomial fit was computed and the model
showing the minimum with the lowest-order degree was selected. Finally, the ultimate random regression
models fit Legendre’s polynomial of degree one (linear) over the environmental gradient and of degree two
(quadratic) over harvest time. The linear function over the environmental index yields two biologically
meaningful coefficients: the intercept (overall performance) and the slope (plasticity) which are random
effects that vary freely among individuals.

All models described hereafter contain an additional random term, which is a summation of random
effects, that captures the variance due to the spatial field variation as well as border effects. The 2D field
layout was scanned in a sliding window manner to capture the spatial variability (see Figure 3). The
defined window size covers 14 neighboring experimental units, all equally weighted on the target plot.
The sliding window in a given position was unique in each one of the four harvests. A common spatial
variance was assumed but the alternative scenario, where environment-specific variances are estimated,
is possible to model as shown by Guo et al. (2020).

Virtual plot

Sliding window
Trial 
 continues

Field columns

F
ie

ld
 r

ow
s

Figure 3: Schematic representation of a segment of one field trial showing the spatial modeling strategy
by means of a sliding window over columns within rows to scan for spatial variability. Virtual plots
surrounding the trial are highlighted in grey. The moving window takes up 15 plots each time, the
targeted plot (red cell) and 14 surrounding plots, to mine for local spatial heterogeneity.

Random regression baseline model (M1)
The baseline adopted model accounts for the spatial dimension by regressing individuals on environmen-
tal gradient Legendre Polynomial covariables. Thus, modeling repeated measurements as an infinite-
dimensional (function-valued character) model instead of a character state approach. All four harvest
events were summed to compute the total dry matter yield of the whole production year (response
vector y) and can be seen as a measure of the area under the dry matter production curve. As the
nutritive quality traits are expressed as a percentage of DMY, the response vector for each variable was
obtained by a weighted average, where the weighting factor was the DMY of each harvest. Therefore,
the univariate random regression model in eq. 5 was fitted to the data.

yijes = bi +

q∑
k=1

βkjϕk(e) +

q∑
k=1

γkjϕk(e) +
15∑
s=1

ψs + ϵijes (5)

7

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 1, 2022. ; https://doi.org/10.1101/2022.05.01.489357doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.01.489357
http://creativecommons.org/licenses/by-nc-nd/4.0/


where yijes represents the phenotype of each j full-sib family at the environment point e within the ith
level of fixed effect b (year-location-management classes); βkj and γkj are the kth random regression
coefficients for the additive genetic and non-additive effects, respectively, for family j (the last is referred
as permanent environment effect by the animal science community); ϕk(e) represents the kth Legendre
covariate for the record of family j made at the environment point e; q is the number of covariates; ψ is
the spatial effect accounting for 14 neighboring plots plus the target experimental unit (see Figure 3),
and ϵijes is the environment-independent random residual for each observation. No fixed regression was
fitted once the model term bi already describes the overall trajectory of the population. The model term
capturing the non-additive entry variance over the environmental gradient trajectory can be seen as an
overlap of effects, e.g., dominance, epistasis (Kruuk & Hadfield, 2007), and non-random environment
effects, that persists throughout the trajectory. As a linear reaction norm model, equation 5 can also be
fitted without the use of orthogonal polynomials. In matrix notation, the model specified in 5 can be
rewritten as displayed in equation 6.

y = Xb+ Z1u+ Z2pe+
15∑
i=1

Zis+ ϵ (6)

where y is the vector of observed phenotypes; b is the vector of fixed effects; u and pe are the vectors
of random regressions for additive genetic and non-additive effects, respectively; s is a vector of spatial
effect; X and Zi are the design matrices linking fixed and random spatial effects to the phenotypic
records; Z1 and Z2 are covariable matrices containing orthogonal polynomials; ϵ is a vector of random
residuals. It was assumed a (co)variance structure of the form presented in 7.

var


u
pe
s
ϵ

 =


G⊗W 0 0 0

I⊗Pe 0 0
Iσ2

s 0
sym. Iσ2

ϵ(e)

 (7)

whereG is the genomic relationship matrix described in equation 1;W and Pe are 2 × 2 (co)variance ma-
trices of random regression coefficients for the additive genetic and non-additive effects, respectively; σ2

s

is the spatial effect variance; σ2
ϵ(e) stands for the heterogeneous residual varying for each combination of

year-location (four classes in total); I is an identity matrix; and ⊗ is the Kronecker product. Genomic
estimated breeding values (gEBVs) of a family j can be computed for each e point of the environmental
gradient as follows: gEBV e

j = ϕeûj , where ûj is the 2×1 vector of estimated additive genetic values
and ϕe is the vector of orthogonal coefficients evaluated at each environment e.

Random regression model (M2)
The baseline model was expanded to allow the modeling for the harvest event. Thus, the linear model
in equation 8 accommodates a non-linear function (second-order Legendre polynomial) to model days to
harvest and a linear fit over the environmental gradient, allowing the identification of G×E for combina-
tions of environment and harvest date levels. Therefore, the model is smoothing the covariance matrix
by using a reduced fit (m− 1).

yijtes = bi +

q∑
k=1

αkjϕk(t) +

q∑
k=1

δkjϕk(t) +

q∑
k=1

βkjϕk(e) +

q∑
k=1

γkjϕk(e) +
15∑
s=1

ψs + ϵijtes (8)

where yijtes represents the phenotype of each j full-sib family at harvest point t and environment point e
within the ith level of fixed effect b (year-location-management-harvest classes); αkj and βkj are the kth
random regression coefficients for the additive genetic effects for the jth family by harvest and environ-
ment classes, respectively; δkj and γkj are the kth random regression coefficients for the non-additive
genetic effects for the jth family by harvest and environment classes, respectively; ϕk(e) represents
the kth Legendre covariate for the record of family j made at the environment point e; ϕk(t) represents
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the kth Legendre covariate for the record of family j made at the harvest point t; q is the number of co-
variates; ψ is the spatial effect as described in M1; and ϵijtes is the time- and environment-independent
random residual for each observation. The matrix representation of the model M2 is as presented in
equation 6, with the proper expansion of the order of matrices and vectors to accommodate the har-
vesting effect. In this model, the combination of year, location, management, and harvest yields 32
subclasses for the fixed part Xb. This is further expanded by accounting for the plot forage harvester
by date effect (h/d), given that each harvest event was generally performed in more than one day and
oftentimes with two combines. In addition, the h/d of the previous harvest event (except for the first
one) was also included. During the data wrangling process, it was noticed a substantial effect of these
effects as additional sources of variation. The (co)variance structure of M2 also follows:

var


u
pe
s
ϵ

 =


G⊗W 0 0 0

I⊗Pe 0 0
Iσ2

s 0
sym. Iσ2

ϵ(te)

 (9)

however, the variance-covariance of u is now:

var[u] = var


ui

ust

uqt
use

 = G⊗W = G⊗


σ2
ai

σaiast σaiaqt σaiase

σ2
ast

σastaqt σastase

σ2
aqt

σaqtase

sym. σ2
ase

 (10)

where σ2
ai
, σ2

ast
, σ2

aqt
, and σ2

ase
are the additive genetic variances for intercept, harvest slope, harvest

quadratic term, and environmental slope, respectively; and W is the (co)variance matrix of the additive
genetic random regression coefficients. The (co)variance structure for u in 10 also applies to var[pe],
however, the genomic relationship matrix G is replaced by an identity matrix I. Finally, σ2

ϵ(te) in 9 is
the heterogeneous residual variance structure with 16 classes, one for each combination of year-location-
harvest.

Genetic parameters were estimated from M2 and include the additive genetic and permanent environ-
mental (co)variance matrices computed as ΦWΦ′ and ΦPeΦ′, respectively. Diagonal elements from
these matrix operations are the additive (σ2

a) and non-additive genetic (σ2
pe) variances for each harvest

time or environment class. From the off-diagonal, covariances between jth harvest time and eth environ-
ment were obtained for additive and non-additive genetic effects. The matrix Φ of the order m · (n+ 1)
contains Legendre polynomials for days to harvest and environmental gradient and takes the following
form in M2:

Φ =



1 ϕl(t1) ϕq(t1) 0
1 ϕl(t2) ϕq(t2) 0
1 ϕl(t3) ϕq(t3) 0
1 ϕl(t4) ϕq(t4) 0
1 0 0 ϕl(e1)
1 0 0 ϕl(e2)
...

...
...

...
1 0 0 ϕl(e8)


(11)

The gEBV of a family j from the random regression model can be computed for every combination of
time point and environment as gEBV t,e

j = ϕ(t)eûj where ûj is the 4×1 vector of solutions for family j’s
additive genetic value and ϕ(t)e is the vector of orthogonal coefficients evaluated in time point t and
environment e. For instance, one can compute the annual DMY for an average environment (predictor
equal to zero) by multiplying ûj with the first four rows of Φ in 11.

Additional genetic parameters were derived from model M2 and it includes estimates of the additive
genetic correlation (ρa(ij)) between ith harvest time in jth level of the environment:
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ρa(ij) =
σaαβ(ij)√

σ2
aα(i)

√
σ2
aβ(j)

(12)

and narrow sense heritability in an entry-mean basis:

h2ij =
d(G)(σ2

aα(i) + σ2
aβ(j) + 2σaαβ(ij))

d(G)(σ2
aα(i) + σ2

aβ(j) + 2σaαβ(ij)) + σ2
pδ(i) + σ2

pγ(j) + 2σpδγ(ij) +
σ2
ϵ(ij)

r

(13)

where, d(G) is the average diagonal element of the G-matrix, σ2
aα(i) and σ2

aβ(j) are the trait’s additive

genetic variances for the ith cut and j th environment, respectively; σ2
pδ(i) and σ

2
pγ(j) represents the trait’s

non-additive variance for the ith cut and j th environment, respectively; σaαβ(ij) and σpδγ(ij) are the
additive genetic and non-additive covariances between levels of cut and environment, respectively; σ2

ϵ(ij)

represents the heterogeneous residual variance for each combination of cut and environment; and r is the
harmonic mean of the number of replicates. Reaction norm trajectories/surfaces were computed for all
entries as population-level deviations across time gradient considering an average environment, across
the environmental gradient considering an average harvest performance within a production year, and
the combination of them using a three-dimensional plot (by forcing the solution vector to be a diagonal
matrix). All parameters can be estimated for every combination of harvest and environment within the
limit ranges of the study. Genetic parameters were displayed for a total of 16 levels of harvest time
considering that the four harvests were not performed exactly the same day in every combination of
year-location. Indeed, gRRM can efficiently bookkeep these differences among individuals for levels of
covariate indexes.

Multivariate random regression model (M3)
The multivariate random regression is a more flexible model but at the expense of requiring the es-
timation of a greater number of parameters. In this setup, the aim was to treat the four repeated
harvests as different traits (character-state approach). Again, first-order Legendre polynomials gener-
ated using environmental means were regressors in the model for the additive genetic effect and describe
the random trajectories of each individual over the environmental gradient. The non-additive random
term

∑q
k=1 γkjoϕko(e) was dropped from the model to reduce the computational burden and to facilitate

convergence. Therefore, the model M3 was defined as follows:

yijeso = bi +

q∑
k=1

βkjoϕko(e) +

15∑
s=1

ψso + ϵijeso (14)

where yijeso was the eth performance record of the jth full-sib family from the oth trait (i.e., response
variable measured at each harvest); bi was the fixed effect (year-location-management classes plus h/d
levels) for the oth trait; βkjo was the kth random regression coefficients for the additive genetic
effects for family j; ϕko(e) represents the kth Legendre covariate for the record of family j made at the
environment point e for the oth trait; q is the number of covariates; ψ was the spatial effect accounting
for 14 neighboring plots plus the target experimental unit (see Figure 3), and assumed independent
between traits for simplicity; and ϵijeso is the time- and environment-independent random residual for
each observation. In an expanded matrix notation, model M3 can be represented as follows:


y1

y2

y3

y4

 =


X1 0 0 0

X2 0 0
X3 0

sym. X4



b1

b2

b3

b4

+


Z1 0 0 0

Z2 0 0
Z3 0

sym. Z4



u1

u2

u3

u4

+


∑15

i=1 Zi1 0 0 0∑15
i=1 Zi2 0 0∑15

i=1 Zi3 0

sym.
∑15

i=1 Zi4



s1
s2
s3
s4

+


e1
e2
e3
e4


(15)
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here, yi are subvectors of phenotype records for trait one to four; Xi, Zi, and Zii are incidence
matrices linking observations in yi to the set of fixed effects in bi, random additive genetic effects
ui, and random spatial effects si, at the ith measurement time. Variance components were esti-

mated by assuming
[
u1 u2 u3 u4

]T ∼ N (0,G⊗W),
[
s1 s2 s3 s4

]T ∼ N (0, I⊗ S), and[
e1 e2 e3 e4

]T ∼ N (0, I⊗R). The additive genetic effects for all harvests comes in a 8×8
(co)variance matrix W with additive genetic variances for each trait’s intercept and slope on the di-
agonal and additive genetic covariance between random regression coefficients on off-diagonal positions.
It can be shown that if a polynomial of maximum degree (m− 1) is used for the temporal dimension on
model M2, then estimates of W approximates the ones from the full multivariate approach in M3. The
covariances between harvests in S for spatial and in R for residual effects were restricted to zero, while
W was assumed as unstructured. Heterogeneous residual variances (Iσ2

ei) were estimated within harvest
for four classes: i= 1 to 4 (combination of years and locations). The vector of gEBVs for each j family
was obtained as gEBV t,e

j = ϕ(t)eûj , where ûj is the vector of solutions for family j’s additive genetic
value and ϕ(t)e is the vector of orthogonal coefficients for every time point t (trait) and environment e.
The average gEBV was used as e metric of annual performance. Finally, temporal G×E can be assessed
from M3 by the magnitude of the additive genetic correlations across time measurements, in which lower
values suggests higher interaction.

Model assessment
The adopted prediction scheme attempts to explore a situation where the goal is to predict the two-year
gEBV of newly developed families (unobserved) for an average environment i.e., the specific point of the
trajectory where the environmental dimension has zero value. This mimics a scenario where the breeder
is interested in assessing the overall adaptability of new breeding material and performing selections
based on its rank. Therefore, the validation of genomic-based predictions from the described scheme
was performed with a 10-fold stratified cross-validation setup. Genotypes were randomly sampled in a
proportional manner within each stratum, represented by the two diallels, and allocated to one of the
10 folds. This ensures that each fold has the same proportion of families from each stratum as the
original dataset, therefore, sustaining a similar level of relationship between training and testing sets.
Folds constituents were kept constant across prediction models to secure comparability. Hence, for every
run,∼90% of the data was used as a training set to predict the remaining masked families in the validation
set where phenotypes were discarded. For each model, the ability to predict the genomic breeding value
of individuals in the validation (hold-out) set was assessed by the correlation between genomic estimated
breeding values of families in the test set from the reduced data (partial dataset) with genomic estimated
breeding values from the full dataset (ρf,r) in which individuals breeding values were predicted using own
records (Legarra & Reverter, 2018) and can be seen as a relative measure of prediction accuracy. The
quality of fit produced by each model was also assessed by average estimates of bias (intercept µf,r) and
dispersion (slope bf,r) via linear regression of the type gEBVfull = b0 + b1 ∗ gEBVreduced across folds,
and the values presented in a table format (Supplemental Table S1). A second study was designed in
which the large sparse diallel was used to predict the small one, resembling a scenario where the goal is
to use the available information to predict an independent population. Prediction accuracy and quality
of fit were assessed as before. Finally, this last study was used to test an additional scenario in which
the goal was to forecast the two-year gEBV by recurrently updating model M2 with new measurement
data arriving from every new harvest up to the 7th, and computing the correlation with the gEBV from
the whole dataset in a forward chaining-like cross-validation strategy.

Computation and Data Visualization
In all described models above, variance components were estimated by average information restricted
maximum likelihood (AI-REML) using the DMU package version 6 (Madsen & Jensen, 2013), with con-
vergence precision for REML set to 10-6. The DMU4 module was then used for computations regarding
all cross-validations. Computations were performed on the GenomeDK high-performance computing
facility located at Aarhus University, Denmark. Data wrangling, downstream analyses, and data visual-
ization were performed using the R programing language (R Core Team, 2020). Figures were prepared
using ggplot2 (Wickham, 2016), ComplexHeatmap (Gu et al., 2016), and Plotly (Plotly Technologies
Inc., 2015) R packages.
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Results
The DMY across cuts follows a typical quadratic curve. The overall DMY of the 1st, 2nd, 3rd, and 4th
cuts were 709.9, 360.1, 219.1, and 177.4 g m2 for the first production year and 711.1, 153.7, 124.7, and
91.4 g m2 for the second, respectively. The fitted model M1 modeled a commonly used response variable
conceived by the sum of all cuts within a production year. This model required the estimation of 11
parameters in the maximized likelihood function. When cuts were individually considered, models M2
and M3 were fitted, requiring the estimation of 37 and 56 parameters, respectively, given the imposed
restrictions on non-existent covariances on model M3. Despite dropping the random term capturing
the non-additive genetic variance in M3 and covariance restrictions, the CPU time necessary to reach
convergence was considerably higher compared to the models M2 and M1. Therefore, gRRM M2 is
noticeable a more parsimonious model than M3 while fitting simultaneously linear and non-linear reaction
norms over a 4x higher dimension of phenotypic data compared to M1. Over the next sections, results
of genetic parameters and model comparisons for accuracy of gEBV prediction will be presented and
discussed thereafter.

Spatio-temporal genetic parameters and genomic breeding values
Estimates of variance components, additive genetic correlation, and heritability along the time and envi-
ronmental gradients were obtained for DMY (Figure 4) and seven nutritive quality traits (Supplemental
Figures S1, S2, and S3) by fitting model M2 to the data. The total genetic variance for DMY is mostly
explained by the additive term whereas the non-additive (residual genetic) random part of model M2
captures nearly no variance, except in marginal environments. The temporal dimension is the main
driver of changes in the DMY additive genetic variance profile while the environmental quality gradient
appears to have a constant effect across levels of the time gradient. Similarly, the temporal dimension is
the main cause of fluctuation in the additive genetic correlation surface. This conclusion holds also true
for all nutritive quality traits (Supplemental Figure S2). In fact, the first cut showed low correlations (≲
0.50) at all levels of the environmental gradient, which is evidence of strong G×E. It is convened that
genetic correlations above 0.8 between environmental exposure variations imply minimum re-ranking
of selection candidates whereas estimates below this threshold are evidence of G×E existence (Hayes
et al., 2016; Robertson, 1959). Finally, heritability estimates for DMY were generally high across the
two-dimensional gradients, with a tendency for increased values in later cuts. However, mostly moderate
to low estimates were observed for protein content and WSC (Supplemental Figure S2). The absence
of a smooth transition of heritability values across the bi-dimensional gradient space is due to the het-
erogeneous residual variance accounted for in all fitted genomic random regression models. Overall,
heritability estimates suggest sufficient genetic variability to allow breeding gains for all evaluated traits.

Figure 4: Three-dimensional diagrams showing the functional relationship between estimates of genetic
variance (left), additive genetic correlation (middle), and narrow-sense heritability (right), and the two
independent variables defined by the temporal and environmental gradients, for the dry matter yield
trait.
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In addition to the correlations quantified from model M2 and displayed in Figure S4 and Supplemen-
tal Figure S2, estimates of genetic correlations derived from multivariate model M3 between pairs of
biomass harvests/quality measurements are shown in Figure 5. Overall, there is a tendency for higher
correlations between nearby observations, suggesting autocorrelation. This is in accordance with Giri
et al. (2019) which reported 0.34 and 0.12 first and second-order temporal autocorrelation, respec-
tively, for ryegrass DMY among harvests. Except for WSC, later cuts show higher correlation values
and, consequently, less temporal G×E. The DMY of the first cut (spring harvest) corresponds to nearly
half of the total annual biomass mowed/grazed. As Figure 5 shows, there is roughly no association
between yield in the first cut and later measurements, implying substantial temporal environment ver-
sus genotype interaction. Accordingly, considerably re-ranking of genotypes’ reaction norm curve across
levels of time gradient can be observed for the first harvest (Supplemental Figure S4). Besides the
bi-dimensional changes in genetic variance and correlation, estimates of the 16 heterogeneous residual
variances obtained from model M2 also varied as much as 10 folds (highest-lowest ratio value) along with
high correspondence with estimates from model M3 (Pearson = 0.98).

Figure 5: Genetic correlations between pairs of harvests of dry matter yield (DMY) and repeated mea-
surements of nutritive quality traits in perennial ryegrass from an overall environment, estimated via
a multivariate random regression model (M3). ADF: acid detergent fiber; ADL: acid detergent lignin;
DMDig: digestible dry matter; NDF: neutral detergent fiber; NDFD: digestible NDF; Prot: protein; and
WSC: water-soluble carbohydrate.

Fitting the random regression model M2 results in a solution vector of the size equal to four, which can be
used to generate surface plots of the reaction norm of every entry, given the appropriate matrices of time
and environmental covariables. Figure 6 displays such a surface plot where the top and bottom 20s entries
selected by intercept (overall performance) value of DMY are depicted. Complex G×E in early cuts arises
from both time and environmental gradients as surfaces cross each other, entailing re-ranking throughout
the two dimensions. In addition, the individual effect of both gradients on the shape of reaction norm
trajectories and re-ranking of entries can be seen in Supplemental Figures S4 and S5. Reaction norm
slopes from the environmental dimension measure the ability of ryegrass families to respond to increasing
environmental quality, assigning them a measure of plasticity which, as the data shows, vary across the
temporal spectrum. In fact, slope variance for the second cut from multivariate model M3 was ∼2.5
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larger than of the remaining cuts (data not shown). Also from M3, genetic correlations between intercept
and slope varied from -0.24±0.098 (first cut) to -0.82±0.032 (second cut), suggesting a certain level of
independence for the variance of these two quantities in the first harvest, which leads to an increased
possibility of re-ranking over the environmental gradient. Thus, sensibility emerges from both sources of
variations as gEBV profiles are not static along gradients.

Figure 6: Three views of the 3D surface plot displaying the genomic estimated breeding value (gEBV)
profile of the top and bottom 20s ryegrass families by intercept value, estimated via a random regression
mixed model for the dry matter yield (DMY) trait. The values on y-axis represent deviations from the
population trajectory captured by the fixed effect.

From gRRM model M2, correlation estimates between random intercept and slope were -0.68, -0.46, 0.17,
0.41, -0.73, -0.85, -0.65, -0.11 for DMY, ADF, ADL, DMDig, NDF, NDFD, Prot, and WSC, respectively.
These patterns can be seen in Supplemental Figure S5 and are similar to the ones computed using model
M1, which only accounts for the environmental dimension (data not shown). As the aforementioned
figure shows, little re-ranking across the environmental gradient was observed for traits expressing high
correlation between coefficients (NDF and NDFD), intermediate re-ranking for moderate correlation
values (DMY, ADF, DMDig, and Prot), and high G×E for the low correlated ones (ADL, WSC).
However, no re-ranking was observed between the top and bottom’s 20 families for all traits across the
environmental gradient as is displayed in Supplemental Figure S5. If for any of the evaluated traits,
genotypes that did better in low-quality environments did worse in high-quality ones and vice versa,
were available then high-magnitude negative correlations would be present in Supplemental Figure S2,
implying the existence of crossover interaction whithin the range of the environmental covariate. This
was not the case given the geographical similarity among environments.

Genomic Prediction of Breeding Values

The whole dataset stratified 10-fold cross-validation
Even though gRRM allows to estimate prediction accuracy throughout the whole trait trajectory, the
study focused on the ability to predict entries’ two-year gEBVs by comparing models with and without
the recovery of temporal information. Predicting genomic estimated breeding values in related popula-
tions yielded, as expected, high magnitude prediction accuracy values (Figure 7). The average Pearson
correlation coefficients across traits and models were considered high (>0.75), except for WSC (∼0.60)
using model M1. Prediction accuracy was slightly larger for model M1 when predicting dry matter
yield and digestibility. An increase in accuracy for WSC and in lower magnitude for protein and the
fiber variables (NDF and ADF) was due to the inclusion of the temporal dimension simultaneously with
environmental classes into the statistical models M2 and M3. The breeding values of nutritive quality
traits ADF, NDF, and WSC (M2 and M3) were easier to predict than the others. The values of the re-
gression coefficients (µf,r and bf,r) which reveal bias and inflation or deflation (over or under-dispersion)
are available in Supplemental Table S1. For bias, whose values µf,r < 0 underestimate and µf,r > 0
overestimate predicted gEBVs, results shows only slight deviations from zero, indicating unbiasedness
of all model-trait combinations. On the other hand, values of slope (bf,r) were slightly superior to one,
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indicating a low level of deflation for all three models. At this point, it is relevant to mention that
these semi-parametric estimates of fitting quality were improved by considering heterogeneous residual
variances.
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Figure 7: Correlation-based prediction accuracies of genomic estimated breeding values calculated by
fitting three predictive models in a stratified 10-fold cross-validation procedure to phenotypic data of
eight ryegrass traits. DMY: dry matter yield; ADF: acid detergent fiber; ADL: acid detergent lignin;
DMDig: digestible dry matter; NDF: neutral detergent fiber; NDFD: digestible NDF; Prot: protein; and
WSC: water-soluble carbohydrate.

Genomic prediction in an independent population
No known information from relatives is shared between training and testing sets for the cross-validation
scheme depicted in Figure 8. The genetic relationships were captured by dense markers in identity-by-
state (IBS) between subsets of individuals. In this scenario, a substantial drop in prediction accuracy
was observed compared to the whole dataset cross-validation scheme in Figure 7, especially for ADL,
DMDig, and NDFD. A clear separation of the prediction accuracy among the three tested models for
DMY shows model M1 with a 12% higher correlation compared with multivariate model M3. Despite
the decreased accuracy, model ranking did not change for the majority of assessed traits when comparing
scenarios depicted in Figure 7 and Figure 8. The absence of a close relationship between training and
test sets when using diallel A to predict diallel B drove poor metrics of bias and dispersion when predict-
ing gEBVs. Estimates of bias from models M2 and M3 somewhat diverged from zero when evaluating
nutritive quality traits, except for ADL and Prot, suggesting a tendency for wrong estimates of genetic
trends. In addition, slope values deviated from one, indicating the existence of over and under-dispersion
of the estimates. In general, the inclusion of the temporal dimension decreases slope values in favor of
over-dispersion.
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Figure 8: Correlation-based prediction accuracies of genomic estimated breeding values calculated by
fitting three predictive models to phenotypic data of eight ryegrass traits. The training and testing sets
were defined by the larger and smaller diallel populations, respectively. DMY: dry matter yieldADF:
acid detergent fiber; ADL: acid detergent lignin; DMDig: digestible dry matter; NDF: neutral detergent
fiber; NDFD: digestible NDF; Prot: protein; and WSC: water-soluble carbohydrate.

Longitudinal genomic prediction
Here, it is explored the usefulness of updating the predictive model M2 with data coming from new
harvests in a forecasting task. The compelling part of Figure 9 lies on the left-hand side of the plot
before the accuracy plateau is reached. Moving from position zero, whose values are the same as in
Figure 8, to one on the x-axis implies feeding the model with the first harvest measurements, which
differently affects the prediction power of two-year gEBVs. In this scenario, a moderate improvement was
observed for DMY and WSC, no gain in accuracy was observed for protein, whereas high improvements
were detected for the remaining traits. Adding the second harvest data substantially improves the model
capability in predicting the two-year DMY and WSC gEBVs. The magnitude of prediction accuracy
estimates scaled fast from low and moderate values in the situation where no identity-by-descent (IBD)
between training and testing sets as well as no phenotypic information of entries in the test set (zero
on the x-axis) were present, to further high values when predictions were conditioned to the opposite
scenario. The results offer evidence for the ability of random regression models to accurately predict
breeding values in advance by leveraging early cutting data.
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Figure 9: Prediction accuracies of genomic estimated breeding values calculated in a forward chaining-
like cross-validation strategy. The training and testing sets were defined by the larger and smaller
diallel populations, respectively. At each round of the cross-validation, the random regression model was
updated with new harvest data up to the seventh.

Discussion
In this study, reaction norms were constructed by regressing phenotypes on orthogonal polynomial covari-
ates defined over an environmental quality gradient (single dimension, linear fit) and by simultaneously
considering the environmental and temporal gradients (two dimensions) in a multi-environment, multi-
harvest setting via alternative random regression modeling approaches. Despite its attractiveness, plant
biologists have seldom used random coefficient models for measuring variation in reaction norms in
studies of phenotypic plasticity (Arnold et al., 2019). It has an appealing application for the study of
complex and economically important traits of forage grasses given the longitudinal nature and the fact
that repeated measurements do not totally reproduce the same trait. Repeated measurements from the
same genotype over time are subjected not only to a stronger change in the environmental conditions
but also to age-related changes and the impact of sequential harvests of aboveground biomass. This
may cause more changes to the landscape of gene expression and consequently phenotyping expression
than measurements recorded at the same plant growth stage across locations. This complex (co)variance
structure can be well modeled using gRRM as shown in the present study. Likewise, the spatio-temporal
observed changes in trait variance imply the necessity for heterogeneous residual variance modeling. Ac-
counting for heterogeneous residual variances in gRRM yields better goodness-of-fit estimates (Moreira
et al., 2021; Brito et al., 2017). Additionally to other sources of local environmental variations within
a field trial, spectroscopy-based traits, as well as DMY, are dependent on the water content of the
harvested material, which varies substantially within a cutting day. This spatial variation may not be
fully accounted for by prior blocking strategies and downstream corrections, leading to significant spatial
inter-dependencies. Hence, all fitted models accounted for spatial heterogeneity by an equally weighted
moving average grid which had a light effect on computer memory and CPU load. The possibility of
accounting for all the foregoing sources of variation in a classic mixed model framework as well as allow-
ing curvatures in the shape of the reaction norm motivated the use of gRRM models to the analysis of
ryegrass multi-environment test data.

The mean performance obtained in a given environment can be seen as the product of all interacting
factors conditioning genetics to a certain overall expression landscape. Therefore, it is the ultimate
single measure to describe that environment and can be used to construct an index to explain phenotypic
plasticity exhibited by crops. In this study, the spatial dimension did not arise from typical plant breeding
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multi-environment trials (MET) but instead, the limited number of locations was expanded by accounting
for nitrogen management and years of evaluation. Therefore, metrics characterizing G×E interaction
could be estimated at trait-level and include slope and intercept-slope correlation. The first is a measure
of sensitivity to changes in the environment whereas the latter defines the degree of association between
performance and sensitivity. The -0.68 intercept-slope correlation estimated for DMY implies that as
ryegrass families are exposed to superior environmental conditions the genetic variance becomes smaller.
This was also the case for fiber traits and protein. This may be an artifact of the defined environmental
gradient, which has a somewhat limited number of evaluation test sites and high similarity among them.
It may also be due to changes in weather conditions across years. Overall, moderate G×E interaction
was detected for DMY which is in line with other studies evaluating ryegrass across multiple sites (Fè et
al., 2015; Conaghan et al., 2008).

As annual plant growth and development progressed and measurements were performed, a temporal
gradient was defined. As measurement events slid over this index, the DMY additive genetic variance
increased (Figure 4). This can be attributed to the within-year differential mid-season to autumn plant
growth among breeding materials, increasing genotypic variance in later cuts of perennial ryegrass as
also reported in other studies (Arojju et al., 2020; Fè et al., 2015). In fact, later growth periods were
found as the ones with the highest breeding gain for ryegrass DMY over the last decades whereas no
improvement was detected for the spring cut (Sampoux et al., 2011). Similarly, variation in the extent
of entries’ persistence between years may explain the reason why additive genetic variance was higher
in lower DMY environments as it was defined by second-year’s average performances across locations
and managements. However, the literature is not clear on the actual existence of a significant genetic
component on perennial ryegrass persistence (Dodd et al., 2018; Faville et al., 2020) and no genetic gain
was detected for this trait during the last decades (McDonagh et al., 2016). Large genetic correlations
(>0.80) between DMY with origin on the second to the fourth cuts and DMY from all levels of the
environmental gradient implies the possibility of selecting for high genetic value in middle and later
cuts aiming to exploit the correlated response across environments. Therefore, selection for DMY and
nutritive quality traits can be benefited by assigning a limited weight to the spring cut performance.

The effect of spatio-temporal gradients on genotypic plasticity was demonstrated to be largely additive
for all assessed traits. Guo et al. (2018) reported a high proportion of additive to the total genetic
variance for dry matter yield of tetraploid ryegrass when using a sufficient larger set of SNPs (80 to
100k). The near-zero residual genetic variance found in the present study can be due to an improved
modeling of G and G×E as random intercepts and slopes were fitted, reducing confounding between the
two terms, which can occur when only random intercepts are fitted. Considering all traits, the spring cut
was poorly genetically correlated with all later cuts and across all levels of the environmental gradient,
especially in high yield environments (first production year across locations and managements). The
same correlation pattern, along with higher heritability in later cuts, was reported for DMY by Fè et
al. (2015) evaluating data from a commercial breeding program of perennial ryegrass. Besides higher
genetic variance and genomic heritability in later cuts, Arojju et al. (2020) also reported higher values
of predictive ability compared to the estimates obtained for spring harvests.

Variations in environmental features driving genetic responses and shaping phenotypic expression across a
continuous gradient also condition gEBVs to re-ranked states. The intensity of G×E was trait dependent,
with moderate importance for dry matter yield over the spatial dimension range defined in this study.
On the other hand, it was detected a high to low likelihood of re-ranking from the spring to the autumn
cuts. Mixed results were found for the remaining traits (Supplemental Figure S4). Given the latitude of
the test sites (above the 53rd parallel north), total solar irradiance and average temperature approximate
a bell-shaped curve, peaking during the summer. These yearly temporal changes on climate parameters
affect not only dry matter yield over successive cuts but also nutritive quality parameters (Loaiza et al.,
2016), explaining the significant variation of the quadratic term and the entries’ curvature of reaction
norms over the temporal gradient. In fact, a polynomial fit of the seasonal growth of perennial pasture
appears to be a reasonable approach to describe longitudinal variations across that continuum (Demanet
et al., 2015; Jensen et al., 2014).

Increasing model flexibility aiming at higher accuracy usually leads to less interpretable models, a condi-
tion known as the accuracy-interpretability trade-off. Besides decreasing model interpretability, higher-
order polynomials can overfit the training data, resulting in high prediction variance. In the present study,
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genotypes’ response to changes in the environmental gradient was chosen to be a linear reaction-norm,
allowing easy interpretation of the slope-coefficient as a plasticity estimate. The temporal dimension
showed a curvature where a quadratic term was needed to capture the true relationship more accurately
according to the model selection criteria. In biological terms, it can be argued that gRRM models can
depict the genetic mechanism of quantitative traits which are products of genes being switched on and
off across time and environmental gradients (Yin et al., 2014). Results of these models can be presented
in different ways e.g., one point on the curve or one of the curve parameters (Schaeffer, 2016). Here,
it was presented the total gEBV of a production year for an overall environment to allow comparisons
among the three models. Overall, results offer evidence that modeling non-linearities of phenotype ex-
pression over time leads to the improved predictive ability of reaction norm linear mixed models for
ryegrass nutritive quality traits. The results presented in this study showed gRRM M2 as a superior
modeling strategy to the multitrait approach both in terms of computational requirements and ability
to predict gEBVs. On the other hand, the accuracy of gEBV prediction for DMY was favored by the
simplest reaction norm model (M1), especially when training and testing sets were unrelated. Therefore,
the first-order reaction norm model seems to be advantageous if the goal is to predict the total DMY
of a production year. If the seasonal genetic evaluation is needed, then the flexibility offered by gRRM
model M2 would be preferred. Besides advantages as environmental correction on a harvest-date basis
and flexibility regarding phenotype recording, the random regression model is also suitable for early
evaluation of genetic merit in prediction settings as also pointed out by Campbell et al. (2018), which
can be useful for reducing the breeding cycle. The forecasting task of future breeding values when plants
are already in the field is of great utility as it can reduce the recurrent selection interval and, as a conse-
quence, accelerate the rate at which favorable alleles are combined in new offspring. In addition, it allows
breeders to infer about the future instead of waiting until the end of the crop year to look backward.

The breeding goal of improving ryegrass nutritive quality is more relevant than ever and is crucial for
sustainable animal production in the face of climate change. Besides dry matter yield per unit of area,
improving dry matter digestibility, among other quality parameters, can lead to increased forage intake
and use (Byrne et al., 2018). By leveraging random coefficient models, breeders can better investigate
the seasonal and spatial changes in genetic variability for target traits and better infer about differences
among selection candidates in multiple harvest-location crops. A rearrangement of factors analyzed
in this study may be advantageous for a practical breeding aspect, where many more locations of tests
are usually available. In the multivariate random regression setting, years can be considered as cor-
related traits at the same time as trait trajectories are modeled over harvest time and environmental
gradients. Further improvements may also be achieved by the inclusion of additional environmental
explanatory features such as weather and soil data, allowing deeper investigations into the multidimen-
sionality of phenotypic responses and to perform predictions of individuals in unobserved environments.
Finally, the powerfulness of gRRM is also of relevance in the context of plant phenomics, which produces
large-scale high-resolution spatio-temporal data, which requires proper statistical models and often the
integration of next-generation sequencing data.

Conclusions
Field evaluation of multi-harvest plant species in multi-environment is resource-intensive, thus appropri-
ate statistical methodologies are required to make sense of all generated data. In this study, it is shown
that gRRM models are a robust statistical approach to deal with data coming from perennial ryegrass
research, yielding biological meaningful coefficients and high accuracy of gEBV prediction, especially in
related training-testing prediction settings. Increasing model complexity by including harvest-level data
into reaction norm models appears to improve the ability to predict breeding values for herbage nutritive
quality parameters but not for two-year breeding value prediction of dry matter yield.
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Figure S1: Additive genetic variance (σ2
a) between each combination of time and environmental points,

estimated with a random regression mixed model for eight ryegrass traits. Each subplot depicts higher
values of σ2

a in green whereas lower values are portrayed using red. The intensity of grey color on bars
to the left and bottom positions of each subplot depicts the gradients from low values (brighter color)
to higher values (dark grey). The line plot graphics on the top and right-hand sides are annotations
showing the average σ2

a of all time points in a given environment and all environmental points in a
given level of harvest time, respectively. DMY: dry matter yield; ADF: acid detergent fiber; ADL: acid
detergent lignin; DMDig: digestible dry matter; NDF: neutral detergent fiber; NDFD: digestible NDF;
Prot: protein; and WSC: water-soluble carbohydrate.
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Figure S2: Additive genetic correlation (ρa) between each combination of time and environmental points,
estimated with a random regression mixed model for eight ryegrass traits. Each subplot depicts higher
values of ρa in green whereas lower values are portrayed using red. The intensity of grey color on bars
to the left and bottom positions of each subplot depicts the gradients from low values (brighter color)
to higher values (dark grey). The line plot graphics on the top and right-hand sides are annotations
showing the average ρa of all time points in a given environment and all environmental points in a
given level of harvest time, respectively. DMY: dry matter yield; ADF: acid detergent fiber; ADL: acid
detergent lignin; DMDig: digestible dry matter; NDF: neutral detergent fiber; NDFD: digestible NDF;
Prot: protein; and WSC: water-soluble carbohydrate.
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Figure S3: Narrow-sense heritability in an entry-mean basis (h2) between each combination of time and
environmental points, estimated with a random regression mixed model for eight ryegrass traits. Each
subplot depicts higher values of h2 in green whereas lower values are portrayed using red. The intensity of
grey color on bars to the left and bottom positions of each subplot depicts the gradients from low values
(brighter color) to higher values (dark grey). The line plot graphics on the top and right-hand sides are
annotations showing the average h2 of all time points in a given environment and all environmental points
in a given level of harvest time, respectively. The absence of a smooth transition along the gradients is
due to the heterogeneous residual variances. DMY: dry matter yield; ADF: acid detergent fiber; ADL:
acid detergent lignin; DMDig: digestible dry matter; NDF: neutral detergent fiber; NDFD: digestible
NDF; Prot: protein; and WSC: water-soluble carbohydrate.
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Figure S4: Families’ plasticity is depicted as a reaction norm on different levels of time to measure a
given trait along a temporal gradient for on overall environmental. Norms of reaction from genomic
estimated breeding values (gEBVs) are highlighted for the top (yellow) and bottom (black) 20 F2 fam-
ilies by the intercept value. A: dry matter yield; B: acid detergent fiber; C: acid detergent lignin; D:
digestible dry matter; E: neutral detergent fiber (NDF); F: digestible NDF; G: protein; H: water-soluble
carbohydrate. The values on y-axis represent deviations from the population trajectory captured by the
fixed effect.

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 1, 2022. ; https://doi.org/10.1101/2022.05.01.489357doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.01.489357
http://creativecommons.org/licenses/by-nc-nd/4.0/


−0.25

−0.20

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

−1.0 −0.5 0.0 0.5 1.0
Env. gradient

gE
B

V
s

A

−1.2

−0.8

−0.4

0.0

0.4

0.8

1.2

1.6

−1.0 −0.5 0.0 0.5 1.0
Env. gradient

gE
B

V
s

B

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

−1.0 −0.5 0.0 0.5 1.0
Env. gradient

gE
B

V
s

C

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

−1.0 −0.5 0.0 0.5 1.0
Env. gradient

gE
B

V
s

D

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

−1.0 −0.5 0.0 0.5 1.0

Env. gradient

gE
B

V
s

E

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

−1.0 −0.5 0.0 0.5 1.0

Env. gradient

gE
B

V
s

F

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

−1.0 −0.5 0.0 0.5 1.0

Env. gradient

gE
B

V
s

G

−1.50

−1.25

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

1.25

−1.0 −0.5 0.0 0.5 1.0

Env. gradient

gE
B

V
s

H

Figure S5: Families’ plasticity is depicted as a reaction norm on different levels of an environmental
gradient for an overall harvest performance. Norms of reaction from genomic estimated breeding values
(gEBVs) are highlighted for the top (yellow) and bottom (black) 20 F2 families by the intercept value.
A: dry matter yield; B: acid detergent fiber; C: acid detergent lignin; D: digestible dry matter; E: neutral
detergent fiber (NDF); F: digestible NDF; G: protein; H: water-soluble carbohydrate. The values on
y-axis represent deviations from the population trajectory captured by the fixed effect.

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 1, 2022. ; https://doi.org/10.1101/2022.05.01.489357doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.01.489357
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplemental tables

Table S1: Statistics of prediction bias µf,r and dispersion bf,r estimated as the intercept and slope,
respectively, of the linear regression of genomic estimated breeding values (gEBVs) from the full dataset
on the gEBVs from the reduced dataset.

Model Study Stat.
Traits

DMY ADF ADL DMDig NDF NDFD Prot WSC

M11
all2

µf,r 0.0007 -0.0063 -0.0008 0.0044 -0.0055 -0.0021 0.0021 0.0098
bf,r 1.1765 1.1459 1.1481 1.1715 1.1381 1.1547 1.0563 0.8622

small
µf,r 0.0586 -0.0319 0.0121 -0.0315 0.0264 -0.0484 -0.0298 -0.0973
bf,r 1.5143 1.4104 0.5829 1.0972 1.0456 0.5481 1.3136 0.6199

...

M2
all

µf,r 0.0003 0.0136 -0.0001 -0.0083 0.0117 -0.0135 0.0067 0.0363
bf,r 1.1710 1.1246 1.1439 1.1190 1.1452 1.1528 1.0624 0.9895

small
µf,r 0.0708 0.1974 0.0484 -0.2792 0.3700 -0.3766 -0.0903 -0.1668
bf,r 1.4442 1.1357 0.3232 0.3098 1.0307 -0.1545 1.5215 0.9689

...

M3
all

µf,r 0.0015 0.0101 0.0003 -0.0019 0.0169 -0.0197 0.0060 0.0046
bf,r 1.1454 1.1306 1.1268 1.1337 1.1475 1.1588 1.0525 1.0847

small
µf,r 0.0479 0.2846 0.0766 -0.2232 0.2867 -0.4643 -0.0632 -0.3305
bf,r 1.2469 1.0093 0.1770 0.4855 1.0834 -0.1985 1.4838 0.9050

1M1 - Random regression baseline model; M2 - Random regression model; M3 - Multivariate random regression model.
2Two prediction studies: all explores the whole dataset using a stratified 10-fold cross-validation strategy; small exploits

the ability to predict families from the small diallel using the large diallel as training set. DMY: dry matter yield; ADF:

acid detergent fiber; ADL: acid detergent lignin; DMDig: digestible dry matter; NDF: neutral detergent fiber; NDFD:

digestible NDF; Prot: protein; and WSC: water-soluble carbohydrate.
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