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Abstract 

Single-cell RNA-sequencing (scRNA-seq) is a powerful technology to uncover cellular heterogeneity in 

tumor ecosystems. Due to differences in underlying gene load, direct comparison between patient 

samples is challenging, and this is further complicated by the sparsity of data matrices in scRNA-seq. 

Here, we present a factorization method called KINOMO (Kernel dIfferentiability correlation-based NOn-

negative Matrix factorization algorithm using Kullback-Leibler divergence loss Optimization). This tool 

uses quadratic approximation approach for error correction and an iterative multiplicative approach, which 

improves the quality assessment of NMF-identified factorization, while mitigating biases introduced by 

inter-patient genomic variability. We benchmarked this new approach against nine different methods 

across 15 scRNA-seq experiments and find that KINOMO outperforms prior methods when evaluated 

with an adjusted Rand index (ARI), ranging 0.82-0.91 compared to 0.68-0.77. Thus, KINOMO provides an 

improved approach for determining coherent transcriptional programs (and meta-programs) from scRNA-

seq data of cancer tissues, enabling comparison of patients with variable genomic backgrounds.  

 

Classification: Physical Sciences (Applied Mathematics; Biophysics and Computational Biology), 

Biological Sciences (Applied Biological Sciences; Biophysics and Computational Biology; Medical 

Sciences; Systems Biology.). 
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Significance Statement 

Identification of shared or distinct cell programs in single-cell RNA-seq data of patient cancer cells is 

challenging due to underlying variability of gene load which determines transcriptional output. We 

developed an analytical approach to define transcriptional variability more accurately across patients and 

therefore enable comparison of program expression despite inherent genetic heterogeneity. Thus, this 

method overcomes challenges not adequately addressed by other methods broadly used for the analysis 

of single-cell genomics data. 

 

 

Introduction 

Non-negative matrix factorization (NMF) is a widely used method for performing dimensionality reduction 

and feature extraction on ‘non-negative’ data (Lee et al, 1999). The major difference between NMF and 

other factorization methods such as Singular-value decomposition (SVD) is that it performs feature 

extraction on non-negativity data thus allowing additive combinations of intrinsic features. Likewise, most 

of the low-rank matrix dimensionality reduction mechanisms are unsupervised methods that are capable 

of identifying the low-dimensional structure embedded in the original data. A non-negativity constraint 

particularly helps in interpreting big and complex data structure, thereby preserving physical feasibility. In 

the field of next-generation sequencing, such as single-cell RNA-sequencing (scRNA-Seq) which involves 

non-negative measurements of gene expression, emergence of these mathematical techniques could 

help in better understanding of the underlying biological processes. scRNA-seq is a powerful method to 

identify cell identity (e.g., hematopoietic lineage) and activity programs (e.g., cell cycle, differentiation 

states) across non-transformed lineages (Kotliar et al, 2019). 

 

In scRNA-seq studies of patient cancer tissues, the most important driver for inter-patient heterogeneity 

among malignant cells is the patient of origin (Patel et al, 2014; Tirosh et al, 2016). These studies 

highlighted that gene load (e.g., oncogenic mutations or aneuploidy patterns) were the key determinant of 

transcriptional output, thus, posing a major bias when comparing gene expression between two patients 

and among potential cancer cell subpopulations within the same patient with varying genomic patterns. 

Thus, while intra-patient transcriptional variability may inform important processes (e.g., metastatic 

behavior, drug response/resistance) (Jerby-Arnon et al, 2018) and dissecting heterogeneity and cell 

states across patient populations can be highly informative, direct comparison between patients is 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 4, 2022. ; https://doi.org/10.1101/2022.05.02.490362doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.02.490362


 

 

3 

 

challenging. For this purpose, factorization approaches provide an immediate benefit for understanding 

this heterogeneity, by denoising the sparse signal of scRNA-seq data. 

 

Conventional NMF (Lee et al, 1999) decomposes a matrix A into two matrices with non-negative entries 

with smaller factors, A ≈ WH, where � � ����, � � ����, � � ����. Without loss of generalization, rows 

of A represent features (e.g., genes) and columns of A represent samples. Depending on context, W can 

be interpreted as a feature mapping. Rows of W represent disease profiles or metagenes (Brunet et al, 

2004). Columns H are compact representations of samples, i.e., sample profiles. Various NMF methods 

have been published to date focusing on different application domains, such as sparse NMF (SNMF), 

discriminant NMF (DNMF) for RNA-seq data (Jia et al., 2015; Kim & Park, 2007), among others. SNMF, 

for example, introduces a regularization term on W or H to control the degree of sparsity and generate 

sparser representation, whereas DNMF incorporates Fisher’s discriminant criterion in the coefficient 

matrix by maximizing the distance among any samples from different classes meanwhile minimizing the 

dispersion between any pair of samples in the same class. The major problem in scRNA-seq data is the 

difficulty in assigning specific classes to cells, since this information is not known confidently. Moreover, 

most of the scRNA-seq methodologies suffer from various technical issues like amplification bias, 

differences in library sizes, dropouts, among others (Buettner et al., 2015; Kharchenko, Silberstein & 

Scadden, 2014).  

 

In this paper, we propose Kernel dIfferentiability correlation-based NOn-negative Matrix factorization 

algorithm using Kullback-Leibler divergence loss Optimization (KINOMO), a semi-supervised NMF model 

that is robust to noise and also uses ‘prior’ biological knowledge for better refinement. We benchmark our 

approach against nine frequently used NMF approaches and demonstrate that KINOMO outperforms 

these across multiple scRNA-seq data sets measured by adjusted Rand index (ARI). Thus, KINOMO 

enables more accurate identification and comparison of cell states tissues and overcomes critical 

challenges in the analysis of scRNA-seq data that includes cancer cells with variable gene load. KINOMO 

is freely available for research use on GitHub (https://github.com/IzarLab/KINOMO).  

 

RESULTS 

 

KINOMO  

KINOMO has three major steps, including 1) filtering and cleaning, 2) NMF core module, and 3) 

metagene and factor block estimation. The filtering and cleaning steps begin with the tumor cell 

estimation of an individual scRNA-seq sample, followed by normalization and scaling. The second step 

consists of two sub-steps a) Factorization Error Analysis, using L2,1 norm loss to handle outliers, adding 

prior knowledge by introducing graph regularization parameters, sequential quadratic approximation for 
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Kullback-Leibler divergence loss, local geometrical structure preservation, optimizing the update rules for 

approximation matrix WH and clustering using Kernel differentiability correlation; and b) factor factor 

survey analysis. The third step consists of metagene and factor block estimation. 

 

Factorization Error Analysis 

For a non-negative matrix Xmxn, denoting single cell data with m features (e.g. gene expression) 

measured for n cells, KINOMO can decompose it into two non-negative matrices Wmxk and Hkxn, such that 

X ≈ H, where k < min (m,n). The Euclidean distance between X and its approximation matrix WH is 

applied to minimize the factorization error, which can be written as (Lee and Seung, 2001), 

 

min�,�	
 �����	2� (1) 

s.t. W ≥ 0, H ≥ 0 

 

Here, ||. ||2� is the Frobenius norm of a matrix. Since, it is difficult to find a global minimal solution by 

optimizing the convex non-linear objective function, KINOMO adopts the multiplicative iterative update 

algorithm to approximate W and H, 

 

��� � ���
	
�����
	������� (2) 

��� � ���
	��
���
	������� (3) 

For the multiplicative iterative approach that KINOMO considers, W and H are initialized randomly, and in 

each repetition, the update steps are processed until maximum number of iterations are reached. The 

stopping criteria if fulfilled when the shift between two iterations is negligible. Moreover, the update steps 

are based on the mean squared error objective function. This approach is different from other 

multiplicative methods such as NMFNA (Ding et al, 2021), which relies on Karush–Kuhn–Tucher 

conditions. 

 

Using L2,1 norm loss to handle outliers 

As the representation above (Lee and Seung, 2001) fails to handle outliers and noise, Kong et al., 2011 

replaced the Frobenius norm with L2,1 norm loss as defined below, 

 

||
 � ��||,� � ∑ �∑ �
 � ������������� � ∑ ||�� � ���||����  (4) 
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Here, the error of each data point is ||�� � ���|| rather than squared, jth column of X, thus the errors 

caused by outliers and noise do not dominate the objective function compared to the L2 norm.  

 

Adding scRNA-seq derived prior knowledge by introducing graph regularization parameters 

Chen and Zhang, 2018 proposed a method of introducing an error matrix � � ����. For a sample with 

multiple modalities (for the purpose of explanation, we consider the number of modalities = 2), defined as 

two variables, 
�
����and 


���� with m1 and m2 features respectively, measured for n cells, Chen and 

Zhang defined the optimization problem as,  

 

min��,��,���,��� ||��� � ��������||� � �||�� � ����||� � �||� � ����||� (5) 

s.t. G1 ≥ 0, G2 ≥ 0, S11 ≥ 0, S22 ≥ 0 

 

Here, ���
�����and �

�����are the symmetric feature similarity matrices of X1 and X2, respectively, that is, 

their respective co-expression networks; ��
����� is the two-type feature similarity matrix 

between X1 and X2; ������ and �
���� are the non-negative factored matrices used for identifying modules 

in their respective networks; ������and ���� are also symmetric matrices whose diagonal elements can be 

used for measuring associations between identified modules; k is the user prespecified dimension 

parameter; α and β are graph regularization parameters in the objective function and default settings 

are m1/m2 and (m1/m2)
2, respectively (Chen and Zhang, 2018). While classical non-negative factorization 

approaches fit the data in Euclidean space, KINOMO uses the intrinsic geometry of scRNA-seq and 

incorporates it as additional regularization terms (α and β).  

 

Sequential quadratic approximation for Kullback-Leibler divergence loss 

The error function is a suitably chosen function. Here, we chose the Kullback-Leibler divergence 

(Kullback-Leibler, 1951). Thus, assuming W is known and H is to be solved. Let, 

 

� � ���
���	�

��	�� � ∑ !"��� � �
��
�	

∑ �
�������

#�  (6) 

� � ����
���

�	�

��	�� � ∑ $�� !"��� � �
�	

∑ ���������

#�  (7) 

 

Here, �	��is the current value of H in the iterative procedure and %& is mean factor. When fixing all the 

other entries, the Taylor expansion of the penalized KL divergence up to the 2nd order at ����
	��w.r.t. ��� � is 
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( ) ��� � � ��� �
	��* � �

 � ���� � ����
	��� � ��

 � � ��∑ �������   +�� � � �  ���� � ,-./0. � !"��
 ��� � � )$��� �

	�� � ( �
�2�≠����−�3 ���+���	
. (8) 

 

This can be solved explicitly by 

 

��� �
	�"�� � max �0, ���	�

��#$#��∑ �

�

��

��	 #��

�"�� � (9) 

 

Similarly, we update  ���� . 
 

Simplifying the above term, we have 

 

min�,�,�	
 ����� � �	2� s.t. W ≥ 0, H ≥ 0, ||S||0 ≥ v, (10) 

 

where v specifies the maximum number of non-zero elements in S. Likewise, 

 

min�,�,�	
 ����� � �	2� � �||�||� � �56��7��� (11) 

s.t. W ≥ 0, H ≥ 0. 

 

The graph regularized constraint indicates the inherent geometrical structure of the input networks. In 

other words, the graph regularized constraint ensures that interactive features in the Euclidean space are 

also close to each other in the low-dimensional space. We can construct a weight matrix µ, by using the 

markers gene of cell groups (as an example) using heat kernel weighting between xi and xj: 

μ�� � 9#||�����||
�

�  (12) 

Here, σ is parameter that controls the weighting and we set σ = 1 in the experiment. The weight matrix is 

constructed by a predefined set of marker genes, which for example in melanoma, such as markers of 

melanocytic lineage (MITF, PMEL, TYR), neuronal development and differentiation, (NGFR, NLGN3, 

NRXN), and synapse function and formation (e.g., SNCA, SYT11, GPHN). 

 

Local geometrical structure preservation 

We use Euclidean distance to measure the dissimilarity in the low-dimensional representation of X: 

 

:��� � �� � ;�� � ��; (13) 
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The local geometrical structure preserving criterion is:  

� � < ;�� � ��;
�

�,���
μ�� � < �����:�� �

�

�,���
< �����:��
�

�,���
 

� � 56��:��� � 56��=��� � 56��7��� (14) 

 

Here, D = ∑jQij is a diagonal matrix, L = D – Q is graph Laplacian. Thus, minimizing G will result in 

Hi and Hj to be close to each other, if data point xi and xj are close, thus the distance relation between 

points in X is preserved in low dimensional matrix H (Zhai et al., 2020). 

 

Optimizing the update rules for approximation matrix WH 

The optimization function of KINOMO can be rewritten as: 

 

> � 	
 � �� � �	� � �||�|�|� � �56��7��� 
� 56��
 � �� � ���
 � �� � ��� � �||�||� � �56��7��� 

� 56�

�� � 256�
����� � 256�
��� � 256������ � 56�������� � 56����� � �56��7��� � �	�	� 
(15) 

 

The Lagrange function ? is stated as 

 

? �  56�

�� � 256�
����� � 256�
��� � 256������ � 56�������� � 56����� � �56��7��� �
�	�	� � 56�@�� � 56�A�� (16) 

 

Here, @, A are Lagrange multipliers. 

The partial derivatives of ? with respect to W and H are: 

 
�%
�� � �2
�� � 2��� � 2���� � @ �%

�� � �2��
 � 2����2���� � 2��: � 2��B � A (17) 

 

If @��"�� � 0 and A��+�� � 0,  

��
�����"�� � �������"�����������"�� � 0 � ���
���+�� � �������+�� � ��������+�� � ���:���+�� �
���=���+�� � 0 (18) 

 

Updating rules for W and H are: 

��� � ���
	
�����

	����"������ (19) 

��� � ���
	��
"��&���

	����"���"������ (20) 
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Clustering using Kernel differentiability correlation 

We define a continuous version of differentiability for each cell i in gene k 

 

��� � �'� � 	∑ ����

�� �
�#�  (21) 

 

We now calculate the differentiability correlation among the given n cells in the data set 

 

:C�D, E� � ∑ (���
#��)	���

#����
���

*∑ 	���
#���������

��� *∑ 	���
#���������

���

 (22) 

Here,  

 

��� � ∑ ��


+
+
���  (23) 

 

The Kernel DC is constructed as 

 

F:C�D, E� � 9��	�
�
	,-	�,��#���, D, E � G1,2, … , .J (24) 

 

Rank factor analysis, metagene selection and co-correlation analysis 

A critical parameter in KINOMO is the factorization factor, r. It defines the number of metagenes used to 

approximate the target matrix. Given an NMF method and the target matrix, a common way of deciding 

on r is to optimize according to a quality measure of the results scanning a range of r values. Brunet et 

al, 2004 proposed to take the first value of r for which the cophenetic coefficient starts decreasing, 

whereas, Hutchins et al, 2008 suggested to choose the first value where the Residual Sum of Squares 

(RSS) curve presents an inflection point, and Frigyesi et al, 2008 considered the smallest value at which 

the decrease in the RSS is lower than the decrease of the RSS obtained from random data. KINOMO 

selects the optimal factor by selecting the first- and second-best value of r for which the cophenetic 

coefficient starts decreasing. For each best and second-best factor factor (per sample), the top 

30/50/100/200/300 top metagenes are selected using the KINOMO score. A co-correlation analysis using 

Spearman’s correlation is performed for identifying the correlations among all factors across all samples 

(best and second-best factor factor done separately). Finally, the consensus factor factors are selected 

using significance testing (Kruskal-Wallis p-value) and/or correlation value among all factors with a 

correlation threshold of 0.4–0.9. This threshold range has been selected by running KINOMO on multiple 

datasets. This is done iteratively, unless consensus factor blocks are obtained. 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 4, 2022. ; https://doi.org/10.1101/2022.05.02.490362doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.02.490362


 

 

9 

 

 

 

Description of the datasets 

To determine the performance of our method, we selected 15 samples from three publicly available 

scRNA-seq studies (Table 1). For the purpose of validating our method, we only considered the tumor 

compartments from these 15 samples. First, a non-small cell lung cancer (NSCLC) dataset consisting in 

total of 42 tissue biopsy samples from stage III/IV NSCLC patients by scRNA-seq (Wu et al, 2021). Five 

out of 42 samples were selected based on higher median genes per cells. The estimated number of cells 

in these 5 samples (GSM4453576_P1, GSM4453578_P3, GSM4453584_P9, GSM4453592_P17, 

GSM4453616_P41) ranged from 3,521–8,700, whereas the median genes per cell ranged from 1,566–

2,220, respectively. Subsequently, we predicted the tumor cells from all these individual samples based 

on inferring copy-number alterations using inferCNV (Tickle et al, 2019). The number of inferred tumor 

cells in these five samples ranged from 2,194–8,585, respectively. Second, a prostate cancer (PCa) 

dataset consisting of transrectal prostate biopsies (n = 3) and radical prostatectomy (RP) specimens (n = 

8), half of which had matched benign-appearing tissue (Song et al, 2022). Again, we selected five 

samples (PA_AUG_PB_1A_S1, PA_PB1A_Pool_1_3_S50_L002, PA_PB1B_Pool_1_2_S74_L003, 

PA_PR5186_Pool_1_2_3_S27_L001, PA_PR5269_1_S25_L002) with the estimated number of cells 

ranging from 766–1,148, whereas median genes per cell ranging from 1,205–1,949. Further, the number 

of tumor cells in these five samples ranged from 277–630, respectively.  Third, an osteosarcoma (OS) 

dataset consisting of RNA-sequencing of 100,987 individual cells from 7 primary, 2 recurrent, and 2 lung 

metastatic osteosarcoma lesions (Zhou et al, 2020). In this data set, for the five selected samples 

(GSE152048_BC10, GSE152048_BC11, GSE152048_BC16, GSE152048_BC2, GSE152048_BC20) the 

estimated number of cells ranged from 5,900–17,000, whereas and median genes per cell ranged from 

1,000–1,900. The number of tumor cells in these five samples ranged from 1,700–13,000, respectively.  

 

Performance evaluation 

To evaluate how well the inferred clusters recovered the true subpopulations in the scRNA-seq data, we 

used the Hubert-Arabie Adjusted Rand Index (ARI) for comparing two partitions (Rand 1971). The metric 

is adjusted for chance, such that independent clustering has an expected index of 0 and identical 

partitions have an ARI equal to 1, and was calculated using the implementation in the ‘mclust’ R package 

v5.4 (Scrucca et al, 2016). We also used the ARI to evaluate the stability of the clusters, by comparing 

the partitions from each pair of the five independent runs for each method with a given number of 

clusters.  

 

��K � ∑ ����  �� � L∑ ���  � ∑ �$�  � M/�� 
12 L∑ ���  � � ∑ �$�  � M � L∑ ���  � ∑ �$�  � M/��  
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Here, .�� are values from the contingency table, $� and (� denote the summation of the Dth row Eth column 

of the contingency table respectively. 

 

To evaluate the similarities between the partitions obtained by different methods (Table 2), we first 

calculated a consensus partition from the five independent runs for each method, using the ‘clue’ R 

package v0.3-55 (Hornik 2005). Next, for each sample and each imposed number of clusters, we 

calculated the ARI between the partitions for each pair of methods, and used hierarchical clustering 

based on the median of these ARI values across all samples to generate a dendrogram representing the 

similarity among the clusters obtained by different methods. To investigate how representative this 

dendrogram is, we also clustered the methods based on each sample separately, and calculated the 

fraction of such dendrograms in which each subcluster in the overall dendrogram appeared. Finally, we 

investigated whether clustering performance was improved by combining two methods into an ensemble. 

For each sample, and with the true number of clusters imposed, we calculated a consensus partition for 

each pair of methods, and used the ARI to evaluate the agreement with the true cell labels. We then 

compared the ensemble performance to the performances of the two individual methods used to 

construct the ensemble. Figure 1a-c illustrates the ARI heatmap for evaluating the class assignment 

using KINOMO against all other methods for PCa, OS and NSCLC samples. For all the three sample 

sets, the result illustrates that KINOMO outperforms all the other methods in terms of better class 

assignment based on ARI score (0.91 in PCa, 0.87 in OS, 0.82 in NSCLC). The closest performing 

methods are NMF (0.77 in PCa, 0.75 in OS, 0.71 in NSCLC) and SC3 (0.74 in PCa, 0.72 in OS, 0.68 in 

NSCLC) respectively. 

 

Tables 3-5 show the clustering results of the 15 samples. The final results are evaluated by taking the 

average value of ARI over 100 runs. Compared with conventional NMF, KINOMO shows increased 

performance over all the datasets. Moreover, the overall ARI for all methods on these 15 samples ranges 

between 0.3–0.8. The worst performing method is hierarchical clustering, which is expected due to the 

sparsity of single-cell data and it is difficult to have a correct exact prior knowledge about cell types. Thus, 

the gene expression programs are quite mixed across all clusters. Other well-performing methods apart 

from KINOMO are NMF, SC3 and Fuzzy C-Means (Tables 3-5). 

 

Application to non-small cell lung cancer (NSCLC) dataset 

For the purpose of highlighting the features of KINOMO, we focus on the NSCLC dataset (Wu et al, 

2021) consisting of biopsy samples from 42 advanced NSCLC patients with diverse histological and 

molecular phenotypes and treatment history. We followed the standard quality control practices in 

scRNA-seq by performing quality control and subsequent filtering. For the purpose of this study, we 

selected 5/42 samples based on their higher median genes per cells. This was followed by inferring tumor 
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cells using inferCNV (Tickle et al, 2019) and identification non-tumor cell types including T cells, B 

lymphocytes, myeloid cells, neutrophils, mast cells, and follicular dendritic cells and stromal cell types 

(fibroblasts and endothelial cells). Re-clustering of each main cluster of non-malignant cells, identification 

of cluster markers, manual annotation and cross-referencing with external signatures (Azizi et al, 2018; 

Cahoy et al, 2008; Lein et al, 2007; Olah et al, 2020; Zilionis et al, 2019) yielded cell type labels for 

subpopulations. One of the benefits of using KINOMO (or factorization approaches in general) in scRNA-

seq is to highlight intra- and inter-tumoral heterogeneity. We start our discussion with the intra-tumoral 

heterogeneity analysis. Conventional NMF approaches share some coherent challenges with their signed 

dimensional reduction counterparts. For example, identifying the factor or factor which could ‘partition’ the 

scRNA-seq data in a manner which highlights the intra-tumor heterogeneity, remains a challenging 

problem. For this purpose, KINOMO uses a consensus approach using iterative factor updating with a 

stopping criterion. We use a consensus approach based on Brunet et al, 2004, Hutchins et al, 2008, 

and Frigyesi et al, 2008 methods. We then iteratively update the factor or factor until a convergence is 

achieved (discussed in details in Materials and Methods). 

 

For the purpose of illustration, using the consensus approach, we select the ‘best’ factor and the ‘2nd best’ 

factor which could partition the scRNA-seq data. Here, factor is based on the cophenetic correlation 

coefficient to measure the stability of the partitions. General notion says that as the number of factors 

increase, the sample is more heterogenous. Thus, intra-tumoral heterogeneity is proportional to the 

number of factors as obtained for each sample. The ‘best’ factor defines the lowest factor required to 

obtain stable partition, whereas the ‘2nd best’ factor is considered if ‘best’ factor cannot be used to obtain 

stable partition. For instance, the best factor in GSM4453576_P1 is 3 and the second best is 5 (Figure 

2a). It is also important to note that each of the factors is defined by a metagene signature which is 

unique. This metagene signature defines the gene expression program of a specific factor in an individual 

sample. As discussed in the Materials and Methods section, we identify the top 30/50/100/200/300 

metagenes per factor (Figure 6). For the purpose of illustration Figure 2b provides basis heatmaps for 

top 30 metagenes (based on integrated factorization weight). As an example, the factors in GSM4453576 

have signature enriched in epithelial-to-mesenchymal transition (EMT) pathway genes IFITM3, TMSB4X, 

SAT1, VIM, LGALS1 (Rank_1); reactive oxygen species pathway genes PERP, TXN, ATP5MC3, 

NIPSNAP2, AKR1C2 (Rank_2), and myogenesis pathway genes DSC2, TMPRSS11E, CSTB, KRT6A, 

KLF5 (Rank_3), respectively (Figure 2b).  

 

For the purpose of assessing the inter-tumor heterogeneity, we estimate the factor blocks (group of 

multiple factors) or ‘FBs’ by doing a simple co-correlation clustering using Spearman’s factor correlation 

for all factors across all samples (Figure 3) and perform Gene-set enrichment analysis (GSEA) 

(Subramanian et al, 2005) to estimate the corresponding pathways enriched for the factor blocks (FBs). 
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Biologically, we are trying to identify 1) recurrently occurring modules across all samples, which signify 

how similar the gene expression programs across samples are, and 2) the level of inter-tumor 

heterogeneity by identifying unique FBs. For the five samples, we obtain 15 factors and based on the co-

correlation analysis we identify three factor blocks, namely, FB1 (2 factors, GSM4453576_P1_R3_F1, 

GSM4453584_P9_R3_F2), FB2 (2 factors, GSM4453584_P9_R3_F1, GSM4453616_P41_R3_F2) and 

FB3 (8 factors, GSM4453576_P1_R3_F2, GSM4453578_P3_R3_F2, GSM4453578_P3_R3_F3, 

GSM4453592_P17_R3_F1, GSM4453592_P17_R3_F2, GSM4453592_P17_R3_F3, 

GSM4453616_P41_R3_F1, GSM4453616_P41_R3_F3). By performing a more granular analysis, we see 

that FB1 is enriched in gene signature for NF-kB, FB2 enriched in EMT, and FB3 enriched in cell cycle 

(Figure 3). Interestingly, cell cycle is one of the biggest gene expression programs in cancer. Cell-cycle 

checkpoints are compromised in cancer cells to allow continuous cell division. This work is guiding and 

improving existing therapeutics and highlights opportunities to develop novel and combinatorial 

treatments in cancer treatments. These specifically include targeting replication stress tolerance 

mechanisms, the mitotic checkpoint, and proteins and processes involved in delaying or arresting cell-

cycle progression (Matthews et al, 2022). Interestingly, in recent years, inflammation has been 

established as a key inducer of EMT during the progression of cancer (Mantovani et al, 2008). 

Modification of the TME during EMT occurs as a result of the activity of cytokines, such as IFN-γ, TGF-β 

and TNF-α which have been shown to induce EMT during cancer progression (Ricciardi et al, 2015; 

Grivennikov et al, 2010). Likewise, spectrum of EMT states in NSCLC promises insights on cancer 

progression and drug resistance (Karacosta et al, 2019). Likewise, NF-κB is a master regulator, not only 

of the physiologic and complicated process of lung morphogenesis but also of lung cancer pathogenesis 

and progression. It is known that NF-κB in NSCLC has a bidirectional contribution because, on one hand, 

it plays a crucial role in the immune response, whereas on the other hand, it promotes the inflammation 

that ignites the process of oncogenesis (Aggarwal, 2004). Hence, activated NF-κB signaling may 

influence the progression of a lung tumor either positively or negatively (DiDonato�et al, 2012). It is well 

documented that NF-κB is activated by a great variety of carcinogens, chemotherapeutics, cytokines, and 

radiation exposure (Bharti�et al, 2012). In addition, it has been reported that NF-κB participates in and 

orchestrates many significant functions that tumors require, such as transformation, proliferation, 

infiltration, angiogenesis, and metastasis. Taken together, KINOMO is able to pick up essential gene 

expression programs cancer that could potentially lead to target-based precision therapies. 

 

 

Discussion  

In this manuscript we propose KINOMO (Kernel dIfferentiability correlation-based NOn-negative Matrix 

factorization algorithm using Kullback-Leibler divergence loss Optimization), a factorization method that is 

robust to noise, explicit to error correction and also uses ‘prior’ biological knowledge for studying inter-
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tumoral heterogeneity. This prior knowledge in KINOMO is based on Gaussian process priors that are 

linked to the non-negative factors by a link function. More specifically, these Gaussian process priors are 

based on the multiple modalities of scRNA-seq data. This can also be combined with any existing NMF 

cost function that has a probabilistic interpretation, followed by using unconstrained optimization algorithm 

for computing the maximum a posteriori estimate.  

 

Given an input data matrix, any existing NMF finds an approximation that is factorized into a product of 

lower-rank matrices, some of which are constrained to be non-negative. This is followed by optimizing the 

approximation error that is measured by a variety of divergences between the input and its approximation 

(Kompass 2006; Dhillon et al, 2006; Cichocki et al, 2008), whereas the factorization can take a number 

of different forms (Pascual-Montano et al, 2006; Ding et al, 2006; Ding et al, 2010). KINOMO uses a 

quadratic approximation approach to optimize the factorization error and uses a more generalized 

sequential quadratic approximation for KL divergence loss. This is achieved when L is a square loss and 

considering a sequential coordinate-wise descent (SCD) method proposed by Franc et al, 2005 is used 

to solve a penalized non-negative least square for H while W is fixed. Another benefit of using SCD-

based approach for KL divergence loss also deals with handling the time complexity, since it follows the 

Newton-Raphson like second order approach. Other NMF approaches like Scalar Block Coordinate 

Descent (sBCD) (Li et al, 2012) have used Bregman divergences to measure the quality of 

approximating a given matrix by the product of two lower matrices with non-negative indices. Li et al, 

2012 also define a new relationship connecting Bregman divergences (Frobenius norm) using Euclidean 

distance via Taylor series expansion. Further, a local updating rule is obtained by setting the gradient of 

the new objective function to zero with respect to each element of the two matrix factors. KINOMO uses a 

more generalized form of Bregman divergence, the Kullback-Leibler (KL) for approximation and L2,1 norm 

loss in place of Frobenius norm. L2,1 regularization optimizes the mean cost which is often used as a 

performance measurement. This is especially good since we want to keep the overall error small. The 

solution is more likely to be unique, wherein the non-sparseness of L2,1 improves KINOMO’s prediction 

performance. Finally, L2,1 is invariant under rotation, tends to shrink coefficients evenly and is useful since 

we have collinear and codependent features. 

 

Most NMF methods are linear since each factorizing matrix appears only once in the approximation. 

However, such linearity assumption does not hold in case of extremely sparse data such as scRNA-seq, 

but rather the approximation is quadratic. Conventionally, quadratic approximations are more complex 

since these usually involve a higher-degree objective function with respect to the doubly occurring 

factorizing matrices (Yang et al, 2012). KINOMO also uses quadratic approximation but is different from 

Yang et al, 2012, and uses a more generalized Lagrangian form of NMF, since conventional NMFs like 

Yang et al, 2012 suffer from convergence problems. The novelty of KINOMO’s implementation of the 
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quadratic approximation (which is convex in nature) is that it links it to the SCD approach, which is more 

similar to an Incremental Gradient Descent algorithm. The quadratic form of NMF as discussed by Yang 

et al, 2012 considers using squared Euclidean distance-based divergences. KINOMO implements an 

efficient approximative second-order optimization based on multiplicative updates for faster convergence.  

 

Random initialization is the benchmark used in the vast majority of NMF analysis. Probabilistic concepts 

are one of the useful approaches for NMF initialization. Moreover, random initialization is a common 

approach for NMF relying on a random selection of columns of the input matrix. These different random 

initializations can lead to different solution paths toward local minima, as finding the global minimum is 

challenging. This is somewhat counteracted by setting a random seed to guarantee reproducibility of a 

factorization model. However, in scRNA-seq, replicate models give similar errors of reconstruction, 

wherein many factors are robust, and some even share information among themselves. Compared to 

conventional NMF and other clustering methods, KINOMO has higher accuracy in predicting factors, 

thereby helps identifying hidden structures in scRNA-seq data across patients with varying genomic load. 

Finally, using conventional GSEA strategies, we observe that the estimated factor blocks are enriched in 

unique gene signatures and pathways. In conclusion, KINOMO provides an accurate approach to 

identifying recurrent features of cellular variability in single-cell RNA-seq data analyses of cancer tissues. 

 

 

Materials and Methods 

 

Methods used for benchmarking 

To benchmark KINOME, we used hierarchical clustering (Maimon et al, 2006), k-means (Hartigan et al, 

1979), Fuzzy C-Means (Dunn 1973), SC3 (Kiselev et al, 2017), TSCAN (Zhicheng et al, 2016), SAFE 

(Yuchen et al, 2019), FlowSOM (Van Gassen et al, 2015), CIDR (Lin et al, 2017) and NMF (Lee et al, 

1999) (Table 2).  

 

Hierarchical clustering is a general family of clustering algorithms for building nested clusters by merging 

or splitting them successively. This hierarchy of clusters is represented as a tree. The root of the tree is 

the unique cluster that gathers all the samples, the leaves being the clusters with only one sample. We 

use a division-based algorithm which initially starts with all observations in a single cluster, followed by 

dividing samples until each cluster only contain one observation and use Euclidean distance as the metric 

(Maimon et al, 2006). The k-means algorithm clusters data by trying to separate samples in n groups of 

equal variances, minimizing a criterion known as the inertia or within-cluster sum-of-squares. k-means 

requires the number of clusters to be specified and scales well to large number of samples. It divides a 

set of N samples X into K disjoint clusters C, each described by the mean B� (centroid) of the samples in 
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the cluster. It aims to choose centroids that minimize the inertia, or within-cluster sum-of-squares criterion: 

∑ min.�/- );�� � B�;*���0  (Hartigan et al, 1979). 

 

Fuzzy C-Means is a soft-clustering approach, where each data point is assigned a likelihood or probability 

score to belong to that cluster (Dunn 1973). It has four major steps, namely, i) fixing number of clusters, 

c; select a fuzziness parameter, m (generally 1.25 < m < 2); initialize partition matrix, O � P1 0 10 1 0Q; ii) 
calculate centroid, R�� � ∑ �S��� T ���/ ∑ S������� ; iii) update partition matrix, S � �∑ �U�� /U��  ��

�

�
#�V#�and iv) 

repeat steps i-iii until convergence. SC3 computes a consensus matrix using the cluster-based similarity 

partitioning algorithm (CSPA) (Strehl et al, 2003). For each individual clustering result a binary similarity 

matrix is constructed from the corresponding cell labels: if two cells belong to the same cluster, their 

similarity is 1, otherwise 0. This is followed by calculating a consensus matrix by averaging all similarity 

matrices of individual clustering. The resulting consensus matrix is clustered using hierarchical clustering 

with complete agglomeration and the clusters are inferred at the k level of hierarchy, where k is defined 

by a user (Kiselev et al, 2017). 

 

TSCAN (Tools for Single Cell Analysis) is a tool for differential analysis of scRNA-seq data, which uses a 

cluster-based minimum spanning tree (MST) method for the pseudo-temporal ordering of cells. If we 

consider a representative sample of N cells drawn from a heterogeneous cell population and suppose 

that the transcriptome Yi of each cell i ∈ {1, 2, …, N} has been profiled using scRNA-seq, we assume 

that, Yi is a G-dimensional vector consisting of gene expression measurements for G genes. Further, 

assuming that Yi is appropriately transformed and normalized across cells, the single-cell ordering 

problem or pseudo-time reconstruction, is to place cells in an order based on the gradual transition of Yi. 

TSCAN orders cells in three steps, namely, i) cells with similar gene expression profiles are grouped into 

clusters, ii) a minimum spanning tree (MST) is constructed to connect all cluster centers, and iii) cells are 

projected to the tree backbone to determine their pseudo-time and order (Zhicheng et al, 2016). Single-

cell Aggregated (From Ensemble) (SAFE) clustering leverages hypergraph partitioning methods to 

ensemble results from multiple individual clustering methods. It embeds four clustering methods: SC3, 

Seurat, t-SNE + k-means and CIDR. SAFE-clustering takes an expression matrix as input, followed by 

converting the fragments/reads per kilobase per million mapped reads (FPKM/RPKM) data are converted 

into transcripts per million (TPM) and UMI counts into counts per million mapped reads (CPM). This is 

followed by conventional downstream analysis (Yuchen et al, 2019). 

 

FlowSOM is a powerful clustering algorithm that builds self-organizing maps to provide an overview of 

marker expression on all cells and reveal cell subsets that could be overlooked with manual gating. It has 

been shown to produce results rapidly and automatically groups cell clusters into higher order meta-
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clusters (Van Gassen et al, 2015). Clustering through Imputation and Dimensionality Reduction (CIDR) 

algorithm has five steps: (i) Identification of dropout candidates, (ii) estimation of the relationship between 

dropout rate and gene expression levels, (iii) calculation of dissimilarity between the imputed gene 

expression profiles for every pair of single cells, (iv) PCoA using the CIDR dissimilarity matrix, and (v) 

clustering using the first few principal coordinates (Lin et al, 2017). 

 

Finally, we also established whether components inferred by simple matrix factorizations would align with 

GEPs in scRNA-seq data. For each of the 5 samples, we generated 10 replicates, each at three different 

‘signal to noise’ ratios, in order to determine how matrix factorization accuracy varies with noise level. We 

ran each method 100 times and assigned the components in each run to their most correlated ground-

truth program. To evaluate the clustering performance of the different algorithm, we also use adjusted 

Rand index (ARI) which ranges from −1 to +1 (Rand 1971). 
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Figures and Tables 

 

  

Figure 1. Adjusted Rand index (ARI) heatmap partition evaluation, for (a) PCa (KINOMO- 0.91), (b)

OS (KINOMO- 0.91), and (c) NSCLC (KINOMO- 0.82) datasets.  

 

 

 

Figure 2. Intra-tumor heterogeneity in NSCLC (GSM4453576_P1), (a) Factor estimation identified

‘best’ factor = 3 and ‘2nd best’ factor = 5. Here, the x-axis represents factor estimation (2–10) and the y-

axis the silhouette score, (b) Basis heatmap using ‘best’ factor = 3 for top 30 metagenes reveals three
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distinct gene expression programs (EMT, reactive oxygen species and myogenesis). Here, the x-axis is

the estimated basis components, y-axis is metagenes. 

 

 

Figure 3. Factor block estimation for NSCLC data using co-correlation matrix of factors/factors

across five samples. Three factor blocks can be assigned (FB1: enriched for NF-kB; FB2 enriched for

EMT; and FB3 enriched for cell cycle). 
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Table 1. Overview of the datasets used in the study. 

 

 

 

Table 2. Overview of the methods used in the study for benchmarking KINOME.  

 

 

Dataset Cancer cohort Study

Estimated 
Number of 
Cells

Median 
Genes per 
Cell

Number of 
tumor cells

GSM4453576_P1 Non-small cell lung cancer Wu et al, 2021 5,320 2,220 3,822
GSM4453578_P3 Non-small cell lung cancer Wu et al, 2021 7,835 1,632 7,668
GSM4453584_P9 Non-small cell lung cancer Wu et al, 2021 3,521 1,860 2,194
GSM4453592_P17 Non-small cell lung cancer Wu et al, 2021 8,700 1,566 8,585
GSM4453616_P41 Non-small cell lung cancer Wu et al, 2021 6,222 1,863 5,676
PA_AUG_PB_1A_S1 Prostate cancer Song et al, 2022 766 1,205 277

PA_PB1A_Pool_1_3_S50_L002 Prostate cancer Song et al, 2022 952 1,301 466
PA_PB1B_Pool_1_2_S74_L003 Prostate cancer Song et al, 2022 946 1,439 430
PA_PR5186_Pool_1_2_3_S27_L001 Prostate cancer Song et al, 2022 854 1,949 479
PA_PR5269_1_S25_L002 Prostate cancer Song et al, 2022 1,148 1,602 630
GSE152048_BC10 Osteosarcoma Zhou et al, 2020 17,481 1,915 13,460
GSE152048_BC11 Osteosarcoma Zhou et al, 2020 13,444 1,899 11,024
GSE152048_BC16 Osteosarcoma Zhou et al, 2020 10,210 1,964 3,063
GSE152048_BC2 Osteosarcoma Zhou et al, 2020 5,962 1,002 1,789
GSE152048_BC20 Osteosarcoma Zhou et al, 2020 11,096 1,988 9,210

Methods Description Reference

Hierarchical_Clustering
Groups data over a variety of scales by 
creating a cluster tree or dendrogram

Maimon et al, 2006

K-Means

Starts with a first group of randomly 
selected centroids, used as the beginning 
points for every cluster and then performs 
interative calculations to optimize the 
positions of the centroids

Hartigan et al, 1979

Fuzzy_C-Means

This algorithm works by assigning 
membership to each data point 
corresponding to each cluster center on 
the basiso f distance between the cluster 
center and the data point.

Dunn 1973

SC3 (v1.8.0) 

PCA dimension reduction or Laplacian 
graph. K-means clustering on different 
dimensions. Hierarchical clustering on 
consensus matrix obtained by K-means 

Strehl et al, 2003

TSCAN
PCA dimension reduction followed by 
model-based clustering 

Zhicheng et al, 2016

SAFE (v2.1.0)
Ensemble clustering using SC3, CIDR, 
Seurat and t-SNE + Kmeans 

Yuchen et al, 2019

FlowSOM (v1.12.0) 

PCA dimension reduction (dim=30) 
followed by self-organizing maps (5x5, 
8x8 or 15x15 grid, depending on the 
number of cells in the data set) and 
hierarchical consensus meta-clustering to 
merge clusters 

Van Gassen et al, 2015

CIDR (v0.1.5) 
PCA dimension reduction based on zero-
imputed similarities, followed by 
hierarchical clustering 

Lin et al, 2017

NMF Non-negative matrix factorization Lee et al, 1999
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Table 3. Benchmarking KINOMO with other methods (ARI) in NSCLC dataset.  

 

 

Table 4. Benchmarking KINOMO with other methods (ARI) in PCa dataset.  

 

 

Table 5. Benchmarking KINOMO with other methods (ARI) in OS dataset.  

 

Dataset Hierarchical_Clustering K-Means Fuzzy_C-Means SC3 TSCAN SAFE FlowSOM CIDR NMF KINOME
GSM4453576_P1 0.572 0.621 0.633 0.691 0.602 0.591 0.653 0.611 0.731 0.816
GSM4453578_P3 0.413 0.571 0.612 0.701 0.443 0.541 0.632 0.561 0.703 0.821
GSM4453584_P9 0.501 0.613 0.671 0.692 0.531 0.583 0.691 0.603 0.711 0.877
GSM4453592_P17 0.431 0.551 0.589 0.656 0.461 0.521 0.609 0.541 0.731 0.823
GSM4453616_P41 0.342 0.433 0.462 0.696 0.372 0.403 0.482 0.423 0.701 0.811

Dataset Hierarchical_Clustering K-Means Fuzzy_C-Means SC3 TSCAN SAFE FlowSOM CIDR NMF KINOME
GSM4453576_P1 0.62348 0.67689 0.68997 0.75319 0.65618 0.64419 0.71177 0.66599 0.79679 0.92214
GSM4453578_P3 0.45017 0.62239 0.66708 0.76409 0.48287 0.58969 0.68888 0.61149 0.76627 0.89489
GSM4453584_P9 0.54609 0.66817 0.73139 0.75428 0.57879 0.63547 0.75319 0.65727 0.77499 0.95593
GSM4453592_P17 0.46979 0.60059 0.64201 0.71504 0.50249 0.56789 0.66381 0.58969 0.79679 0.89707
GSM4453616_P41 0.37278 0.47197 0.50358 0.75864 0.40548 0.43927 0.52538 0.46107 0.76409 0.88399

Dataset Hierarchical_Clustering K-Means Fuzzy_C-Means SC3 TSCAN SAFE FlowSOM CIDR NMF KINOME
GSM4453576_P1 0.60632 0.65826 0.67098 0.73246 0.63812 0.62646 0.69218 0.64766 0.77486 0.86496
GSM4453578_P3 0.43778 0.60526 0.64872 0.74306 0.46958 0.57346 0.66992 0.59466 0.74518 0.87026
GSM4453584_P9 0.53106 0.64978 0.71126 0.73352 0.56286 0.61798 0.73246 0.63918 0.75366 0.92962
GSM4453592_P17 0.45686 0.58406 0.62434 0.69536 0.48866 0.55226 0.64554 0.57346 0.77486 0.87238
GSM4453616_P41 0.36252 0.45898 0.48972 0.73776 0.39432 0.42718 0.51092 0.44838 0.74306 0.85966
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