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ABSTRACT 13 

Translation is a key determinant of gene expression and an important biotechnological engineering 14 

target. In bacteria, 5’-untranslated region (5’-UTR) and coding sequence (CDS) are well-known mRNA 15 

parts controlling translation and thus cellular protein levels. However, the complex interaction of 5’-UTR 16 

and CDS has so far only been studied for few sequences leading to non-generalisable and partly 17 

contradictory conclusions. Herein, we systematically assess the dynamic translation from over 1.2 18 

million 5’-UTR-CDS pairs in Escherichia coli to investigate their collective effect using a new method for 19 

ultradeep sequence-function mapping. This allows us to disentangle and precisely quantify effects of 20 

known and hypothetical sequence determinants of translation. We find that 5’-UTR and CDS individually 21 

account for 53% and 20% of variance in translation, respectively, and show conclusively that, contrary 22 

to a common hypothesis, tRNA abundance does not explain expression changes between CDSs with 23 

different synonymous codons. Moreover, the obtained large-scale data clearly point to a base-pairing 24 

interaction between initiator tRNA and mRNA beyond the anticodon-codon interaction, an effect that is 25 

often masked for individual sequences and therefore inaccessible to low-throughput approaches. Our 26 

study highlights the indispensability of ultradeep sequence-function mapping to accurately determine 27 

the contribution of parts and phenomena involved in gene regulation. 28 
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INTRODUCTION 29 

Translation is a key step of gene expression and an important engineering target in synthetic biology. 30 

To this end, genetic parts that influence translation are modified to alter absolute and relative expression 31 

levels to engineer biosystems through control of individual genes, pathways and even entire metabolic 32 

networks (1-3). In prokaryotes, initiation of translation is the rate-limiting step in the translational process, 33 

during which ribosomes assemble on the mRNA to start the templated elongation of the nascent 34 

polypeptide (4-7). At the onset of this step, the 30S ribosomal subunit attaches to the ribosome binding 35 

site (RBS) in the 5’-untranslated region (5’-UTR) upstream of the coding sequence (CDS). The 3’-end 36 

of the 16S rRNA hybridises with the Shine-Dalgarno (SD) motif, a conserved five to eight nucleotide (nt) 37 

sequence located upstream of the start codon, which facilitates translation (8-12). However, since Shine 38 

and Dalgarno’s discovery in 1973 (10), various additional influencing factors and sequence 39 

determinants affecting translation initiation were identified. For example, the distance between SD motif 40 

and start codon, the type of start codon, and interactions between distant 5’-UTR parts and the ribosome 41 

play important roles (13-21). Remarkably, in some cases SD-like motifs are not required for translation, 42 

an observation hinting at the existence of other mechanisms besides “canonical” translation initiation 43 

(22-26). Further, the influence of mRNA secondary structures was studied under the hypothesis that 44 

the required unfolding of such structures during translation initiation might decrease expression 45 

(14,20,27-40). For example, stable secondary structures around the start codon were found to hinder 46 

translation, while structures further up- or downstream had less pronounced effects (35). 47 

Moreover, codon usage was found to influence translation. Genome-wide analyses of E. coli and other 48 

organisms revealed an overrepresentation of rare codons in the first five to ten triplets of the CDS in 49 

native genes, and their occurrence in this region was found to coincide with high expression (29,41-44). 50 

These observations led to two different hypotheses that differ fundamentally in terms of the underlying 51 

causality. The first hypothesis is related to the fact that cellular tRNA concentrations correlate with the 52 

occurrence frequency of their cognate codons (45-47). It was postulated that rare codons (with low-53 

abundant cognate tRNAs) may have been evolutionary selected for within the N-terminal CDS to slow 54 

down early translation elongation and reduce premature termination due to clashing ribosomes (38,48-55 

52). These “translational ramps” were postulated to be causally responsible for elevated expression of 56 

genes rich in rare codons at the CDS’s 5’-end. As an alternative explanation independent of tRNA 57 

abundance, a second hypothesis has been proposed based on the fact that many rare codons are (or 58 

happen to be) AT-rich (29,52). Their occurrence is therefore associated with a lower tendency to form 59 

stable mRNA secondary structures (29,33,43), which are known to hinder translation initiation. 60 

In the context of these two hypotheses, several studies have been conducted to investigate the impact 61 

of codon usage on expression focussing either on the N-terminal codons alone (29,33,37,43,44) or the 62 

entire CDS (29) while applying different metrics of codon usage such as the codon adaptation index 63 

(CAI) (41), the frequency of “optimal” codons pairing with the most abundant tRNAs (45), and the tRNA 64 

adaptation index (tAI) (53), as discussed in detail elsewhere (44,54-56). Remarkably, while there is 65 

clear evidence for a high degree of interactivity between 5’-UTR and CDS, these two mRNA parts were 66 

handled separately in these studies: commonly only one of the two parts (either 5’-UTR or CDS) was 67 

diversified at a time, and systematic testing of larger numbers of 5’-UTR-CDS combinations to assess 68 
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their interaction was not performed (15,20,33). Thus, due to the strong interdependence the measured 69 

effects could not be clearly assigned to individual sequence parameters, and their contribution to overall 70 

expression could not be accurately quantified. Moreover, many early studies relied on experimental 71 

testing of only a few “hand-picked” sequences (usually less than 100 variants) due to limitations in 72 

experimental throughput or library generation (note that the CDS cannot be freely mutated, since of 73 

amino acid substitution may result in change or loss of reporter protein activity). Although valuable 74 

contributions, such empiric efforts have proven insufficient to establish generalisable rules and 75 

quantitative measurements for the potential effects of sequence parameters, which in some cases even 76 

led to contradictory conclusions. For example, the question of whether tRNA abundance has a 77 

significant impact on translation or whether the observed effect is caused by mRNA secondary 78 

structures alone remains inconclusively answered (29, 54). Enabled by advances in DNA synthesis and 79 

sequencing, some recent works assessed larger numbers of 5’-UTRs or CDSs, again only diversifying 80 

one of the two sequence parts at a time (20,33,36,38,57,58). In a recent study, Arkin and co-workers 81 

combined full-factorial in silico design with DNA synthesis on arrays to evaluate the principles of 82 

sequence design for translation in a systematic manner (37). They tested synthetic sequences 83 

combining a single bicistronic 5’-UTR (15,59) with 244,000 CDSs using fluorescence-activated cell 84 

sorting combined with next-generation sequencing (NGS). Several relevant sequence parameters such 85 

as AT-content, codon usage, and mRNA folding were varied and combined in a statistically full-factorial 86 

manner. This was achieved using a sophisticated modular design approach based on a priori 87 

hypotheses, which, however, bears the risk of introducing “user-borne” bias. 88 

Herein, we describe our efforts to overcome the prevailing lack of knowledge about the impact of 89 

different mRNA parts and sequence parameters on translation with the goal to assess and accurately 90 

quantify their effect. We combine randomly generated 5’-UTRs and CDSs following different assembly 91 

strategies to obtain libraries of random, combinatorial and full-factorial 5’-UTR-CDS combinations. 92 

Using a recently developed method for ultradeep sequence-function mapping (58), we dynamically 93 

assess translation of more than 1.2 million 5’-UTR-CDS pairs in more than 8.8 million sequence-function 94 

data points and different genetic backgrounds. The extremely high throughput and the modular 95 

assembly strategy applied herein allow us to systematically disentangle and assess individual and 96 

combined effects of 5’-UTR and CDS, and to quantify the contribution of various sequence parameters 97 

including individual bases and positions, mRNA secondary structures, 16S-rRNA hybridisation, and 98 

codon usage. 99 

100 
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MATERIAL AND METHODS 101 

Reagents 102 

All chemicals were obtained from Sigma Aldrich (Buchs, Switzerland). Restriction enzymes were 103 

obtained from New England Biolabs (Ipswich, USA). PCR was performed using Q5 DNA polymerase 104 

from New England Biolabs (Ipswich, USA). Oligonucleotides (Suppl. Tab. 1) were obtained from 105 

Microsynth AG (Balgach, Switzerland). All primers containing degenerate bases were ordered PAGE-106 

purified. Custom duplex DNA adapters and gene fragments were obtained from Integrated DNA 107 

Technologies (Leuven, Belgium). Plasmid DNA for cloning was extracted with the ZR Plasmid Miniprep 108 

kit from Zymo research (Irvine, USA). Plasmid DNA from cultures used for subsequent sample 109 

preparation for NGS was extracted with the QIAprep Spin Miniprep kit from Qiagen (Hilden, Germany). 110 

Gel extraction of DNA was performed using Zymoclean Gel DNA Recovery Kits from Zymo research 111 

(Irvine, USA). 112 

 113 

Strains, cultivation conditions and growth analysis 114 

Escherichia coli (E. coli) TOP10 ΔrhaA (L-rhamnose isomerase) was used throughout the study. The 115 

generation of these rhamnose utilisation-deficient strain is described elsewhere (58). For experiments 116 

with plasmid-borne variants of tRNAfMet, the strain E. coli TOP10 ΔrhaA ΔmetZWV was generated by 117 

additional replacement of the chromosomal metZWV locus with a spectinomycin resistance cassette 118 

using the method described by Datsenko and Wanner (60). The spectinomycin resistance cassette was 119 

PCR-amplified from a commercial gene fragment (Suppl. Note 1) using primers p1 and p2 (Suppl. 120 

Tab. 1) to generate the linear fragment for transformation complementary to 41 bp both up- and 121 

downstream of the chromosomal metZWV locus. Transformants were verified for successful integration 122 

by colony PCR using primers p3 and p4 and subsequent Sanger sequencing. The exact genotypes of 123 

both E. coli strains are provided in Supplementary Table 2. E. coli cells were generally cultivated in 124 

lysogeny broth (LB) supplemented with 50 mg L-1 kanamycin, 50 mg L-1 streptomycin and 10 g L-1 D-125 

glucose for repression of the rhamnose-inducible promoter. 15 g L-1 agar were added for plate cultures. 126 

Cells were grown at 37 °C in an incubator (plates) or shaking incubator at 200 rpm (shake flasks 127 

cultivations). Doubling times of strains with different tRNAfMet variants were determined in biological 128 

triplicate cultures as follows. E. coli TOP10 ΔrhaA (“WT”) and E. coli TOP10 ΔrhaA ΔmetZWV 129 

(“ΔmetZWV”) were transformed with pSEVA361 (empty vector), ptRNAfMet-A37, ptRNAfMet-A37G or 130 

ptRNAfMet-A37U, respectively. Sequence-verified transformants of each strain were used to inoculate an 131 

overnight pre-culture in LB (34 mg L-1 chloramphenicol; 12.5 mg L-1 spectinomycin for ΔmetZWV). After, 132 

120 mL main cultures in baffled shake flasks (1 L) were inoculated to a starting OD600 of 0.01 and 133 

incubated shaking (37 °C, 200 rpm). The OD600 was measured in intervals of 15-30 minutes and 134 

doubling times were determined by dividing ln(2) by the specific growth rate during exponential growth. 135 

 136 

Plasmid and library construction 137 

A list of plasmids used in this study is provided in Supplementary Table 3. Plasmids were constructed 138 

by conventional restriction-ligation cloning. To enable facile library cloning, plasmid pASPIre4 139 

(Suppl. Fig. 1) was generated as a derivative of the previously published pASPIre3 (58). pASPIre4 140 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 2, 2022. ; https://doi.org/10.1101/2022.05.02.490318doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.02.490318
http://creativecommons.org/licenses/by-nc-nd/4.0/


5 

 

additionally contains a SpeI restriction site within the CDs of bxb1 to enable diversification of the 5’-141 

UTR and codons 2-16 of bxb1. 142 

Library inserts were generated by PCR with degenerate primers to diversify the respective regions and 143 

inserted into the pASPIre4 backbone thereafter. The fully randomised 5’-UTR-CDS library was 144 

generated via PCR using pASPIre4 as template and primers p5 and p6. After, the PCR product and 145 

pASPIre4 were digested with SpeI and PstI (37 °C, 3 h), gel purified and ligated (16 °C, T4 ligase, 146 

overnight). The ligation mixture was purified and used to electroporate freshly prepared E. coli TOP10 147 

ΔrhaA cells (61). After 60 min recovery at 37 °C in LB with 10 g L-1 D-glucose, transformants were plated 148 

in different dilutions for colony counting on LB agar plates (50 mg L-1 kanamycin, 50 mg L-1 streptomycin 149 

and 10 g L-1 D-glucose). After overnight incubation (37 °C), 10 mL LB were added to the plates and 150 

approximately 400,000 colonies were scraped off with a spatula. Glycerol was added to the cell 151 

suspension to a final concentration of 150 g L-1 and the optical density at 600 nm (OD600) of the glycerol 152 

stock was adjusted to 5.0 before freezing of aliquots in liquid nitrogen and storage at -80 °C. This pool 153 

of clones was designated Librandom and the corresponding plasmid architecture was termed pASPIre4lib 154 

(Suppl. Fig. 2). For the uASPIre with mutated tRNAfMet variants, a glycerol stock of Librandom was plated 155 

on LB agar and plasmid DNA of approximately 50,000 clones was extracted and subsequently used to 156 

transform E. coli bearing the respective plasmids for the expression of tRNAfMet (see below). 157 

Combinatorial and full factorial libraries combining different 5’-UTRs and CDSs were generated in a 158 

stepwise procedure as illustrated in Supplementary Figure 3. First, 5’-UTR and CDS half-libraries 159 

(Suppl. Figs. 4, 5) were cloned separately as described above. The 5’-UTR half-library was generated 160 

by PCR with primers p5 and p7 on pASPIre4 as template and subsequently inserted into the pASPIre4 161 

backbone using PstI and NotI. Primer p7 introduces degeneracy in the 5’-UTR and a BbsI site between 162 

the randomised 5’-UTR and the NotI site (Suppl. Fig. 3). The CDS half-library was generated by PCR 163 

with primers p8 and p9 on pASPIre4 as template and inserted into the pASPIre4 backbone using PstI 164 

and NotI. Primer p8 introduces degeneracy in the CDS and a BbsI site between the CDS and the PstI 165 

site (Suppl. Fig. 3). Transformants of both half-libraries were plated separately in various dilutions. 166 

Depending on the libraries to be created afterwards, a desired number of colonies was scraped off with 167 

a spatula and plasmid DNA was extracted: for Libcomb1, approximately 1,000 colonies of the 5’-UTR half-168 

library and approximately 1,000 colonies of the CDS half-library; for Libcomb2, approximately 100 colonies 169 

of the 5’-UTR half-library and approximately 10,000 colonies of the CDS half-library. For Libfact, ten 170 

plates of approximately 100 colonies each of the 5’-UTR half-library and ten plates of approximately 171 

100 colonies each of the CDS half-library were scraped off. In a second step, 5’-UTR and CDS half-172 

libraries were combined to generate libraries Libcomb1, Libcomb2 and Libfact. To achieve this, plasmid DNA 173 

from the different 5’-UTR half-libraries was PCR-amplified with primers p9 and p10 and the PCR product 174 

was digested with BbsI and PvuI. Subsequently, these half-libraries were ligated into plasmid 175 

backbones isolated from the individual CDS half-libraries via digestion with PvuI and BbsI. Note that 176 

the BbsI type IIS restriction site enables scarless joining of 5’-UTR and CDS half-libraries using ATGC 177 

(start codon ATG + first downstream base) as sticky ends for ligation. Libcomb1 (approx. 1,000 5’-UTRs 178 

combined with approx. 1,000 CDSs) and Libcomb2 (approx. 100 5’-UTRs combined with approx. 10,000 179 

CDSs) were used to transform E. coli TOP10 ΔrhaA yielding approximately 1.5 million and 2.3 million 180 
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colonies, respectively. Libfact was transformed in ten separate batches (ten times 100 5’-UTRs combined 181 

with 100 CDSs) yielding ten full-factorial sub-libraries. Each of these should contain a maximum of 182 

approximately 10,000 different 5’-UTR-CDS combinations, amongst which theoretically all 5’-UTRs are 183 

combined with all CDSs and vice versa. Colonies of these ten sub-libraries were scraped off plates and 184 

pooled to equivalent cell densities according to their OD600. 185 

All plasmids for overexpression of tRNAfMet variants are derivatives of pSEVA361 (62). We selected the 186 

chromosomal metY locus including promoters and terminators of E. coli TOP10 as a scaffold since it is 187 

monocistronic and therefore simpler to mutate compared to the metZWV locus. In this scaffold we 188 

introduced an A-to-G point mutation at position 47 of the tRNAfMet to match the sequence of metZWV 189 

(note that the metY-derived tRNA differs by this one base from metZWV tRNAs, which are three 190 

identical tRNAfMet copies). The resulting monocistronic design was obtained as commercial gene 191 

fragment in four versions containing the wild-type base (A) as well as three mutants (C, G and T) at 192 

position 37 of tRNAfMet, respectively. The gene fragments were cloned into pSEVA361 (p15A replicon, 193 

chloramphenicol resistance) via KpnI and SpeI sites using standard procedures and sequence verified. 194 

The resulting plasmids were designated ptRNAfMet-A37, ptRNAfMet-A37C, ptRNAfMet-A37G and ptRNAfMet-A37U 195 

(Suppl. Fig. 6, Suppl. Tab. 3) and used to transform E. coli TOP10 ΔrhaA and E. coli TOP10 ΔrhaA 196 

ΔmetZWV. Note that transformants of ptRNAfMet-A37C failed to grow and could thus not be included in 197 

further experiments. To assess the effect of tRNAfMet mutations, E. coli TOP10 ΔrhaA and E. coli TOP10 198 

ΔrhaA ΔmetZWV bearing the plasmids for tRNA overexpression were each co-transformed with the 199 

pool of 50,000 variants of Librandom (see above). 200 

 201 

Library cultivation, sample preparation and NGS 202 

The different libraries were separately grown in independent shake flask cultivations. Libfact was 203 

cultivated in two biological replicates. Cultivations were conducted in 600 mL LB with 50 mg L-1 204 

kanamycin and, in case of tRNAfMet overexpression, 34 mg L-1 chloramphenicol in 5 L baffled shake 205 

flasks. Pre-warmed (37 °C) LB was inoculated from glycerol stocks of the respective libraries to an initial 206 

OD600 of 0.05. Cultures were grown at 37 °C in a shaking incubator at 200 rpm. At an OD600 of 207 

approximately 0.5, expression of bxb1 was induced by addition of 2 g L-1 L-rhamnose. Samples were 208 

drawn at 0, 95, 225, 290, 360 and 480 minutes after induction and immediately diluted in an excess of 209 

ice-cold PBS. Cell suspensions were centrifuged (4,000 g, 10 min, 4 °C) and pellets were snap frozen 210 

on dry ice. Afterwards, plasmid DNA was extracted and digested with SpeI and NcoI (4 h, 37 °C). Target 211 

fragments containing the 5’-UTR-CDS region and the Bxb1 recombination substrate were purified via 212 

gel electrophoresis (2.5% agarose). Afterwards, duplex DNA adapters for Illumina NGS with sample-213 

specific indices (Suppl. Tab. 4) were ligated to the target fragments and full-length ligation products 214 

were purified via gel electrophoresis (2% MetaPhor agarose, Lonza, Basel, Switzerland). Purity and 215 

concentration of extracted fragments were determined using capillary electrophoresis (Fragment 216 

Analyser, Agilent) and samples were pooled in equimolar ratios. The pool was spiked with 15% PhiX 217 

DNA to increase sample diversity and afterwards sequenced on an Illumina NovaSeq6000 platform (SP 218 

flowcell, paired-end reading with at least 30 cycles forward and 100 cycles reverse read). Primary 219 
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sequencing data were processed with Illumina RTA version V3.4.4 and bcl2fastq to obtain *.fastq files 220 

for further processing (see below). 221 

222 

NGS data processing 223 

224 

225 

226 

227 

228 

229 

230 

231 

232 

233 

234 

235 

236 

237 

238 

239 

240 

241 

242 

243 

244 

245 

246 

247 

248 

249 

250 

251 

252 

253 

254 

255 

256 

257 

258 

NGS raw data analysis was performed using a combination of bash and R scripts (R version 4.1.2) 

running on a Red Hat Enterprise Linux Server (release 7.9). Annotated scripts for raw data processing 

will be made available upon final publication. 

In brief, forward and reverse reads from *.fastq files were paired. From the forward reads, the identity 

of the sample-specific index (six options) and the state of the Bxb1 substrate (either unflipped or flipped), 

were extracted through alignment against all possible twelve combinations allowing a maximum of three 

mismatches between read and reference to avoid data loss due to sequencing errors. Afterwards, a 

similar procedure was applied to the reverse reads to identify the second sample-specific index (six 

options). Next, the sample-specific combination of forward and reverse indices was used to split the 

data and assigning reads to the different libraries and sampling time points (Suppl. Tab. 5). 

Next, NGS reads with a frameshift within the CDS (e.g. due to sequencing errors or undesired mutations) 

were removed by filtering for the correct positioning of the constant first five nucleotides (ATGCG) of 

the bxb1 CDS. Then, all 40 randomised nucleotides of 5’-UTR (25 nt) and CDS (each third nucleotide 

in codons 2-16; in total 15 nt) were extracted for each read, serving as unique identifier for each variant 

(i.e. 5’-UTR-CDS combination). To rescue reads with sequencing errors in the variable regions (less 

than 5% of total reads), a clustering procedure was applied to Libcomb1, Libcomb2 and Libfact to map them 

to actual (i.e. physically present) variants. This clustering can be applied since the extremely large 

theoretical sequence space of these variable regions (40 nt randomised; >1023 possible permutations) 

renders the occurrence of highly similar sequences virtually impossible. First, variants were sorted 

based on their total read number across all time points. Then, starting with the most frequent variant, 

all other variants with a Hamming distance of 1 (i.e. maximum of one substitution) were mapped back 

to this variant. This procedure was continued with the next most abundant variant until all remaining 

variants were further than one substitution apart from all others. 5’-UTRs and CDSs were treated 

separately to keep the computational complexity manageable. For Librandom, clustering was omitted 

since all 5’-UTRs and CDSs in this library are unique rendering the mapping process computationally 

infeasible. Afterwards, the number of reads with unflipped and flipped Bxb1 substrates was counted for 

the remaining variants and for each time sample to obtain time-resolved flipping profiles. 

Lastly, an additional filtering step was performed to ensure high data quality, which excludes variants 

with less than 10 reads in at least one of the six time points. Moreover, variants containing an 

unintended non-synonymous codon mutation in the CDS were removed (227 variants). 

This data processing procedure resulted in 1,214,438 high-quality variants split across the 4 libraries 

with an average of 464.3 reads per variant or 77.4 reads per variant and time point. For the uASPIre of 

tRNAfMet mutants, this procedure resulted in 44,289 high-quality variants. In total, this amounts to 

8,881,032 sequence-function pairs obtained from three NGS runs. The relative trapezoidal area under 

the flipping curve (termed “integral of the flipping profile”, IFP) was calculated for each variant. For Libfact, 

259 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 2, 2022. ; https://doi.org/10.1101/2022.05.02.490318doi: bioRxiv preprint 

https://polybox.ethz.ch/index.php/s/gdO1ctEDuwTkfPz
https://doi.org/10.1101/2022.05.02.490318
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 

260 

261 

262 

263 

264 
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280 
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282 

283 

284 

285 

286 

287 

288 

289 

290 

291 

292 

293 

294 

295 

296 

297 

298 

the average IFP of the two biological replicates was used. Processed data and annotated scripts for 

data processing will be made available upon final publication.

Correlation of Bxb1 recombination with cellular Bxb1-sfGFP levels 

To convert Bxb1-catalysed flipping into relative cellular Bxb1 concentrations, we used the same 

approach as described previously, which relies on translational fusion of Bxb1 to the superfolder green 

fluorescent protein (sfGFP) and the use of internal standard RBSs (58). In brief, we first recorded the 

sfGFP fluorescence of 31 manually constructed RBSs controlling translation of the Bxb1-sfGFP fusion. 

These RBSs span a wide range of RBS strengths (from low to high) as previously shown in triplicate 

shake flask cultivations (58). A pool of these 31 standard RBSs was cultivated in a separate shake flask 

in parallel to the cultivations of Librandom, Libcomb1 and Libcomb2 and processed alongside the different 

libraries as described above. From the resulting NGS data, we obtained the IFP for the standard RBSs 

and constructed a calibration curve between IFP and the aforementioned sfGFP fluorescence 

measurements (58). A LOESS fit (locally estimated scatterplot smoothing) was used to correlate the 

IFP with the slope of the cell-specific sfGFP signal between 0 and 290 minutes after induction (slope 

GFP0-290min) using the function loess from the R package stats. Relying on the LOESS function, the IFP 

values of all library members were converted into the corresponding slope GFP0-290min. The resulting 

values were normalised to the maximum slope GFP0-290min in the entire data and the normalised slope 

GFP0-290min was designated relative translation rate (rTR) and used for all further analyses. Code and 

parameters of the LOESS fit will be made available upon final publication. 

Splitting of full-factorial sub-libraries 

Since Libfact consists of ten full-factorial sub-libraries that were sequenced in bulk, the resulting data 

had to be computationally split into the sub-libraries for further analysis. Therefore, we sequenced at 

least three clones (reference variants) from each sub-library by Sanger sequencing covering both the 

randomised 5’-UTR and CDS regions. From the resulting reference sequences, we reconstructed and 

split the ten individual sub-libraries as follows: all variants that shared either the 5’-UTR or CDS with 

one of the reference sequences were assigned to the corresponding sub-library. To obtain full-factorial 

sub-libraries (i.e. libraries in which the majority of 5’-UTRs is combined with each CDS and vice versa), 

we further removed all variants with a 5’-UTR that occurred in combination with less than 50 CDSs as 

well as all variants with a CDS that occurred in combination with less than 50 5’-UTRs. 

Data analyses 

Data analysis was conducted in R (version 4.1.2) and figures were produced using the package ggplot2. 

Scripts will be made available upon final publication.

For ANOVA of positional effects, variants from Librandom were split according to their respective base in 

each of the 40 randomised positions within 5’-UTR and CDS (i.e. 40 splits for 40 position). After, type II 

299 
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ANOVA was performed using the R function Anova (package car) treating each positional group as 300 

covariate to determine the contribution of each covariate/position to the variance of the rTR in the entire 301 

library assuming additive behaviour. For the assessment of effects of single bases, we calculated the 302 

average rTR of all variants in Librandom with a given base at a given position and divided the resulting 303 

value by the average rTR of all variants with any other base at this position. For example, the effect of 304 

U at 5’-UTR position -1 was calculated by dividing the average rTR of all variants with U at 5’-UTR 305 

position -1 (0.185) by the average rTR of all other variants (0.150). The resulting value (example: 1.233) 306 

represents the average relative in- or decrease in rTR for a given base and position. In the example 307 

above this means that the rTR of variants with U at 5’-UTR position -1 is on average 23.3% increased 308 

over the rest of the library. To assess the enrichment of bases amongst strong variants, variants in 309 

Librandom were first split into two groups with rTR ≥ 0.5 (strong) and rTR < 0.5 (weak). After, the relative 310 

occurrence of each base at each position was calculated within each group. The ratio between the 311 

occurrences in the two groups represents the relative enrichment/depletion of a given base in a given 312 

position amongst strong variants over weak variants. 313 

For calculations related to mRNA folding, bash scripts were used. Minimum free energy (mfe), 314 

ensemble free energy (efe) and mRNA accessibility (acc) were each calculated using two models for 315 

base pairing, the turner energy model (T) and the CONTRAfold model (C) (65,66), resulting in six 316 

different metrics (mfeT, mfeC, efeT, efeC, accT, accC). For mfeT and efeT, RNAfold (ViennaRNA 317 

package, version 2.4.18) and default parameters were used (67). For mfeC and efeC, and default 318 

parameters were applied. For accT and accC, the Raccess program was used (68). Next, Spearman’s 319 

correlation was calculated between each metric and the rTR. Note that Spearman’s correlation was 320 

used since rTR values do not follow a normal distribution (p-value of 1.11 × 10-79 according to Shapiro-321 

Wilk normality test). Squared Spearman’s coefficient (ρ2) is reported as a measure of correlation 322 

between the respective folding metric and the ranked the rTR. Accordingly, the higher ρ2 of a metric, 323 

the more it explains the observed variance in the rTR. To identify the optimal mRNA sequence window 324 

that leads to the highest correlation between folding and rTR, mfeT and efeT were calculated for all 325 

possible sequence windows of lengths between 10 and 200 nucleotides within the first 200 positions of 326 

the mRNA. For computational reasons, this analysis was performed only on the 10’000 variants of 327 

Librandom with the highest number of NGS reads. The best correlation between folding energy and rTR 328 

was achieved using the first 80 positions of the mRNA (i.e. between positions -27 and +53) (Suppl. Fig. 329 

7). This “optimal” sequence window was then used to calculate mfeT, mfeC, efeT, efeC, accT and accC 330 

for all variants in all libraries. For accT and accC, the access length was set to 80 nucleotides in Raccess. 331 

For accessibility scanning, the correlation between the accessibility of each position and the rTR was 332 

determined applying an access length of 10 nucleotides in Raccess (accT10nt and accC10nt). 333 

To calculate 16S rRNA hybridisation energies, RNAduplex from the ViennaRNA package (67) was used, 334 

which only allows intermolecular base pairing. Allowing intramolecular base pairing would favour 5’-335 

UTR-internal folds and thus disregard interactions with the 16S rRNA. Specifically, hybridisation energy 336 

was calculated between 5’-UTR (positional window: -18 to -4) and the 16S rRNA 3’-end 337 

(5’-ACCUCCUUA-3’). As an alternative, we also calculated a positional hybridisation energy between 338 

16S rRNA 3’-end and a 9-nt sliding window along the entire mRNA. 339 
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The minimum edit distance was determined using the stringdist function of the R package stringdist and 

corresponds to the Levenshtein distance between the 7-bp long canonical SD motif AGGAGGU and a 

sliding 7-nt window within 5’-UTR positions -18 and -4. Levenshtein distance is the minimum number 

of operations (substitutions, deletions, and insertions) to transform one string into another. 

The random forest model was built using h2o.randomForest from the R package h2o 

(https://github.com/h2oai/h2o-3). Variants of Librandom were split into a randomly selected training set 

(90%) and a test set (10%), which was strictly held out during training. Sequences were encoded using 

one-hot encoding, a position-wise accessibility score accC1nt (compare above), GC-content, minimum 

edit distance to the SD motif AGGAGGU, 16S rRNA hybridisation energy, the position of 16S rRNA 

hybridisation on the mRNA, as well as the folding metrics mfeT, mfeC, efeT, efeC, accT and accC (see 

above). Using tenfold cross-validation, the model was then trained with default parameters using 50 

trees, and its performance was validated on the strictly held-out test set. 

To quantify the contributions of UTR and CDS, we first grouped variants from Libcomb1, Libcomb2 and 

Libfact by their 5’-UTR and then calculated the average rTR of all CDSs in each group (i.e. rTRUTR). 

Similarly, we also grouped variants by their CDS and calculated the average rTR of all 5’-UTRs in each 

group (i.e. rTRCDS). 

Codon adaptation index (CAI) and tRNA adaptation index (tAI) were calculated using the cai function 

from the R package seqinr. Codon weights and frequencies (Suppl. Tab. 6) were used as presented in 

Sharp et al. (41) and dos Reis et al., respectively (53). 

All sequence variants and their calculated parameters were combined into a single dataset and further 

analysed. This data set will be made available upon final publication. 

Data availability 

Time series data including IFP and cellular Bxb1-sfGFP values (rTR, see above) for each variant 

including annotated scripts for data processing, statistical analyses and plotting will be made 

available upon final publication.

367 

368 
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RESULTS 369 

High-throughput characterisation of 5’-UTR-CDS combinations 370 

It is challenging to investigate the impact of different mRNA parts on translation due to the vast 371 

sequence space of possible variants. For instance, even for a comparably short 5’-UTR of twelve 372 

nucleotides, more than 16 million (412) sequences are possible. The sequence space becomes even 373 

larger if different parts are diversified simultaneously, which is required to analyse interactions and 374 

combined effects. Such combinatorial complexity cannot be addressed appropriately by measuring the 375 

expression of a few handpicked sequences. Instead, it requires high-throughput methodology capable 376 

of linking sequences to corresponding expression levels at large scale. To achieve this for 5’-UTR-CDS 377 

combinations, we capitalise herein on a recently developed technology for ultradeep Acquisition of 378 

Sequence-Phenotype Interrelations (uASPIre) (58). Briefly, uASPIre uses the phage recombinase Bxb1 379 

to record functional information in DNA. This DNA-recorder enables, for instance, to determine both 380 

sequence and corresponding gene expression of gene regulatory elements via NGS at extremely high 381 

throughputs, which we have recently demonstrated in a proof-of-concept study (58). 382 

To make uASPIre amenable for the characterisation of 5’-UTR-CDS combinations, we created the 383 

plasmid architecture shown in Figure 1a, which contains a gene encoding a Bxb1-sfGFP fusion (58) 384 

controlled by an L-rhamnose-inducible promoter (Prha) and a 150-bp stretch of silent DNA flanked by 385 

Bxb1’s cognate attachment sites attB and attP in opposite orientation (62). Furthermore, a SpeI site is 386 

introduced in codons 17 and 18 of the bxb1 CDS via silent mutation (Fig. 1a/b), which enables facile 387 

exchange of the 5’-UTR and the first 16 codons of the bxb1 CDS as well as NGS sample preparation 388 

(Methods). Once expressed, Bxb1-sfGFP converts its attB-/P-flanked DNA substrate from its initial 389 

(“unflipped” hereafter) to an inverted (“flipped” hereafter) state (Fig. 1a). Thus, Bxb1-sfGFP expression 390 

can be read out by determining the state of the substrate DNA by sequencing. Importantly, the flipping 391 

rate directly correlates with the cellular Bxb1-sfGFP concentration, and sequencing of many copies of 392 

this architecture via NGS can be used to determine the fraction of flipped DNA substrates (“fraction 393 

flipped” hereafter) amongst all copies of a given variant. This “oversampling” facilitates a precise, 394 

quantitative readout for Bxb1-sfGFP expression, whose resolution solely depends on the sequencing 395 

depth (i.e. number of reads obtained per variant) as we have previously shown (58). 396 

Next, we generated a first library through simultaneous diversification of the 5’-UTR and CDS of bxb1-397 

sfGFP with the goal to characterise the impact on bacterial translation in a highly parallelised fashion 398 

relying on uASPIre (Fig. 1b, Methods). We mutated the 25 nucleotides directly upstream of the start 399 

codon applying full randomisation (i.e. N25-mer, N: equimolar mixture of A, C, G and T). This 400 

corresponds to the entire 5’-UTR in our setup except for two consecutive A’s at the 5’-end of the mRNA, 401 

which were fixed to match the native transcriptional start of Prha and thus avoid changes in transcription 402 

rates (69). Further, we mutated the third positions of codons 2-16 downstream of the start codon (ATG 403 

itself was kept constant) to additionally diversify the CDS. We selected this region since the first 30-50 404 

nucleotides of CDSs reportedly affect translation whereas sequence changes further downstream show 405 

only negligible effects on expression (29,33). Importantly, in this region we only allowed synonymous 406 

(“silent”) codon replacements to maintain the same Bxb1 amino acid sequence and hence specific 407 
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recombination activity for all library members, which is crucial to study only translational effects. This 408 

library is designated Librandom hereafter pointing to the full randomisation of 5’-UTR and N-terminal CDS. 409 

Librandom was used to transform E. coli yielding approximately 400,000 individual transformants. 410 

Specifically, we used the rhamnose-utilisation deficient strain TOP10 ΔrhaA to ensure temporally stable 411 

induction due to the lack of inducer consumption (58). Afterwards, transformants were pooled and 412 

cultivated in a single shake flask (Fig. 1c). In parallel, we cultivated 31 5’-UTR variants (“standard RBSs” 413 

hereafter) controlling the same bxb1-sfGFP fusion, which were constructed and characterised in a 414 

previous study (58). These standard RBSs span a wide range of expression levels and serve as internal 415 

standard sequences to compare different experiments. Further, they are used to convert the fraction 416 

flipped time series into practically more relevant metrics for protein expression relying on calibration 417 

curves generated from individual sfGFP fluorescence measurements (see below, Methods) (58). After 418 

induction by addition of L-rhamnose, six samples each were drawn over the course of eight hours from 419 

both cultures (Librandom and standard RBSs), and plasmid DNA was extracted followed by NGS sample 420 

preparation (Methods). Note that sample preparation was carried without PCR amplification, which 421 

avoids non-linear PCR bias (58). The final target DNA fragments are flanked by NGS adapters with 422 

sample-specific indices and contain the DNA substrate modifiable by Bxb1 and the randomised 5’-UTR-423 

CDS region. NGS adapters, substrate and 5’-UTR-CDS region were sequenced in an Illumina platform 424 

yielding approximately 108 paired-end reads for Librandom. (Fig. 1d) 425 

Next, we processed the NGS data to obtain time series of Bxb1-mediated flipping (“flipping profiles”) 426 

using a previously developed computational pipeline adapted to the new plasmid architecture 427 

(Methods)(58). This procedure yielded flipping profiles for 198,174 5’-UTR-CDS pairs above an applied 428 

minimal threshold of ten reads per time point and variant (i.e. high-quality data, average of 433.7 reads 429 

per variant). The base composition in Librandom was homogeneously distributed across all diversified 430 

positions (Suppl. Fig. 8). Library members showed a diverse range of translational activities from low 431 

to high and a skew towards weaker variants as to be expected for full randomisation of the 5’-UTR 432 

(Fig. 1e, f) (70). Notably, the behaviour of the standard RBSs correlated strongly with results from our 433 

previous study even though the experiments were carried out approximately two years apart from each 434 

other (Suppl. Fig. 9)(58). This confirms the validity of the recorded data and indicates a high 435 

reproducibility and robustness of the uASPIre method in general. Next, we calculated the trapezoid 436 

integral of the flipping profiles (IFP, Fig. 1g), which constitutes a robust metric correlating well with rates 437 

of cellular Bxb1-sfGFP accumulation as previously shown (58). Indeed, the IFP of the 31 standard RBSs 438 

as determined in this study correlated well with the linear slope of the cell-specific Bxb1-sfGFP 439 

fluorescence between 0 and 290 minutes after induction (slope sfGFP0-290min, Fig. 1h, Methods). 440 

Therefore, IFP values can be converted into the slope sfGFP0-290min relying on a fit applied between the 441 

two metrics for the standard RBSs. Specifically, we performed locally estimated scatterplot smoothing 442 

(LOESS) (Fig. 1h), and used the resulting fit function to convert the IFPs of Librandom members into the 443 

corresponding slope sfGFP0-290min normalised to the strongest variant found in this study (Fig. 1i, 444 

Methods). This normalised parameter was designated relative translation rate (rTR) and used for all 445 

further analyses, because it represents a practically more relevant metric for translational activity 446 

directly corresponding to cell-specific protein accumulation. 447 
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448 
Figure 1: Ultradeep characterisation of 5’-UTR-CDS combinations. a) Plasmid architecture for the 449 
uASPIre of 5’-UTR-CDS pairs. A bxb1-sfGFP gene (translational fusion) controlled by Prha is placed on 450 
the same DNA molecule as the substrate modifiable by Bxb1-sfGFP, which is flanked by Bxb1 451 
attachment sites (attB/P). A SpeI site in codons 17 and 18 of bxb1-sfGFP allows for seamless exchange 452 
of 5’-UTR and N-terminal CDS. Once expressed, Bxb1-sfGFP inverts its substrate from an unflipped 453 
into a flipped state creating recombined attachment sites (attL/R). b) Design of Librandom. The 25 454 
nucleotides preceding the start codon are fully randomised. Additionally, the third positions of codons 455 
2-16 are mutated allowing only synonymous codon replacements. Sequences follow the IUPAC456 
nucleotide code (N: A/C/G/T, H: A/C/T, Y: C/T). TSS: transcriptional start site of Prha. c) Experimental 457 
workflow for the uASPIre of 5’-UTR-CDS pairs. Pooled transformants of Librandom are grown in LB and 458 
bxb1-sfGFP expression is induced by L-rhamnose addition. After, samples are taken at different time 459 
points followed by plasmid extraction and preparation of NGS fragments followed by pooling of samples 460 
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and NGS (Methods). NGS fragments are flanked by duplex adapters with sample-specific index 461 

combinations (grey boxes). d) Close-up view of target fragments for paired-end NGS using forward 462 

(seqfwd) and reverse (seqrev) sequencing primers. Forward reads are used to identify the first index (idx1) 463 

and the state of the recombinase substrate. Reverse reads are used to obtain the second index (idx2) 464 

and the sequence of 5’-UTR and CDS. e) Representative flipping profiles of 5’-UTR-CDS variants from 465 

Librandom. For clarity, only the 1,000 most abundant variants are displayed. f) Flipping profiles of all 466 

198,174 Librandom members above high-quality read-count threshold (Methods). Horizontal lines are 467 

time series of individual variants coloured according to the fraction flipped and ranked by the average 468 

fraction flipped across all time points from high (top) to low (bottom). g) Illustration of the IFP (grey area), 469 

i.e. the normalised trapezoidal integral of the flipping profile. h) Correlation between IFP and slope470 

sfGFP0-290min as shown for 31 standard RBSs (Methods). A LOESS function (black line) can be used to 471 

interconvert IFP and slope sfGFP0-290min with high confidence. i) Histogram of the rTR of all variants 472 

from Librandom. 473 

474 

Analysis of positional and base-specific effects on translation 475 

Relying on the data generated for Librandom, we investigated the impact of different positions, nucleotides, 476 

and sequence motifs on expression. To assess positional effects, we performed analysis of variance 477 

(ANOVA) treating each variable position in the 5’-UTR (-25 to -1) and CDS (third positions of codons 2-478 

16) as a covariate and calculated the contribution to the observed variance in rTR (Fig. 2a, Methods).479 

Individual positions in the 5’-UTR explain between 0.3 and 1.5% of the variance. The most pronounced 480 

effect was observable for positions -13 to -8, which corresponds to an anticipated SD region, and, more 481 

unexpectedly, position -1. Within the CDS, the impact of codons decreases with increasing distance 482 

from the start codon with codon 2 showing the highest contribution (2.1%). Codons 2 to 8 show a 483 

marked effect, which strongly decreases to a negligible degree thereafter. Notably, the cumulative 484 

contribution of all 40 randomised positions only amounts to about 25% of which about 17.5% and 7.4% 485 

are attributed to 5’-UTR and CDS, respectively (Suppl. Fig. 10). The remaining high fraction of 486 

unexplained variance (about 75%) points towards a strong interaction between positions leading to non-487 

additive behaviour. Next, we calculated the effect of specific bases at the variable positions by dividing 488 

the average rTR of variants with a given base at a position by the average rTR of all other variants 489 

(Fig. 2b). Generally, C and G tend to have a negative, and A and U a positive effect on translation, 490 

which is stronger in the 5’-UTR and weaker in the CDS decreasing with increasing distance to the start 491 

codon. A striking exception to that end are positions -14 to -7 (SD region), for which the effect of G is 492 

highly positive. The strongest negative effect is observable for CGG as the 2nd codon (Arg) with 493 

corresponding variants being on average 26.3% weaker than those with CGA, CGC or CGU in this 494 

codon. The strongest positive impact is associated with U at 5’-UTR position -1 amounting to a mean 495 

rTR increase of 23.3%. Finally, to identify characteristic sequence determinants in particular of strong 496 

variants, we split the data from Librandom into two sets of strong variants (i.e. rTR ≥ 0.5; 11,212 sequences) 497 

and weaker variants (i.e. rTR < 0.5; 186,962 sequences) and calculated the relative enrichment or 498 

depletion of each base at each position in the strong over the weaker subset (Fig. 2c, Methods). This 499 

analysis confirmed that both 5’-UTR and CDS of strong variants are generally enriched for A and U, 500 
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and depleted for G and C except for a G-favouring region at positions -14 to -7. The latter shows a501 
strong resemblance to archetypal AG-rich SD motifs, which commonly follow a consensus of AGGAGA/G 502 
in E. coli. In the CDS, we again observed a consistent decrease in positional importance with increasing 503 
codon number and a sharp drop of effect size after codon 8. Moreover, the aforementioned significance 504 
of U (but not A!) at 5’-UTR position -1 and the strong negative impact of CGG in codon 2 are confirmed 505 
by this analysis of strong sequences. The high and base-specific impact of these two positions 506 
prompted us to perform further analyses and experiments towards the causality of these effects (see 507 
below). 508 

509 
510 

 511 
Figure 2: Positional and base-specific effects on translation. a) Contribution of variable mRNA 512 
positions to the observed rTR variance. The relative sum of squares calculated by ANOVA with each 513 
position as covariate is displayed. b) Base-specific effects of the randomised positions. Displayed 514 
effects are log2-transformed fold changes (log2 FC) of the mean rTR of variants with a given base at 515 
the respective position over the mean rTR of variants with any other base permitted at that position. 516 
Positive and negative values correspond to translation-increasing or -decreasing effects, respectively. 517 
Crossed boxes indicate non-permitted bases. c) Enrichment of bases amongst strong variants. The 518 
log2 FC of a base’s relative occurrence amongst strong variants (rTR ≥ 0.5) over its relative occurrence 519 
amongst weak variants (rTR < 0.5) is displayed. 520 
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Quantification of sequence parameters and their effect on translation 521 

Since less than 30% of variance in translation could be explained by global analysis of individual 522 

positions, we sought to examine the impact of different sequence parameters on the level of individual 523 

variants. Specifically, we computed several parameters known or hypothesised to influence rTR for all 524 

members of Librandom and calculated their correlation with rTR. This analysis included parameters related 525 

to GC-content, hybridisation between mRNA and 16S rRNA, mRNA folding and other features. Since 526 

rTR values follow a non-normal distribution (p-value = 1.11 × 10-79, Shapiro-Wilk normality test) and 527 

some sequence parameters are likely to non-linearly correlate with rTR, we also report Spearman’s 528 

correlation (coefficient ρ) as a metric of rank correlation between parameters and rTR. 529 

Overall GC-content shows significant correlation with the rTR (ρ2 = 18.6%, R2 = 11.3%) and its impact 530 

is higher in the 5’-UTR than the CDS (Fig. 3a, Suppl. Fig. 11). In particular high GC-content is strongly 531 

associated with low rTRs (Suppl. Fig. 11), likely due to a tendency of GC-rich sequences to form stable 532 

secondary structures, which are known to counteract translation (27). Further, we determined the 533 

minimum free energy (mfe), ensemble free energy (efe) and mRNA accessibility (acc) using two models 534 

for base pairing, the Turner energy model (T) and the CONTRAfold (C) model (65,66), resulting in six 535 

metrics related to mRNA folding: mfeT, mfeC, efeT, efeC, accT and accC (Fig. 3a, Methods). In brief, 536 

mfe and efe are energies required for the unfolding of the most likely and the ensemble of possible 537 

mRNA secondary structure(s), respectively, whereas acc is an accessibility score for a sliding window 538 

along the mRNA corresponding to the probability of this window being embedded within a secondary 539 

structure (18). Folding of mRNA showed a clear impact on rTR across all tested metrics (Fig. 3a). The 540 

latter show a positive correlation with the rTR, which is stronger than for GC-content and highest for 541 

efeC (ρ2 = 30.8%, R2 = 12.6%) and accC (ρ2 = 30.4%, R2 = 12.2%) (Fig. 3a, b). In particular very strong 542 

folding (e.g. efeC < -15 kcal × mol-1) completely abolishes efficient translation (Fig. 3b). We investigated 543 

further the impact of the positioning of secondary structures by calculating mRNA accessibility within a 544 

sliding window of ten nucleotides. Correlation of the resulting scores (accT/C10nt) with rTR is highest 545 

around the first few codons followed by the SD region, and sharply decreases further downstream in 546 

the CDS (Fig. 3c). 547 

Next, we investigated the impact of interactions between mRNA and 16S rRNA. As expected, the 548 

hybridisation energy hybSD between E. coli’s 16S rRNA (sequence: 5’-ACCUCCUUA-3’) and the 549 

approximate SD region in the 5’-UTR (window between positions -18 and -4) shows a clear correlation 550 

with the rTR (Suppl. Fig. 12, Methods)(67). This observation is further corroborated by the fact that 551 

similarity with the canonical SD motif AGGAGGU in this window is strongly associated with high rTRs 552 

(Suppl. Fig. 13). Since the position of hybridisation is known to be critical for efficient translation, we 553 

further calculated positional hybridisation energies hybpos sliding the 9-nt 16S rRNA sequence along the 554 

mRNA (Fig. 3d, Methods). We found that hybpos is negatively correlated with rTR between 5’-UTR 555 

positions -15 and -6 indicating that stronger hybridisation (i.e. lower hybpos) has a translation-favouring 556 

effect in this region. Outside of this window, a negative effect on rTR is observable. The 9-nt 557 

hybridisation window with the strongest correlation to rTR is centred around position -10 corresponding 558 

to a binding of the 16S rRNA 3’-end to the 5’-UTR between positions -14 and -6. A more systematic 559 

analysis of hybridisation windows and positions (Suppl. Tab. 7) revealed the mean of hybridisation 560 
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energies at positions -11 and -10 (hybopt) as the parameter with the highest correlation with rTR 561 

(ρ2 = 2.9%, R2 = 8.9%). 562 

Based on those findings, we sought to quantify the utility of different sequence parameters for predictive 563 

modelling. To this end, we used the data from Librandom to train a random forest regressor with the goal 564 

to predict the rTR from different features including primary sequence information as well as the above-565 

mentioned secondary parameters (Methods). The model was trained using tenfold cross-validation 566 

(Suppl. Fig. 14) and its performance was evaluated on a test set strictly held out during training 567 

(randomly selected 10% of data). The resulting model predicts rTR values with good confidence (R2 = 568 

58%, Suppl. Fig. 15). More importantly, we extracted the relative importance of features of the random 569 

forest (Fig. 3e). Remarkably, while the 16S rRNA hybridisation parameter hybopt had shown only 570 

moderate correlation coefficients ρ and R, it was by far the most important model feature (20.9%) 571 

followed by the folding parameters efeC (9.1%) and accC (6.5%). The over-proportional importance of 572 

hybopt could imply that successful hybridisation with the 16S rRNA must be fulfilled to obtain strong 573 

translation initiation rendering hypopt a critical, early decision criterion for the model. Furthermore, U at 574 

5’-UTR position -1 ranked 10th (1.0%) amongst the total of 248 encodings constituting the most 575 

important single-nucleotide feature. The majority of features (227) exhibited a relative importance below 576 

0.5% pointing towards the multifactorial, interactive nature of the translation (initiation) process and 577 

likely to a high degree of redundancy between the tested encodings. 578 

Lastly, we binned the variants from Librandom according to the two most important features of the random 579 

forest, hybopt and efeC, and calculated the average rTR of each bin (Fig. 3f). Interestingly, we found 580 

that the appearance of very high rTRs (i.e. > 0.5) is co-dependent on strong 16S rRNA hybridisation 581 

and weak mRNA folding. Variants with strong secondary structures (efeC < -15 kcal × mol-1) only exhibit 582 

significant translation initiation if they hybridise well with the 16S rRNA. By contrast, variants with low 583 

folding energy can exhibit intermediate-to-strong translation even in the absence of SD motifs. 584 
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585 
Figure 3: Effect of different sequence parameters on translation in Librandom. a) Correlation of GC-586 
content and different mRNA folding metrics with rTR. Spearman’s ρ2 and Pearson’s R2 are displayed. 587 
b) Scatterplot between rTR and the best-correlating mRNA folding parameter efeC. c) Correlation of588 
rTR with local mRNA accessibility. Parameters accT10nt and accC10nt correspond to the mRNA 589 
accessibility of a 10-nt window centered around the mRNA position specified on the horizontal axis. 590 
Endings C and T denote base pairing calculated by two different energy models (Methods). d) 591 
Correlation of hybridisation energy between 16S rRNA and different mRNA positions with rTR. 592 
Positional hybridisation energy (hybpos) is displayed for 9-bp windows centered around the indicated 593 
mRNA position (horizontal axis). e) Relative feature importance of a random forest model trained on 594 
Librandom. The ten most important of 248 features are displayed. hybopt: best-correlating hybridisation 595 
parameter (see main text). AccC1nt, pos+6: AccC score for position +6 of the mRNA. Upos -1: one-hot 596 
encoded U at position -1 of the mRNA. f) Mean rTR of variants in Librandom as grouped by the two most 597 
predictive features of the random forest, hybopt and efeC. Tick labels mark the boundaries of the 598 
respective bins (boxes). 599 

600 
601 

Codon usage and interaction between 5’-UTR and CDS 602 
A long-standing question is how strong the impact of the CDS on translation is, both in absolute terms 603 
and relative to the 5’-UTR. Changes in the CDS affect critical determinants of translation initiation such 604 
as codon usage and mRNA folding. Importantly, testing many different CDSs in combination with a 605 
single 5’-UTR (as amply done in previous studies) is insufficient to unambiguously assign observed 606 
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effects to different sequence parameters and to quantify their contribution in a precise fashion, since 607 

some parameters also depend on and change with the 5’-UTR in place. Thus, it remains unclear if and 608 

how strong any observed effect is causally related to a sequence parameter change in a generalisable 609 

fashion, or whether it is merely a context-specific artefact only occurring for the selected 5’-UTR. 610 

Similarly, full randomization (as in Librandom in this work) only delivers unique pairs of 5’-UTRs and CDSs, 611 

which again prohibits unambiguous attribution of effects to either of the two mRNA parts (5’-UTR or 612 

CDS). This problem can only be circumvented by testing large numbers of 5’-UTR-CDS combinations 613 

in a combinatorial manner with sufficient overlap allowing to average out case-specific artefacts. 614 

Therefore, to investigate the individual impact of 5’-UTR and CDS independently, we generated three 615 

additional libraries of combinatorial (Libcomb1, Libcomb2) and full-factorial (Libfact) 5’-UTR-CDS pairs, which 616 

were constructed through combination of defined half-libraries (Fig. 4a, Methods): Libcomb1 combines 617 

about 1,000 5’-UTRs with about 1,000 CDSs, Libcomb2 is a combination of approximately 100 5’-UTRs 618 

with approximately 10,000 CDSs, and Libfact features ten independently cloned batches of about 100 619 

5’-UTRs combined with about 100 CDSs each. Note that Libfact was designed such that in each batch 620 

every 5’-UTR is combined with every CDS and vice versa (i.e. full-factorial design). Next, we recorded 621 

the activity of variants from the three libraries applying the same uASPIre workflow as described for 622 

Librandom above. Processing of NGS data yielded time series for 407,325, 496,643, 112,296 unique 623 

variants above high-quality read count threshold for Libcomb1, Libcomb2 and Libfact, respectively. For Libfact, 624 

two independent biological replicates were tested. We then grouped variants according to the 5’-UTR 625 

(or CDS) in place and analysed the diversity of the rTR amongst all CDSs (or 5’-UTRs) appearing with 626 

the respective fixed 5’-UTR (or CDS). Exchanging either 5’-UTR or CDS (while maintaining the other) 627 

can lead to strong up- and downshifts in expression (Fig. 4b). Shifts are on average much stronger for 628 

an exchange of the 5’-UTR than of the CDS, and in many cases cover a large fraction of the rTR range 629 

(Fig. 4b, Suppl. Fig. 16). We further quantified the individual impact of 5’-UTR and CDS performing an 630 

ANOVA with the mean rTRs of all 5’-UTRs and CDSs (Fig. 4c, Methods). This analysis was performed 631 

exclusively on Libfact, since full-factorial design is required to exclude case-specific artefacts and achieve 632 

a precise quantification of each part’s individual contribution (see above). We observed that the 5’-UTR 633 

explains on average 53.12 ± 6.3% and the CDS 19.8 ± 5.4% of rTR variance confirming the higher 634 

impact of the 5’-UTR compared to the CDS. The 27.0 ± 1.3% of variance remain unexplained in the 635 

additive model and must therefore be caused by non-linear interactions between 5’-UTR and CDS 636 

confirming a high degree of interdependence between both parts.  637 

A controversially discussed sequence feature of the CDS is codon usage, which is well known to 638 

influence translation (initiation). To this end, the appearance of rare codons within the first few triplets 639 

of the CDS was found to coincide with high expression (29,41-44). Thus, we first analysed the impact 640 

of two commonly used metrics for codon usage, CAI and tAI (Suppl. Tab. 6) (41,53), on rTR, which 641 

indicated a weak (R2 and ρ2 consistently below 0.7%) yet significant correlation in all libraries (Fig. 4d). 642 

However, it remains unclear whether this is caused by differential abundance of the corresponding 643 

tRNAs in the cell or by changes in mRNA folding. Since folding is also co-dependant on the 5’-UTR in 644 

place, combinatorial testing of 5’-UTR-CDS pairs is also essential in this case to unambiguously test if 645 

and to which extent the two aforementioned hypotheses are correct. Accordingly, we first compared the 646 
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rTR of Libfact variants rich in rare codons (i.e. CAI/tAI ≤ 10%) with the other variants (i.e. CAI/tAI > 10%). 647 

Variants with low CAI exhibit a mean rTR of 0.213, which is virtually indifferent from high-CAI variants 648 

(0.217) (Fig. 4e). This is further corroborated by the fact that the mean rTRs of CDSs and CAI do not 649 

correlate significantly (p-value = 0.256, one sample t-test) in Libfact (Suppl. Fig. 17). Low-tAI variants, 650 

by contrast, exhibits on average a higher rTR than the control group (Fig. 4e, Suppl. Fig. 17). At the 651 

same time, however, mRNA folding is significantly weaker (p-value < 10-300, one-sided Welch two 652 

sample t-test) in low- versus high-tAI variants, which is not the case for the corresponding CAI groups 653 

(p-value = 1.0, Fig. 4e). Moreover, the codon frequency of E. coli showed only very small and 654 

inconsistent effects on the rTR for the randomised codons (Suppl. Fig. 18). Therefore, we further 655 

analysed to which extent the dependence of the rTR on codon usage can be explained by mRNA folding. 656 

An ANOVA with only efeC, CAI and tAI as covariates indicated that the overwhelming majority of 657 

variance in rTR explainable by these parameters is attributed to efeC (8.5%), whereas the contribution 658 

CAI and tAI was about 155- and 53-fold lower, respectively (Fig. 4f). Furthermore, we re-trained the 659 

former random forest model (see above) with different sets of sequence parameters including CAI and 660 

tAI (Fig. 4g). Remarkably, while removal of mRNA folding parameters led to a substantial decrease in 661 

model performance, addition of CAI and tAI did neither increase accuracy of the initial random forest 662 

nor was it able to compensate for the performance loss in the absence of folding parameters. 663 

Accordingly, the relative feature importance of CAI and tAI was very low (Suppl. Fig. 19). Collectively, 664 

these findings strongly suggest that any influence of codon usage on rTR can be virtually completely 665 

explained by mRNA folding. On the contrary, a causal connection to cellular tRNA abundance or the 666 

previously postulated translational ramps could not be established and is either insignificant or 667 

negligible amongst the over 1.2 million sequences tested in this study. 668 
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669 
Figure 4: Overall impact of 5’-UTR, CDS and codon usage on translation. a) Three additional 670 
libraries of combinatorial (Libcomb1, Libcomb2) and full-factorial (Libfact) design were assessed via uASPIre. 671 
Libcomb1: combinatorial combination of about 1,000 5’-UTRs and 1,000 CDSs. Libcomb2: combinatorial 672 
combination of about 100 5’-UTRs and 10,000 CDSs. Libfact: ten independent batches, each a full 673 
factorial combination of approx. 100 5’-UTRs and 100 CDSs. Libfact was tested in two independent 674 
biological replicates. The number of analysed clones is indicated for each library. b) Impact of the 675 
exchange of 5’-UTRs or CDSs on translation. The rTR change (absolute value) of a given 5’-UTR upon 676 
exchanging its CDS versus the mean rTR of all variants with that same 5’-UTR is displayed (and vice 677 
versa). Black circles within violins are mean relative rTR changes. c) ANOVA with the mean rTRs of all 678 
5’-UTRs and CDSs in Libfact. Error bars: standard deviation between ten independent batches of Libfact. 679 
d) Correlation of codon usage indices CAI and tAI with rTR. e) Comparison of rTRs and folding energies680 
(efeC) of variants with low (≤ 10%) and high (> 10%) CAI/tAI in all libraries. Black circles within violins 681 
are mean rTR/efeC values. f) Contribution of efeC, CAI and tAI to the rTR variance in all libraries 682 
according to an ANOVA with only the three parameters as covariates. g) Impact of folding and codon 683 
usage metrics on the performance of random forest (RF) models trained on Librandom. Sequence 684 
parameters for mRNA folding (mfeT, mfeC, efeT, efeC, accT and acc) and codon usage (CAI and tAI) 685 
were added or omitted during training. Error bars: Standard deviation of five training repeats with 10-686 
fold cross-validation each. p-value were calculated with Welch two sample t-tests. 687 
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Assessment of translational anomalies of arginine codon 2 and 5’-UTR position -1 688 

Lastly, we sought to decipher the reasons for the unexpected behaviour of two mRNA positions 689 

observable in our data (see above). To this end, the presence of G in the third position of arginine codon 690 

2 and U in position -1 of the 5’-UTR exhibit a profound impact on the rTR, which is negative in the former 691 

and positive in the latter case (compare Fig. 2). Variants with CGG as the second codon show an 692 

average decrease in rTR of 26.3% compared to variants carrying A, C or U in the third position (Fig. 5a). 693 

This different behaviour is likely not caused by codon frequencies or tRNA availability, since both 694 

arginine codons with higher (CGC, CGU) and lower (CGA) frequency show significantly higher mean 695 

rTRs (Fig. 5b). By contrast, the average folding energy of CGG-bearing variants is significantly lower 696 

(∆efeC = -0.76 kcal × mol-1) than for the other codons (Fig. 5a), pointing again to mRNA folding (and 697 

not tRNA availability) as the mechanistic reason for the differential expression of synonymous codons. 698 

For variants with U at position -1 in the 5’-UTR, the mean rTR is 23.3% higher than for those with any 699 

other base in this position (Fig. 5c). In this case, however, the average folding energy is even slightly 700 

increased for U (∆efeC = +0.10 kcal × mol-1) excluding mRNA folding as the reason (Fig. 5c). As an 701 

alternative explanation, we suspected that an interaction of this U with the initiator tRNA (tRNAfMet) could 702 

be responsible for the observed effect. In E. coli, initiator tRNAs are encoded by one monocistronic 703 

(metY) and one tricistronic (metZWV) transcriptional unit, and their sequences are identical except for 704 

position 46 (G in metY, A in metZWV). Importantly, methionine elongator tRNAs (metT, metU) do not 705 

initiate translation (71), and all tRNAfMet copies carry an A in position 37 directly 3’ to the CAU anticodon, 706 

which could preferentially hybridise with mRNAs carrying a U directly 5’ to the start codon. 707 

Several previous studies have postulated or shown that the presence of U in this position favours 708 

formation of the prokaryotic ribosomal initiation complex and/or translation of the corresponding genes 709 

in vitro and in vivo (36,58,72-80). These effects were attributed to a proposed interaction of A37 in 710 

tRNAfMet and U in 5’-UTR position -1, for which further evidence was later provided in algal chloroplasts 711 

through compensatory mutation of tRNAfMet position 37 (81). Furthermore, structural analyses have 712 

shown that A37 is released from internal base pairing upon reaching the ribosomal P-site (82), which 713 

would render this position available for Watson-Crick base pairing with nucleotide(s) upstream of the 714 

start codon. Collectively, these prior works highlight the importance of bases directly upstream of the 715 

start codon and point to a potential interaction of mRNA and tRNAfMet beyond the codon-anticodon 716 

hybridisation. A causal link between any observed impact on translation and an interaction with the 717 

5’-UTR position -1 was, however, so far not conclusively established. A potential reason for this could 718 

be that only few mRNA sequence variants were tested prohibiting generalisable statements due to the 719 

high context dependence of translation initiation and statistical error. 720 

We therefore investigated whether the proposed interaction between mRNA and tRNAfMet could be 721 

substantiated relying on systematic high-throughput sequence-function mapping. We first constructed 722 

plasmids for the overexpression of tRNAfMet with the native A37 as well as the mutants A37C, A37G 723 

and A37U (Fig. 5d, Methods). To reduce the background from the chromosomal tRNAfMet copies, we 724 

further deleted the metZWV locus of E. coli TOP10 ΔrhaA (“WT”) yielding strain TOP10 ΔrhaA 725 

ΔmetZWV (“ΔmetZWV”), and transformed both strains with the tRNA plasmids. Note that simultaneous 726 

knockout of metZWV and metY failed in our hands despite complementation via plasmid-borne tRNAfMet. 727 
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Remarkably, transformants of ptRNAfMet-A37C showed severe growth inhibition (colonies visible only few 728 

days after transformation), whereas the native tRNAfMet-A37 and the other two mutants (tRNAfMet-A37G, 729 

tRNAfMet-A37U) were tolerated with minor effects on growth in both strains (Fig. 5e). While in the case of 730 

the WT strain a small increase of doubling times was observable, ΔmetZWV showed an improvement 731 

of growth upon overexpression of all tRNAfMet variants, likely due to compensation of the reduced level 732 

of chromosomally-derived tRNAfMet copies in this strain. The apparent toxicity of tRNAfMet-A37C could 733 

stem from global dysregulation of translational, and due to its prohibitively slow growth we excluded this 734 

variant from further experiments. Next, we tested approximately 50,000 variants from Librandom in both 735 

strains (WT, ΔmetZWV) in presence of the remaining tRNAfMet plasmids via uASPIre (Fig. 5f, Suppl. 736 

Fig. 20, Methods). We analysed the resulting NGS data comparing 44,289 common 5’-UTR-CDS 737 

variants above high-quality read count threshold that appeared in all six conditions (i.e. two strains with 738 

three plasmids). Specifically, we determined for each condition the effects of 5’-UTR position -1 by 739 

dividing the mean rTR of variants with a given base at this position by the mean rTR of all other variants 740 

(Fig. 5g). This analysis confirmed the strong, base-specific impact of this position, and, beyond that, 741 

revealed a significant dependence of the effect on the base present in position 37 of tRNAfMet. To this 742 

end, we observed a strong increase in the rTR for variants whose base upstream of the start codon is 743 

complementary to position 37 of the overexpressed tRNAfMet in both the WT and ΔmetZWV strain. Non-744 

complementarity consistently leads to a lower expression compared to the complementarity case 745 

across both strains and all tRNAfMet variants (Fig. 5h). Similarly, a small yet significant positive impact 746 

on rTR is observable for the major wobble base pair G-U/U-G, which appears consistently for both 747 

directions of interaction (G in position 37 of tRNAfMet with U in 5’-UTR position -1 and vice versa) and 748 

both strains (Suppl Fig. 21). Interestingly, a U at 5’-UTR position -1 leads to a small rTR-boosting effect 749 

also in presence of the non-complementary initiators tRNAfMet-A37G and tRNAfMet-A37U only in the WT 750 

strain (Fig. 5g). This can be explained by the presence of chromosomally encoded, endogenous 751 

tRNAfMet-A37 copies, since this positive effect is neutralised or slightly inverted in the ΔmetZWV strain. 752 

The effects at all other randomised positions in the mRNA were similar to the ones obtained for Librandom 753 

without overexpression of tRNAfMet variants (Suppl. Fig. 22 compare Fig. 2b). 754 

These findings strongly suggest a direct base-pairing interaction of 5’-UTR position -1 with the 755 

nucleotide following the anticodon in tRNAfMet (position 37), which leads to a significant positive effect 756 

on translation initiation upon successful hybridisation. Thus, our analyses confirm previous hypotheses 757 

to that end in a statistically solid manner based on more than 132,000 mRNA-tRNAfMet combinations, 758 

which were kinetically assessed in two different genetic backgrounds. 759 
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760 
Figure 5: Assessment of translational anomalies of arginine codon 2 and 5’-UTR position -1 in 761 
Librandom. a) Effect of different synonymous codons in the second triplet of the CDS on rTR and mRNA 762 
folding energy (efeC). Black circles within violins are mean rTR/efeC values. *** denote p-values <10-16 763 
in a Welch two sample t-test. b) Relationship between relative triplet frequency in E. coli and rTR for 764 
the four synonymous triplets in arginine codon 2. c) Effect of different bases in 5’-UTR position -1 on 765 
rTR and mRNA folding energy (efeC). Black circles within violins are mean rTR/efeC values. *** denote 766 
p-values <10-16 in a Welch two sample t-test. d) Plasmids for the overexpression of native initiator767 
tRNAfMet and mutants thereof (Suppl. Fig. 6, Methods). Position 37 (3’-adjacent to the CAU anticodon) 768 
of tRNAfMet is mutated from A to C, G, or T/U. e) Growth of E. coli strains carrying plasmids for tRNAfMet 769 
overexpression in shake flask cultivations (LB, 37 °C). Bars are mean doubling times of independent 770 
biological triplicate cultivations with standard deviation as error bars. Dashed lines are the mean 771 
doubling time of the respective strain without tRNA overexpression (i.e. empty vector control) with 772 
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standard deviation as grey shaded areas. For tRNAfMet-A37C, doubling times were not determined (n.d.) 773 

due to severe growth inhibition (see main text). f) Approximately 50,000 variants of Librandom were tested 774 

in the presence of overexpressed tRNAfMet variants in E. coli strains containing (WT) and lacking 775 

(ΔmetZWV) the chromosomal metZWV locus. g) Impact of tRNAfMet mutations on the rTR of variants 776 

from Librandom. Displayed effects are log2-transformed fold-changes (log2 FC) of the average rTR of 777 

variants with a given base at 5’-UTR position -1 over the average rTR of variants with any other base 778 

at this position. Black arrows indicate complementarity between 5’-UTR position -1 and position 37 of 779 

the tRNAfMet variant. h) Impact of complementarity between 5’-UTR position -1 and tRNAfMet position 37. 780 

Circles are log2-transformed fold-changes (log2 FC) of the average rTR of variants with 781 

complementarity or non-complementarity between mRNA and tRNA over the mean rTR of all variants 782 

in the same group (i.e. same tRNAfMet variant and strain). Bars are the mean log2 FCs of the three 783 

tRNAfMet variants for each case and strain with standard deviation as error bars. 784 

785 

786 

DISCUSSION 787 

In this study, we systematically investigated the impact of 5’-UTR and N-terminal CDS on translation 788 

through mapping of more than 1.2 million mRNA sequence variants to their corresponding expression 789 

levels in E. coli. In combination with random and combinatorial library design, the ultrahigh throughput 790 

of our approach allowed us to critically assess sequence parameters known or supposed to influence 791 

translation efficiency. Furthermore, the generated large data basis enabled a precise quantification of 792 

effect sizes and correction for sequence-specific artefacts via statistically solid analyses. 793 

To this end, we assessed mean effects of individual bases and positions in 5’-UTR and CDS along with 794 

various higher-order sequence parameters of the mRNA. We found that 25% of variance in our data 795 

could be explained by individual nucleotides and that GC-content, hybridisation with the 16S-rRNA and 796 

mRNA folding are the most significant determinants of translation confirming findings from previous 797 

studies (e.g. (8-12,20,27-30,32-37,39,40,83)). Using a simplistic machine learning approach, we 798 

compared the predictive potential of 248 parameters, which ranked 16S-rRNA hybridisation highest 799 

(20.9%) followed by various mRNA folding features (between 1.0% and 9.1%) and GC-content (5.97%) 800 

and pointed to a high degree of interaction and redundancy amongst parameters (Fig. 5e). 801 

Furthermore, we found an unexpectedly large, base-specific contribution of two individual nucleotides, 802 

the negative impact of G in the third position of arginine codon 2 and the positive effect of U in position 803 

-1 of the 5’-UTR (Fig. 2). Follow-up analyses revealed that the former is not causally related to tRNA804 

availability in the cell but can likely be attributed to a stronger tendency of variants with CGG as second 805 

codon to form mRNA secondary structures (Fig. a, b). Notably, mRNA accessibility at this position 806 

ranked amongst the most important features (accC1nt, pos. +6) of a predictive random forest model 807 

(Fig. 3e), which confirms the relation of the observed effect to mRNA folding. The positive effect of U 808 

directly upstream of the start codon, by contrast, was not linked to folding or any other mRNA parameter 809 

(Fig. 5c), which prompted further experiments to that end. Specifically, we assessed whether a base-810 

pairing interaction of 5’-UTR position -1 with the base in 3’ to the anticodon in initiator tRNAfMet (position 811 

A37) could be responsible for the effect. This hypothesis could be confirmed through compensatory 812 
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mutation of tRNAfMet position 37, which led to a translation-favouring effect in all cases of 813 

complementarity between tRNA and 5’-UTR (Fig. 5g, h). Several previous studies had shown that a U 814 

upstream of the start codon favours ribosome assembly and/or translation in vitro and in vivo (36,58,72-815 

80). A link of these effects to the aforementioned base-pairing interaction, however, was only postulated 816 

and not experimentally confirmed in these studies. Esposito et al. (81) attempted to confirm the 817 

interaction in algal chloroplasts by substitution of position A37 in tRNAfMet. Notably, the variant 818 

tRNAfMet-A37C was not generated in their study, which showed severe growth inhibition and was thus 819 

excluded also in our work. For the tested reporter gene (petA), substitution of A37 indeed led to a 820 

translation-favouring effect only in cases of complementarity between tRNAfMet and the base upstream 821 

of the start codon. However, this observation was made on the basis of only three 5’-UTR position -1 822 

variants of petA carrying a non-native weak UAA start codon and could not be confirmed for several 823 

other analysed genes. Whether the impact for petA is specific to this gene (context) or the weak start 824 

codon, or indeed related to an interaction between tRNAfMet and the base upstream of the start codon 825 

therefore remains unclear. In this study, we assessed 45,258 mRNA sequences tested with three 826 

tRNAfMet variants and in two strains of normal and reduced endogenous expression of native tRNAfMet-A37. 827 

This did not only confirm the proposed quadruplet interaction in a statistically firm fashion but allowed 828 

to even quantify comparably subtle phenomena such as wobble base pairing (Suppl. Fig. 21), which 829 

can be masked for individual sequences and thus are inaccessible to low-throughput approaches. 830 

Lastly, we constructed and assessed more than a million combinatorial and full-factorial 5’-UTR-CDS 831 

combinations, which, in view of the high degree of interactivity, is indispensable to correctly assign 832 

observed effects to different mRNA parts and sequence parameters, and to precisely measure their 833 

contribution. This allowed us to quantify the mean individual contribution of the 5’-UTR and CDS to 834 

translational variance in a manner that would not be possible otherwise (e.g. using fully random 835 

libraries), which amount to 53% and 20%, respectively. Moreover, we capitalised on the combinatorial 836 

libraries and the large data basis to revise different hypotheses on the causal relationship between 837 

translation efficiency and codon usage. Similar to previous studies (e.g. (33,37)), our data confirmed a 838 

strong dependence of the rTR on the N-terminal CDS and a decreasing impact of codons with 839 

increasing distance to the start codon (Figs. 2, 4b, c). While this dependence unquestionably exists, 840 

the underlying mechanistic reasons remain less clear and were linked to both differences in mRNA 841 

folding and cellular tRNA abundance in the past. In our data, we found a small (R2/ρ2 < 0.7%) yet 842 

significant correlation of the rTR with codon usage metrics (Fig. 4d). However, the majority of the 843 

corresponding variance of the rTR can be explained by mRNA folding to an overwhelming degree while 844 

the contribution of codon usage metrics is extremely low (Fig. 4f). This low impact is further 845 

corroborated by the fact that none of the codon usage metrics was capable to increase the prediction 846 

accuracy of a random forest model, whereas mRNA folding had a very large impact (Fig. 4g). In 847 

summary, amongst the 1.2 million unique 5’-UTR-CDS combinations tested in this study the influence 848 

of different codons is virtually fully explainable by mRNA folding, whereas a causal connection to cellular 849 

tRNA abundance was either insignificant or negligibly small. The small apparent correlation between 850 

codon usage indices and rTR thus likely stems from differences in GC-content between rare and 851 

frequent codons, which leads to different tendencies to form secondary mRNA structures. 852 
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Consequently, our study highlights the importance of ultradeep sequence-function mapping for the 

accurate determination of the contribution of parts and phenomena involved in gene regulation. It 

should be mentioned that several other factors are known to influence translation (initiation), which 

have not been addressed in this study. These include the use of different start codons, long-range 

interactions between ribosome and 5’-UTR, and limitations of translation elongation (e.g. related to 

protein folding). Nonetheless, the presented methodology can be applied to scrutinise these additional 

factors, which, together with the results from this study, could serve as a basis to improve on 

inaccuracies of currently available models for the prediction and forward design of prokaryotic protein 

expression. 
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