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Abstract

The increasing availability and scale of Genome Wide Association Studies
(GWAS) bring new horizons for understanding biological mechanisms. PathGPS
is an exploratory method that discovers genetic architecture using GWAS sum-
mary data. It can separate genetic components from unobserved environmental
factors and extract clusters of genes and traits associated with the same biolog-
ical pathways. When applying to a metabolomics dataset and the UK Biobank,
PathGPS confirms several known gene-trait clusters and suggest many new hy-
potheses for future investigations.

Understanding the biological mechanisms by which genetic variation influences phenotypes is
one of the primary challenges in human genetics1. Genome-wide association studies (GWAS) have
successfully mapped thousands of genetic loci associated with complex human traits. However,
it is extremely time-consuming and inefficient to investigate every identified association and
validate the function2. Moreover, complex traits are usually highly polygenic and are associated
with a large number of variants across the genome, each explaining only a small fraction of
the genetic variance3,4. These difficulties have hindered the translation of GWAS findings into
drug development and clinical applications5. When pooling data from multiple GWAS, recent
studies found that many complex traits and diseases are associated with the same genomic loci6

and identified many pairs of traits with strong genetic correlation7,8. This indicates that many
disease-causing variants may cluster into key pathways that drive several diseases at the same
time9. Recent large-scale biobank data provide an exciting opportunity to discover shared genetic
architecture between complex traits.

We start with a statistical model that assumes that most human traits are regulated by one or
several genetic or environmental pathways (Figure 1a, Online Supplement 1). This model high-
lights several challenges to recover the shared genetic architecture. First, isolating the shared
genetic contribution is difficult because the environmental factors are usually not observed. Sec-
ond, it is often desirable to use data from multiple cohorts, but those cohorts may be sampled
from different populations and measure different traits. Third, many traditional unsupervised
learning methods are very sensitive to small perturbations to the data and tuning parameter
selection.
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Figure 1: Illustrative summary of PathGPS. Panel a displays the graphical representation of our model
for latent genetic and environmental pathways (a1) and the corresponding gene-trait clusters (a2). Panel
b demonstrates how PathGPS takes a GWAS summary statistics matrix (b1), uses an external dataset to
select signal and noise index SNPs (b2), subtracts the covariance matrix of the traits based on the noise
index SNPs from that of the signal index SNPs to remove the environmental component (b3), applies
principal component analysis to learn a low-rank strcuture (b4), and finally assigns SNPs and traits with
non-zero loadings into clusters (b5). Panel c displays the proposed “bagging” procedure to stabilize the
results: for each resample of the data, PathGPS first constructs a co-appearance graph by connecting SNPs
and traits in the same gene-trait cluster (c1), then aggregates the co-appearance graphs by assigning edge
weights proportional to the likelihood of vertices appearing in the same gene-trait cluster (c2), visualizes
the aggregated graph and clusters in low-dimensional embeddings, and finally applies clustering algorithms
to output the discovered biological pathways (c3).

We propose a new statistical method called PATHway discovery through Genome-Phenome
Summary data (PathGPS) that can generate clusters of genes and traits associated with the
same biological pathways (Figure 1b). By subtracting the empirical covariance matrix of traits
computed using “noise” genes (genetic variants showing no or weak associations with the traits)
from that using “signal” genes (genetic variants showing strong associations with some traits),
PathGPS disentangles genetic mechanisms from environmental factors and overcomes the first
challenge (Online Supplement 2.1, Corollary 1, Figure 2). PathGPS then applies principal com-
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ponent analysis (PCA) to the matrix difference and provides a low-rank representation of the
genetic associations. We show that PathGPS is robust to batch effects (Online Supplement 2.1,
Corollary 2) and thus overcomes the second challenge. Regarding the third challenge, PathGPS
utilizes a novel bootstrap aggregating (“bagging”) method to stabilize the algorithm (Figure 1c,
Online Supplement 2.2). By resampling the genes, PathGPS obtains a weighted graph that esti-
mates the chance that a pair of variables (could be genes or traits) appear in the same pathway.
Dimension reduction techniques and clustering algorithms are then applied to visualize this graph
and produce the stabilized clusters.

We evaluate the practical performance of PathGPS in a comprehensive simulation study with
synthetic genes and traits generated from our statistical model. In the first set of simulations,
we assess PathGPS’s ability in disentangling genetic and environmental influences (Online Sup-
plement 3.1). We compare PathGPS with a baseline method that directly applies PCA to the
empirical covariance matrix of traits using the signal genes. PathGPS successfully finds clusters
of traits influenced by the same genetic pathways but not environmental factors, while the base-
line method is unable to distinguish genetic effect from environmental effect. In the second set of
simulations, we assess how bagging stabilizes the unsupervised learning algorithm. We compare
PathGPS with (Figure 1c) and without bagging (Figure 1b). PathGPS with bagging produces
significantly more robust results that is table across a range of reasonable hyper-parameters
(Online Supplement 3.2, Figure 4).

We apply PathGPS to two real datasets: a genome-metabolome wide association study
(N = 24925)10 and the UK BioBank (N = 361194)11 (Figure 2). We use haploR12 to map
SNPs to genes. For the metabolomics dataset (Online Supplement 5.1), PathGPS produces
7 clusters which roughly correspond to large high-density lipoprotein (HDL), small HDL, low-
density lipoprotein (LDL), intermediate-density lipoprotein (IDL), large very-low-density lipopro-
tein (VLDL), small VLDL, and non-lipoprotein measurements (Figure 2a). Thus, using genetic
data only, PathGPS is able to recover the known taxonomy of circulating metabolites. Moreover,
PathGPS confirms several known causal genes, such as PLTP as a regulator of HDL size13 and
PCSK9 as a regulator of LDL cholesterol14. PathGPS also proposes several biological hypotheses
that are not as well established, including RNF111 in relation to HDL15 and TM4SF5 in rela-
tion to lipid measurements16. In fact, few gene-trait pairs suggested by PathGPS directly reach
the genome-wide significant level after correcting for multiple testing, but the majority of the
gene-trait pairs are at least moderately associated. This demonstrates the ability of PathGPS
to associate a group of genes with a group of traits, when any single association is not strong
enough.

For the UK BioBank, we investigate 175 traits that pass our quality control and are associ-
ated with at least one genetic variant (Online Supplement 5.2). PathGPS produces 10 clusters
(Figure 2b3), among which 3 are closely related to some diseases (venous thromboembolism, car-
diovascular diseases, and type 2 diabetes), and the other 7 contain biometric measurements, such
as bone mineral density, immune system, fat-free mass, and skin or hair colors. In the UMAP
visualization (Figure 2b2), the edges reflect high (top 350) co-appearances between vertex pairs
and may offer insights into disease mechanisms. For instance, our analysis finds the medication
simvastatin is closely related to high cholesterol and cardiovascular diseases (CVD), which is not
surprising given that it is widely prescribed to reduce CVD risk17. We also find atorvastatin—
another drug in the statin family—is highly associated with bone mineral density (BMD) and
related traits. This finding is consistent with existing evidence that statin increases BMD18,19.
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Figure 2: Applications of PathGPS. Panel a displays the summary of the metabolomics data (a1), the
UMAP embeddings of 7 gene-trait clusters produced by PathGPS with co-appearance edge weights (a2),
and representative traits and mapped genes in each cluster (a3). In (a4), we subsample traits without
replacement, and PathGPS (UMAP) produces more consistent cluster memberships (Online Supplement
6.2) than the baseline method (Figure 1b5). Panel b displays the summary of the UK BioBank data (b1),
the UMAP visualization (b2), and representative genes and traits of the 10 clusters produced by PathGPS
(b3). PathGPS (UMAP) again produces more stable clusters (b4). The representative traits and mapped
genes in (a3) and (b3) are selected manually (full list in Online Supplement 6 and Tables).

In addition, edges connecting monocyte, neutrophil, lymphocyte and diabetes, asthma diagnosis
have high weights, suggesting connections between the immune system and the two common
diseases. In particular, diabetes may be related to the immune system through multiple mecha-
nisms: for example, hyperglycemia in diabetes may cause dysfunction of the immune response20.
As for asthma, T lymphocytes are critical to the development of asthma21. The co-occurrence
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of diabetes and asthma may be attributed to the shared immunological pathways22. Regarding
the genetic architecture, our analysis confirm many existing discoveries, such as the association
between HERC2 and hair color23, PELO and red blood cells24, and NME7 and venous throm-
boembolism25. We also find less well established biological hypotheses, such as BCL2 and Atrial
fibrillation26, GFI1 and lymphocyte cells27. The UMAP embedding provides further information
beyond the cluster membership. For example, the cluster containing smoking, alcohol, and dia-
betes is adjacent to the cluster containing CVD, indicating a multifaceted health effect of alcohol
consumption and tobacco usage.

In summary, PathGPS is a promising statistical tool to uncover clusters of genes and traits
that correspond to latent biological pathways from multiomic and biobank data. When applied to
the UK Biobank, PathGPS not only confirms many established genetic associations but also gen-
erates novel biological hypotheses. Finally, by grouping diseases with shared biological pathways,
PathGPS can enhance our understanding of comorbidities and contribute to the development of
comprehensive clinical practices.
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Methods

Structural equation model of latent pathways

We describe the latent genetic and environmental pathways connecting genes (SNPs) and traits
using linear structural equation models (SEMs). Consider SNPs X = (X1, . . . , Xp) and traits
Y = (Y1, . . . , Yq). We assume the traits are influenced by the SNPs through latent genetic medi-
ators M = (M1, . . . ,Mr). Meanwhile, the traits are also affected by unobserved environmental
mediators m = (m1, . . . ,ms). Mathematically, we adopt the linear SEM (Figure 1a1 displays the
graphical representation)

M = XU+ εM ,

Y = MV⊤ +mW⊤ + εY ,

where U ∈ Rp×r, V ∈ Rq×r, W ∈ Rq×s are coefficient matrices, and εM ∈ Rr, εY ∈ Rq denote
zero-mean errors in the genetic mediators M and traits Y , respectively. Concerning that genetic
pathways usually only include a small number of SNPs and traits, the coefficient matrices U, V
are often sparse. We remark that the above SEM does not include the interaction of genetic and
environmental pathways. Given that we only have access to summary statistics (details below),
the SEMs with and without interaction are not identifiable and thus we cling to the simpler
version without interaction.

Genome-wide association studies summary statistics

Our analysis builds upon the genome-wide association studies (GWAS) summary statistics due
to their wider availability compared to individual-level data {(X,Y )}. In particular, we focus on
the effect estimates (marginal associations) β̂ij of SNP-trait pairs (Xi, Yj) obtained from simple
linear regressions. We select and work with approximately independent SNPs—index SNPs. As
shown in the supplementary materials section 1, the marginal associations of index SNPs satisfy

β̂ = UV⊤ +E,

where E is a zero-mean matrix stemming from the environmental mediators m and the errors
εM , εY . Since both U and V are sparse and of rank r ≪ p, q, the marginal association matrix
β̂ is centered around a sparse low-rank matrix. The low-rank and sparse structures are crucial
to the development of the following statistical estimation procedures.

Discovery of gene-trait clusters

Our goal is to discover genetic pathways that start from SNPs, pass through latent genetic
mediators, and end in observed traits. Since the genetic mediators are unobserved, we look for
clusters of SNPs and traits that are potentially related to the same underlying genetic mediator.
For example, in Figure 1a1, there are two genetic pathways : X1, X2 → M1 → Y1, Y2 in red
and X2, X3 → M2 → Y3 in blue. The corresponding gene-trait clusters are {X1, X2, Y1, Y2} and
{X2, X3, Y3} (Figure 1a2). Under the notations of the proposed SEM, a desirable cluster should
consist of the genes and traits with non-zero loadings in a matched column pair of U and V.

We reconstruct gene-trait clusters from the marginal association estimates β̂. We first employ
the low-rank structure of U, V to learn their low-dimensional column spaces. We next use the

7

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 4, 2022. ; https://doi.org/10.1101/2022.05.01.490230doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.01.490230
http://creativecommons.org/licenses/by-nc-nd/4.0/


sparsity of U, V to find sparse matrices Û, V̂ in the estimated column spaces. Finally, we assign
genes and traits with non-zero loadings in a matched column pair of Û, V̂ to a gene-trait cluster.
Below we discuss the major estimation steps.

Column space recovery

We estimate the column spaces corresponding to the genetic pathways based on β̂. Note that
β̂ contains both genetic and environmental components (Online Supplement 2.1, Proposition 1).

We use the marginal association estimates β̂0 of noise SNPs—SNPs that have no statistically
significant association with any traits—to estimate the non-genetic structure, and remove it from
the marginal association estimates β̂ of signal SNPs—SNPs that are significant to at least one
trait. The subtraction step removes the environmental factors and keeps the genetic factors
(Online Supplement 2.1, Corollary 1).

In particular, we estimate the column space of V by the space spanned by the top r eigen-
vectors, denoted by Ṽ, of

Σ̂g := β̂⊤β̂ − p

p0
β̂0

⊤
β̂0,

where p, p0 denote the number of signal and noise SNPs, respectively. Upon obtaining Ṽ, we
estimate the column space of U by that of Ũ := β̂Ṽ. We remark that the number of eigen-vectors
r is a hyper-parameter corresponding to the number of latent genetic mediators. In real data
analyses, we plot the eigen-values of Σ̂g and let r be the visual “elbow-point”.

Sparse coefficient matrix recovery

Based on the estimated column spaces of U and V, we propose methods to find Û, V̂ that
are sparse and form the bases of the estimated spaces. In particular, we start from the Ũ, Ṽ
obtained in the column space recovery, and look for the transformation matrix R ∈ Rr×r such
that V̂ := ṼR, Û := Ũ(R−1)⊤ have sparse columns. There are a number of readily available
methods from factor analysis to search for the appropriate transformation matrix R, and we use
the varimax criterion28 in our analysis.

Construction of co-appearance graph by SNP bootstrapping

Several issues may undermine the reliability of the discovery of gene-trait clusters: the evolving set
of measured traits, the data pre-processing procedures (including the selection of signal and noise
SNPs), and the choices of hyper-parameters (including the number of latent genetic mediators
r). We posit a bootstrap aggregation (bagging) approach to stabilize the pipeline and make
the results more replicable. The idea is to perturb the entire procedure many times and then
aggregate the results using the co-appearance graph as described below.

SNP bootstrapping

In a bootstrap trial, we resample the same number p of signal SNPs with replacement and obtain
the bootstrap signal marginal association estimates β̂b. We extract a list Lb of gene-trait clusters
from β̂b and β̂0 using the aforementioned approach. The marginal association estimates β̂b may
have duplicate rows due to the sampling with replacement, and we will remove the duplicates in
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the co-appearance graph aggregation. We repeat the trial B times and get a collection of cluster
lists (Figure 1c2 describes the bootstrap process). We remark that the SNP bootstrapping is
only one way of perturbing the datasets, and other methods like sub-sampling SNPs without
replacement also serve the goal.

Co-appearance graph aggregation

We introduce the co-appearance frequency for a gene-trait pair, and the definition can be easily
generalized to gene-gene pairs and trait-trait pairs. Let (Xi, Yj) be a gene-trait pair, and we
define the co-appearance frequency as

wij =
1

B

B∑
b=1

1

|Lb|
∑

Ck∈Lb

1{Xi∈Ck}1{Yj∈Ck},

where Ck denotes the k-th cluster in the list Lb and |Lb| stands for the number of clusters in the
list. The co-appearance frequency describes how frequently a pair of gene and trait appear in the
same cluster: if a pair of gene and trait always show up in the same cluster, the pair will have a
high co-appearance frequency, and we are more confident that the gene and the trait lie in the
same biological pathway.

With all the co-appearance frequencies, we can construct a weighted undirected graph of
SNPs and traits to aggregate the cluster lists of bootstrap samples. We consider a graph where
each node represents a SNP or a trait, and we weight each edge by the co-appearance frequency
(Figure 1c3). The weighted graph is convenient for downstream analyses, including dimension
reduction and clustering. Compared with the one-shot gene-trait cluster discovery, the bag-
ging procedure underlying the co-appearance graph reduces several sources of instability (Online
Supplement 3.2).

Simulation study: stability analysis

In practice, datasets with moderately different collections of traits may address the same biolog-
ical question, and it is desirable to arrive at consistent conclusions despite the differences in trait
collection. We provide details of the stability analysis applied to the metabolomics data (Fig-
ure 2a4). The UK BioBank data is handled similarly (Figure 2b4). We start from the marginal
association estimate matrix with a total of 105 traits. In each trial, we subsample 50 traits with-
out replacement. We then compare the co-appearance weights obtained with (Figure 2a4 UMAP)
and without (Figure 2a4 Baseline) bootstrap aggregation. If bagging increases the stability of
the results, it is expected that the histograms of co-appearance weights will have sharper spikes
around 0 and 1. Close-to-one co-appearance weights indicate the associated pairs always fall into
the same cluster and close-to-zero values imply the associated pairs always end up in different
clusters.

Data availability

The main metabolomics dataset10 contains 123 metabolites and around 1.3 × 107 SNPs. We
use an external dataset29 of 72 metabolites and the PLINK software30 to select independent
index SNPs. The detailed pre-processing procedures of the metabolomics data are summarized
in Figure 5 of the supplementary materials.
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The main UK BioBank data (UKBB GWAS Imputed v3) is generated by Neale Lab (http:
//www.nealelab.is/uk-biobank). The dataset is based on 3.6 × 105 samples of white-British
ancestry and 1.3×107 QC-passing SNPs. The traits are a mixture of lab measurements, diagnoses
and medications, and living habits. We use the summary statistics based on female subjects and
the PLINK software to select index SNPs, and derive the clustering results from the summary
statistics of the male subjects. The detailed pre-processing procedures are displayed in Figure 6
of the supplementary materials.

Code availability

All methods described in this paper are implemented in and are available at https://github.
com/ZijunGao/PathGPS.
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