Abstract
Autophagosomes are unique organelles which form de novo as double-membrane vesicles engulfing cytosolic material for destruction. Their biogenesis involves a series of membrane transformations with distinctly shaped intermediates whose ultrastructure is poorly understood. Here, we combine cell biology, correlative cryo-electron tomography (ET) and novel data analysis to reveal the step-by-step structural progression of autophagosome biogenesis at high resolution directly within yeast cells. By mapping individual structures onto a timeline based on geometric features, we uncover dynamic changes in membrane shape and curvature. Moreover, we reveal the organelle interactome of growing autophagosomes, highlighting a polar organization of contact sites between the phagophore and organelles such as the vacuole and the ER. Collectively, these findings have important implications for the contribution of different membrane sources during autophagy and for the forces shaping and driving phagophores towards closure without a templating cargo.
Competing Interest Statement
The authors have declared no competing interest.