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Abstract 37 

Ancestral humans evolved a complex social structure still observed in extant hunter-38 

gatherers. Here we investigate the effects of extensive sociality and mobility on the oral 39 

microbiome of 138 Agta hunter-gatherers from the Philippines. Comparisons of 40 

microbiome composition showed that the Agta are more similar to Central African Bayaka 41 

hunter-gatherers than to neighboring farmers. We also defined the Agta social microbiome 42 

as a set of 137 oral bacteria (only 7% of 1980 amplicon sequence variants) significantly 43 

influenced by social contact (quantified through wireless sensors of short-range 44 

interactions). We show that interaction networks covering large areas, and their strong 45 

links between close kin, spouses, and even unrelated friends, can significantly predict 46 

bacterial transmission networks across Agta camps. Finally, more central individuals to 47 

social networks are also bacterial supersharers. We conclude that hunter-gatherer social 48 
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microbiomes, which are predominantly pathogenic, were shaped by evolutionary tradeoffs 49 

between extensive sociality and disease spread.  50 

 51 

Introduction 52 

Hominins have significantly diverged from other African apes regarding social behaviour and 53 

structure1. Compared to polygynous mating and male philopatric residence patterns typically 54 

found in chimpanzees, bonobos and gorillas, archaeological and ethnographic evidence point to a 55 

stepwise emergence of features such as pair bonding, multilocal residence, high mobility 56 

between residential camps and increased co-residence with unrelated individuals2,3. Such traits 57 

were the foundations of multilevel social structuring appearing in ancestral Homo sapiens and 58 

possibly earlier hominins. The niche of extant hunter-gatherers may offer a window into past 59 

human adaptations as it still exhibits features prevalent before the advent of agriculture, such as a 60 

high-quality diet including meat and tubers, and multilevel sociality. Multilevel organization 61 

results in interconnected social networks covering large areas and multiple residential camps4, 62 

and in frequent interactions between individuals differing by sex, age and relatedness level. 63 

Interconnected networks may have accelerated the evolution of cultural innovations in humans 64 

compared to other apes5,6. However, efficient networks may also facilitate the spread of 65 

infectious diseases7, potentially affecting the structure and composition of hunter-gatherer 66 

microbiomes. Previous studies have investigated the role of diet, ecology and environment in 67 

hunter-gatherer oral, gut and milk microbiomes8–16 and revealed higher oral microbiome 68 

diversity in hunter-gatherers than in farming populations17. However, they have not been able to 69 

isolate the contribution of high sociality and individual mobility to microbial transmission from 70 
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other factors such as shared environments or diet. Although the more fluid and complex sociality 71 

of hunter-gatherers results in high levels of camp coresidence2, cooperation and social 72 

interactions among unrelated individuals18, its potential effects on microbiome transmission have 73 

been mostly neglected. We conducted a comprehensive investigation of the oral microbiome of 74 

Agta hunter-gatherers to analyse the specific effect of sociality and social network structure on 75 

the composition of the Agta oral microbiome, with a companion article examining the separate 76 

role of environmental (diet) and biological (age, sex, host genotype) factors19. 77 

We obtained both oral microbiome sequences and high-resolution social network data 78 

from the same 138 Agta hunter-gatherers from the Philippines. We also collected oral 79 

microbiome data for 21 Bayaka hunter-gatherers from the Congo, and 14 Palanan farmers 80 

neighboring the Agta territory. We sequenced the 16S rRNA region and identified 6409 81 

amplicon sequence variants (ASVs)20, later reduced to 1980 ASVs (with at least 10 counts and 82 

present in at least two individuals), to detect fine-scale variation between individuals. We also 83 

collected data on proximity interactions and social networks using radio sensor technology 84 

recording close-range dyadic interactions every two minutes for 5-7 days6,18 from four Agta 85 

camps, and from two longer multi-camp experiments (interactions recorded every hour for one 86 

month). Proximity data were supplemented with information on household composition, kinship 87 

and affinal relationships from all Agta individuals.  88 

Our extensive dataset on oral microbiome composition and social interactions from the 89 

same individuals allowed us to investigate in more depth the possible effects of sociality on oral 90 

microbiome transmission and composition in Agta hunter-gatherers. Our aims were to 91 

investigate the roles of hunter-gatherer niche and geography on oral microbiome diversity in 92 

hunter-gatherers from two continents and a neighboring farming population from the Philippines; 93 
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to determine which fraction of the Agta oral microbiome specifically responds to levels of social 94 

interaction; to identify levels of pathogenicity of the oral microbiome transmitted through social 95 

contact; to investigate any potential tradeoffs between increased sociality and the spread of 96 

infectious disease; and to verify potential tradeoffs at individual level by testing whether ‘hyper 97 

social’ individuals also shared more bacteria. In the following, we provide evidence that the oral 98 

microbiome of extant hunter-gatherers was partially shaped by tradeoffs between extensive 99 

sociality and the spread of infectious disease.  100 

 101 

Results 102 

Hunter gatherer niches shape the oral microbiome. To investigate the contributions of 103 

lifestyle versus environment to the hunter-gatherer oral microbiome, we compared the Agta 104 

(n=138) to smaller samples of Bayaka hunter-gatherers from the Congo (n=21) and neighboring 105 

Palanan farmers from the Philippines (n=14) (see Methods). Both Agta (mean of 252.1±90 ASVs 106 

per individual) and Bayaka (280.1±83) exhibited significantly more ASVs than Palanan farmers 107 

(163.4±34) (P<0.0001; Figure 1a), and higher levels of ASV diversity as measured by Faith’s 108 

Phylogenetic Diversity index (Figure 1b). Comparisons based on the total set of ASVs in each 109 

population (controlling for differences in sample size through subsampling) revealed that the 110 

Agta shared more bacteria with African Bayaka (471.2±33.9) than with neighboring Palanan 111 

farmers (423.4±23.8) (Figure 1c). Finally, Agta and Bayaka resampled groups showed 112 

respectively 651.5±93.7 and 688.1±61.9 exclusive ASVs, against only 285.1±16.9 in Palanan 113 

farmers (Figure 1d). In summary, the two hunter-gatherer populations show higher microbiome 114 

diversity and uniqueness than Palanan farmers, consistent with findings that farming 115 
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significantly reduced gut microbiome diversity21. Results therefore demonstrate the precedence 116 

of niche over geography in shaping hunter-gatherer oral microbiomes.   117 

 118 

 119 

Figure 1. Oral microbiome diversity in Agta hunter-gatherers, neighbouring Palanan 120 

farmers, and Bayaka hunter-gatherers. a) Number of ASVs in the Agta (n=138), Bayaka 121 

(n=21) and Palanan (n=14). b) Oral microbiome diversity assessed by Faith's Phylogenetic 122 
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Diversity index accounting for ASV phylogenetic distances (Agta=17.52±3.83; 123 

Bayaka=18.45±4.10; Palanan farmers=12.62±1.86); c) Shared ASVs between populations, 124 

estimated by randomly sampling 10 individuals from each population (averaged over 100 125 

permutations); d) Exclusive ASVs per individual, estimated by randomly sampling 10 126 

individuals from each population (100 permutations). Boxplot midlines represent medians, and 127 

box limits represent first and third quartiles (****: FDR-adjusted P<0.0001; ***: P<0.001; **: 128 

P<0.01). 129 

The social microbiome is a socially transmitted fraction of the oral microbiome. Primate 130 

social ‘pan-microbiomes’ were recently defined as the totality of microorganisms present in a 131 

host population or species22, but this definition also includes microorganisms acquired due to 132 

common diet or environment. Here, we define the ‘social microbiome’ as the oral microbiome 133 

specifically transmitted through social interactions. To identify the socially transmitted fraction 134 

of the Agta oral microbiome, we used the contact network recorded through radio sensor devices 135 

and split all Agta dyadic social interactions into a strong (top 25% from the distribution of dyadic 136 

link weights) and a weak set (the remaining 75% links; see Methods). We then tested for 137 

differences in the proportion of each of the 1980 ASVs between the strong and weak sets. We 138 

identified 137 ASVs (7% of the Agta oral microbiome; see Supplementary Figure 1 and 139 

Supplementary Table 1) whose presence was significantly higher in the strong set, and therefore 140 

statistically associated with higher frequencies of social interactions. In the following we 141 

investigate the transmission patterns and composition of the hunter-gatherer social microbiome. 142 

 143 

The hunter-gatherer social microbiome is predominantly pathogenic. Human sociality is 144 

associated with multiple fitness benefits, including increased reproductive success7, reputation23, 145 

food sharing24, cooperation3,25 and cultural transmission26, but may also facilitate pathogen 146 
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transmission7,18. In our dataset, from the 18 ASVs that could be classified at species level, 14 are 147 

socially transmitted, 9 of which (64.3%) are typically pathogenic, and 10 (71.4%) are typically 148 

oral. By contrast, all four non-socially transmitted species were non-pathogenic and typically 149 

oral. 150 

We were able to classify 1886 of the 1980 ASVs at genus level, resulting in 36 socially 151 

(those representing ASVs included in the social microbiome) and 62 non-socially transmitted 152 

genera (the remaining ones). Among the social genera, 61.8% were classified as typically or 153 

exclusively pathogenic (21 out of 34; two genera could not be classified), against only 16.4% 154 

among non-socially transmitted genera (10 out of 61; one genus could not be classified). We 155 

identified many socially transmitted genera either typically (Aggregatibacter, Capnocytophaga) 156 

or uniquely (Corynebacterium) associated with dental plaque formation, gingivitis and calculus, 157 

the full red complex of periodontal disease (Porphyromonas, Treponema and Tannerella), and 158 

other potential periodontal pathogens (Prevotella, Desulfobulbus, Fusobacterium)27–30. The 159 

classification of bacterial genera as pathogenic is not unequivocal for those cases where some 160 

species within the genus can be pathogenic and others non-pathogenic. Thus, practical criteria 161 

were applied in these cases for assigning a genus to the pathogenic group (see Methods). 162 

Following these criteria, the social microbiome clearly has a higher proportion of pathogenic 163 

organisms than the non-socially transmitted portion. 164 

We also found pathogenic bacteria typical of the gut (Rickenellaceae), non-human 165 

environments (Tetragenococcus, Comamonas), respiratory tract (Staphylococcus, Moraxella, 166 

Streptococcus pneumoniae), and both urogenital and respiratory tracts (Mycoplasma), suggesting 167 

that their spread may be facilitated by oral transmission31–33. In summary, the predominantly 168 
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pathogenic nature of the social microbiome suggests a trade-off between benefits of hunter-169 

gatherer sociality and costs associated with disease transmission.  170 

Hunter-gatherer multilevel social structure shapes social microbiome sharing. Hunter-171 

gatherer sociality is characterised by specific interaction channels not found in non-human apes, 172 

such as long-term pair bonding and households, extended families, friendships among unrelated 173 

individuals, and frequent between-camp relocation. We estimated the effect of relatedness level, 174 

residence camp and friendships on the probability of sharing socially transmitted bacteria. First, 175 

we built a bacterial sharing network, where the weight of each Agta dyadic link is given by how 176 

many of the 137 social bacteria are shared by the two Agta individuals (rather than by the 177 

strength of its social bond, as in the social network). Next, we classified all dyadic links in this 178 

network into: i) levels of kinship (mother-offspring, father-offspring, siblings: r=0.5, other kin: 179 

r=0.25 or r=0.125, non-kin: r=0.0625 or lower, spouses, friends: defined as non-kin at the top 180 

25% distribution of social dyadic weights, and other non-kin) and ii) residence (same or different 181 

camp, same or different household). Finally, we compared the mean weight of each type of 182 

dyadic link in our bacterial sharing network to its mean weight in a sample of 1000 networks of 183 

the same size and topology, but where the dyadic classification was randomised (Figure 2 and 184 

Supplementary Tables 2 and 3).  185 
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 186 

Figure 2. Effect of kinship, friendship and residence on dyadic bacterial sharing. Dyads 187 
were classified into kinship levels; same or different households; same or different camps; and 188 
between friends in the same or different camps. Dots show the z-score, or the standardised ratio 189 
of the mean link weight in real to randomised networks, in either social (orange) or non-socially 190 
transmitted bacteria (purple). Vertical red dashed line indicates a ratio of 1, or no difference 191 

between the number of shared bacteria in real and randomised networks. For socially transmitted 192 
bacteria, kinship, friendship and residence in the same household or camp are associated with 193 
significantly higher bacterial sharing than predicted from randomised networks of the same size 194 
and structure. By contrast, dyads from different camps or non-kin share significantly fewer 195 
bacteria than expected by chance; bacterial sharing in dyads from different households do not 196 
differ from randomised networks. For non-socially transmitted bacteria, the only dyadic 197 

categories significantly increasing bacterial sharing were siblings, spouses, and dyads from the 198 
same household (all of which share the same close environment). See Supplementary Tables 2 199 
and 3 for values on mean weights for real and randomised networks. (****: FDR-adjusted 200 
P<0.0001; ***: P<0.001; **: P<0.01). 201 
 202 

Results showed that some dyadic categories share significantly more socially transmitted 203 

bacteria than expected by chance. First, we observed higher bacterial sharing within the same 204 

household and camp than between different households and camps, an expected consequence of 205 
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the Agta multilevel social structure. Kinship effects were also clear, with the highest levels of 206 

social microbiome sharing found in mother-offspring pairs, followed by siblings known interact 207 

every day in households and playgroups. High sharing between spouses also confirmed the 208 

importance of human pair bonding in microbial transmission. In addition, strong friendship links 209 

were also associated with increased bacterial sharing. Social bacterial sharing between friends in 210 

the same camp is as high as between close kin or within households. Friends in different camps 211 

also share a higher proportion of social bacteria than expected by chance, which is possibly a 212 

consequence of high between-camp mobility. By contrast, non-kin or individuals from different 213 

camps share fewer social bacteria than expected, further demonstrating the role of Agta 214 

friendships in the transmission of social bacteria across households and whole camps.  215 

The same analysis performed instead on non-socially transmitted ASVs did not reveal 216 

significant effects on bacterial sharing from most dyadic categories, except for three types: 217 

spouses, siblings, and same household. A possible explanation is that some non-socially 218 

transmitted bacteria may be shared due to a common environment and diet in the same 219 

household. For example, we have shown in our parallel study19 that the proportion of meat 220 

versus rice in individual diets affects the composition of the oral microbiome. Therefore, similar 221 

diets may explain the presence of the same ASVs within the individuals of a household 222 

irrespective of social interaction levels. However, the effects of sociality and shared diets seem to 223 

be independent. This is shown by the fact that socially transmitted bacteria are equally likely to 224 

be related or not to diet: 13 socially transmitted genera were found also associated to diet (41 225 

genera), whereas 23 were not (57 genera) (proportion test: chi-squared=0.44, P=0.51; See 226 

companion paper19 for further data and analysis). There we also show that host genotype 227 

correlates with the presence of certain ASVs19. While high genetic relatedness may play a role 228 
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in bacteria sharing within households, none of the ASVs associated with the host genotype were 229 

present in the social microbiome. Therefore, our analyses seem to distinguish between the effects 230 

of social contact from shared environment or genes within dyadic types. Overall, the results 231 

show the roles of mobility and the multiple interaction channels created by multilevel sociality in 232 

social microbiome sharing, similarly to what is also observed in cultural transmission6,18,26,34.  233 

 234 

Frequency of social contact predicts social microbiome sharing. Although previous studies 235 

have investigated patterns of bacterial sharing in human groups, they have often been unable to 236 

comprehensively characterize transmission patterns due to limited information on social 237 

contact35. In order to obtain a full picture of individual contact and exposure levels, we built 238 

social networks based on proximity data from four camps and two multi-camp locations (Figure 239 

3a-b). Overall, Agta social networks reveal a multilevel structure of households (mostly 240 

consisting of strong kin links) connected by a few strong links (mostly among unrelated friends) 241 

in each camp, and in the case of multi-camp groups, camps interconnected mostly due to visits 242 

among friends. We also observed equality of interactions within and between sexes and across 243 

age groups6,18. This pattern creates multiple channels for social transmission of bacteria both 244 

within and between camps, between close kin and unrelated individuals, and finally across whole 245 

multi-camp structures.  246 
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 247 

Figure 3. Characterisation of the social microbiome. a) Recording networks of social 248 

interactions using radio sensor technology. b) Reinforcement analysis estimates the probability 249 
of a link occurring in the bacterial sharing network (top layer, purple) based on the weight of the 250 
same link in the social contact network (bottom layer, blue). Network nodes (circles) represent 251 
the same Agta individuals in the bacterial sharing and social contact network. Panel displays 252 
networks from multi-camp 1 (23 individuals). Map shows geographical location of four camps 253 
interconnected by frequent migration. c) Probabilities of links in the Agta bacterial sharing 254 
network increase with their weights in the social contact network. Curves estimated by 255 

generalised additive modelling (binomial option). Data from four Agta camps and two multi-256 
camps. d) Eigenvector centralities in bacterial sharing and social contact networks. Linear 257 
regression based on pooled data from four Agta camps and two multi-camp structures. Virtually 258 
similar results were obtained by including camp either as a fixed factor in a multiple regression 259 
(with or without interactions), or as a random factor (on intercept and slope) in a mixed effects 260 
linear regression. 261 

 262 

To further assess whether increasing levels of social contact predict higher levels of 263 

sharing of socially transmitted bacteria, we applied reinforcement analysis36 (Figure 3b) to assess 264 

13 

e 

ss 
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whether the social network predicts (or reinforces) the bacterial sharing network in each Agta 265 

camp. We calculated the conditional probability of each link between two individuals A and B in 266 

the bacterial network provided the same weighted link is present in the social network 267 

(Supplementary Table 4 and 5). For all four camps and two multi-camp structures, results 268 

showed that the weight of a dyadic link in the social network significantly predicts the 269 

probability of the same link occurring in the bacterial sharing network (Figure 3c and 270 

Supplementary Figure 2). Specifically, a larger dyadic weight in the social network implies a 271 

higher probability that the same individuals also share at least one socially transmitted ASV. For 272 

example, for multi-camp 1, while weak social network links (with weights under 10 recorded 273 

social interactions) show a probability below 20% of sharing any socially transmitted bacteria, 274 

strong links (over 200 recorded contacts) are associated with a probability above 70%. Overall, 275 

the results confirm that the Agta social microbiome is shaped by their social interactions. 276 

 277 

Hypersocial individuals are supersharers. We also investigated whether more socially 278 

interactive individuals exhibited higher social microbiome diversity. We calculated eigenvector 279 

centralities for all individuals in the bacterial sharing network, resulting in a significant and 280 

positive slope in a regression on eigenvector centralities from the same individuals in the social 281 

network (b=0.32, P=0.0001, R2 = 0.1, n=138, Figure 3d). We also identified 16 individuals 282 

ranked at the top quartile of eigenvector centralities in both networks as potential microbial 283 

‘superspreaders’ or ‘superacquirers’, that is, “supersharers”. They do not stem from a specific 284 

age (7 to 68 years) or sex (six males, ten females), which is compatible with the egalitarian social 285 

structure of hunter-gatherers allowing individuals from any age or sex to be potentially central to 286 

social networks.  287 
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Discussion 288 

We have identified and characterized a socially transmitted fraction of the Agta hunter-gatherer 289 

oral microbiome. This fraction (7%) is surprisingly small, since in principle all 1980 identified 290 

ASVs could be orally transmitted between closely interacting people. Nonetheless, our results 291 

demonstrate a significant and independent role of social interactions on the transmission of oral 292 

microbiome, in addition to other factors such as shared environment (household and diet) and 293 

host characteristics (age, sex and genes) previously investigated in other hunter-gatherer 294 

populations8–16 and in the same Agta population19. The transmission of the 137 bacteria classified 295 

into the social microbiome seem to be facilitated by the extended sociality of hunter-gatherers 296 

and its various transmission channels, ranging from spouses to unrelated friends often residing in 297 

different camps. Together, reinforcement analysis, multiple channels of social interaction, and 298 

supersharers show that social microbiome sharing is strongly shaped by hunter-gatherer 299 

multilevel sociality. From an evolutionary perspective, sociality has considerably changed from 300 

our closest ape relatives to ancestral humans, when adopting a hunter-gathering lifestyle meant 301 

exhibited higher frequency of social contact with unrelated individuals, larger networks of 302 

extended kin across large geographical regions, and more egalitarian interactions between and 303 

within sexes and across ages. Such changes may have affected patterns of pathogen transmission 304 

and affected the human microbiome as observed in current hunter-gatherers. As with our study 305 

of the Agta, future research should collect data on both social networks and social microbiomes 306 

from the same populations of non-human apes; such a dataset would provide a comparative basis 307 

for analysing of the role of social evolution on the human social microbiome. Hunter-gatherer 308 

social networks are efficient systems of cultural transmission, and its specific channels organised 309 

around kinship, friendship and camp interconnectivity are central for the organisation of 310 
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between-household cooperation, food sharing and social learning24,26. Agta mothers with higher 311 

social network centrality enjoy increased access to help and reproductive success7, but our results 312 

have shown that efficient networks may also facilitate the spread of infectious diseases, and 313 

hence significantly affect the structure and composition of the Agta microbiome. Crucially the 314 

frequency of pathogenic bacteria is much higher in the socially than in the non-socially 315 

transmitted fraction of the Agta oral microbiome. Together with the association between 316 

hypersocial individuals and increased bacterial sharing, this suggests a tradeoff between potential 317 

fitness benefits and costs of increased pathogen transmission. We conclude that the 318 

predominantly pathogenic oral social microbiome we identified in hunter-gatherers may be at 319 

least partially the outcome of a tradeoff between the advantages of multilevel sociality and the 320 

cost of infectious disease. 321 

 322 

  323 
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Methods  324 

Ethnographic data collection 325 

Agta demography. Ethnographic data collection took place over two seasons in April-June 2013 326 

and February-October 2014. We censused 915 Agta individuals (54.7% male) across 20 camps. 327 

For the current study we selected four camps and two multi-camp structures where we collected 328 

data both on proximity networks and saliva samples. Accurate ages were estimated following 329 

relative aging protocols37. Relatedness (biological and affinal) was based on household 330 

genealogies. To resolve inconsistencies, we took either the genealogy from the most 331 

knowledgeable individual (i.e. mother over aunt) or the genealogy that reduced other 332 

inconsistencies (i.e. discarding six-month interbirth intervals). Genealogies contained 2953 living 333 

and dead Agta. We used the R packages pedigree, kinship2, and igraph to measure 334 

consanguineous relatedness (r)34,38. For comparative purposes, we obtained 14 saliva samples 335 

from neighbouring Palanan farmers, making sure individuals were unrelated by directly asking.  336 

Bayaka demography. Ethnographic data collection took place over two seasons in April-June 337 

2013 and February-October 2014. We collected saliva samples from 21 individuals for 338 

microbiome analyses. 339 

Ethics. This study was approved by UCL Ethics Committee (UCL Ethics code 3086/003) and 340 

carried out with permission from local government and community members. Informed consent 341 

was obtained from all participants, after group and individual explanation of research objectives 342 

in the indigenous language. A small compensation (usually a thermal bottle or cooking utensils) 343 

was given to each participant. The National Commission for Indigenous Peoples (NCIP), advised 344 

us that the process of Free Prior Informed Consent with the tribal leaders, youth and elders 345 

would be necessary to validate our data collection under their supervision. This was done in2017 346 
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with the presence of all tribal leathers, elders and youth representatives at the NCIP regional 347 

office, with the mediation of the regional officer and the NCIP Attorney. The validation process 348 

was approved unanimously by the tribal leaders, and the NCIP, and validated the full 5 years of 349 

data collection.  350 

 351 

Oral microbiome analysis 352 

Microbial DNA extraction and 16S rRNA gene sequencing. A total of 190 saliva samples were 353 

selected from Agta hunter-gatherers (n = 155) and Palanan farmers in the Philippines (n = 14), 354 

and Bayaka hunter-gatherers from the Congo (n = 21). Microbial DNA was extracted following 355 

the protocol for manual purification of DNA for Oragene·DNA/saliva samples. The 16S rRNA 356 

gene V3-V4 region was amplified by PCR with primers containing Illumina adapter overhang 357 

nucleotide sequences. All PCR products were validated through an agarose gel and purified with 358 

magnetic beads. Index PCR was then performed to create the final library also validated through 359 

an agarose gel. All samples were pooled together at equimolar proportions and the final pool was 360 

qPCR-quantified before MiSeq loading. Raw Illumina pair-end sequence data were 361 

demultiplexed and quality-filtered with QIIME 2 2019.139 and DADA240, which generates single 362 

nucleotide exact amplicon sequence variants (ASV or ESV). ASVs are biologically meaningful 363 

as they identify a specific sequence and allow for higher resolution than operational taxonomic 364 

units (OTUs)41 or clusters of sequences above a similarity threshold, and thus an ASV is 365 

equivalent to a 100% similar OTU. Taxonomic information was assigned to ASVs using a naïve 366 

Bayes taxonomy classifier against the SILVA database release 132 with a 99% identity 367 

sequence42. 368 
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Reads outside the kingdom Bacteria or assigned to mitochondria or chloroplasts were 369 

removed. Phylogenetic analyses aligned sequences with MAFFT43 and generated a rooted 370 

phylogenetic tree with FastTree244 using default settings via QIIME 2. We generated an Alpha 371 

rarefaction curve with R package vegan to confirm that sample richness had been fully observed 372 

(Supplementary Figure 3). 373 

Samples with extremely low number of reads (8000) were removed. This resulted in 374 

6409 ASVs (later reduced to 1980 ASVs present in at least two individuals and abundance of at 375 

least 10 counts per individual) and 173 individuals: 138 Agta, 21 Bayaka, and 14 Palanan 376 

farmers.   377 

Identification of the Agta social microbiome. In our Agta sample, we first selected a set of strong 378 

social links (top 25% of the weight distribution from each camp and multi-camp). For each ASV, 379 

we calculated the proportion of strong links (���) where a given ASV A was present. Next, we 380 

calculated the same proportion in the complementary set of 75% weak social links (���). We then 381 

computed for each ASV A the score ��� �
�������
�
�

���
�

�
, or normalised difference between the two 382 

proportions. This score can be paired with the z-score �������
����	���
� �

��
� �

��


 which quantifies the 383 

deviation from the null hypothesis that the two proportions are equal, with �� and �� as 384 

respectively the numbers of strong and weak links and �� as the proportion of total links that 385 

share ASV A. We then selected as affected by social interaction 137 ASVs with s >0.5 and P< 386 

0.05. P-values were adjusted by False Discovery Rate (FDR).  387 

We performed a sensitivity analysis to investigate the consequences of varying the 388 

threshold defining strong versus weak social links in the Agta social network. Instead of 137 389 

ASVs resulting from selecting dyads at top 25% of the weight distribution, we obtained:  390 

Top 45%: 166 ASVs 391 
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Top 35%: 156 ASVs 392 

Top 25%: 137 ASVs 393 

Top 15%: 138 ASVs 394 

Top 5%: 99 ASVs 395 

The list shows that whether the strong set consists of a very reduced number dyads with 396 

very strong weights (top 5%), or instead includes nearly half the dyads (top 45%), the number of 397 

ASVs significantly responsive to social contact varies from 99 (5%) to 166 (8%), representing a 398 

small fraction of the total of 1980 ASVs found in the Agta. Therefore, setting the threshold at the 399 

top 25% did not affect our results and conclusions.   400 

 401 

Agta social network data, construction and analysis 402 

Mote devices. Motes are wireless sensing devices storing all between-device communications 403 

within a specified distance and have been described in detail elsewhere6,7,18,45. We used the 404 

UCMote Mini (with a TinyOS operating system) sealed into wristbands or belts, labelled with a 405 

unique number, and identified with coloured string to avoid accidental swaps. Motes require no 406 

grounded infrastructure and collect interactions even when individuals are away from camps. 407 

Individuals arriving at a camp after the start of data collection were given a mote and entry time 408 

was recorded, while those leaving a camp before the end of data collection had their exit time 409 

recorded. To prevent swaps individuals were checked twice daily, and mote numbers were 410 

checked upon return. Any swaps were later corrected by reassigning data to the correct 411 

individuals. 412 

Data were later downloaded via a PC side application in Java. Data were limited to 5am-413 

8pm. We ran raw data through a stringent data-processing system in Python to prevent data 414 
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corruption. Data were matched to ID numbers and start-stop times of each mote. The result was a 415 

matrix with the number of recorded beacons for all possible dyads and their weights. 416 

For the camp-level experiment, all individuals from four camps wore motes from five to 417 

seven days. Each device sent a message every two minutes that contained its unique ID, a time 418 

stamp and the signal strength. Messages are stored by any other mote within a three-meter 419 

radius, a frequently used threshold46,47. For the multi-camp experiment, adult individuals from 420 

two areas (consisting of seven and three camps respectively) wore motes for one month. 421 

Effect of dyad category on bacterial sharing. The bacterial sharing network was constructed by 422 

defining link weights as the number of social bacteria shared by two individuals. Dyads in the 423 

network were classified into: i) levels of kinship (mother-offspring, father-offspring, siblings: 424 

r=0.5, other kin: r=0.25 or r=0.125, non-kin: r=0.0625 or lower, spouses, friends: defined as 425 

non-kin at the top 25% distribution of social dyadic weights, and other non-kin) and ii) residence 426 

(same or different camp, same or different household). Mean weights were calculated for each 427 

dyadic category (Supplementary Table 2). Then, we produced 1000 network randomisations 428 

based on a single-step ID swap between nodes. For example, if dyad 1 consisted of two spouses 429 

in the real network, randomisation preserved dyad 1 and its weight, but randomly replaced the 430 

two nodes (potentially changing the dyadic classification to siblings, friends, etc.). We calculated 431 

the mean weights for each dyadic category in the 1000 randomised networks, and then calculated 432 

one-sample t-tests with the mean weight in the real network as the test value. We repeated the 433 

analysis for non-social bacteria (Supplementary Table 3).  434 

Reinforcement analysis. In a multilayer network, reinforcement analysis measures the overlap in 435 

links between different layers to quantify the probability of finding a link on a layer conditioned 436 
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on the weight of the same link on another48. Reinforcement between two network layers α and 437 

α’, or ����|��, is defined as  438 

����|�� �
∑ ���

����
���

���
��

∑ �
��

���
��

 (1) 439 

where �
��

���	 is the adjacency matrix of conditioned layer α’, and 	
��

��	 is the adjacency matrix of 440 

the conditioning layer α. We split the weight of social links into three tertiles, and computed 441 

equation (1) for each. We obtained increasing values of reinforcement from the lower to the 442 

higher tertile, providing evidence of an effect of social contact on bacterial sharing.  443 

 444 

ASV classification  445 

ASV diversity metrics. To distinguish between the effects of lifestyle and shared ecology on the 446 

microbiome, we compared the diversity of the oral microbiome of Agta hunter-gatherers with 447 

neighbouring Palanan farmers in the Philippines and with Bayaka hunter-gatherers in Congo. 448 

Using the 6409 ASVs dataset we calculated the number of observed ASVs in each population 449 

with R package Phyloseq (version 1.30.0) and the Faith's Phylogenetic Diversity index was 450 

calculated with R package picante using the generated rooted phylogenetic tree. To estimate the 451 

number of shared ASVs in the Agta, Bayaka and Palanan farmers, we sampled a random subset 452 

of 10 samples for each population without replacement, calculated the shared ASVs between the 453 

populations and repeated this procedure 100 times. Global differences between groups and 454 

pairwise comparisons were assessed by Kruskal-Wallis and Wilcoxon Rank Sum tests 455 

respectively and plotted by the R package ggpubr. Pairwise p-values were adjusted by False 456 

Discovery Rate (FDR). 457 

Classification of oral bacteria as pathogens. ASVs were classified as oral pathogens if they have 458 

been reported as etiological agents of periodontitis49,50 or dental caries51,52. For gum disease 459 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 3, 2022. ; https://doi.org/10.1101/2022.05.03.489993doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.03.489993
http://creativecommons.org/licenses/by-nc-nd/4.0/


23 
 

pathogens, these included the classical “red” and “orange” complex of periodontal pathogens and 460 

the recent update by Pérez-Chaparro and cols50 based on systematic review and metaanalysis. 461 

For caries pathogens, the list of active microorganisms detected through metatranscriptomics of 462 

cavities was used. Common oral commensals potentially causing endocarditis or systemic 463 

infections in immunocompromised patients only were not considered pathogens. Bacteria 464 

reported as etiological agents of lower respiratory infections (e.g. pneumonia, whooping cough, 465 

bronchitis, or sinusitis) and biofilm-mediated infections (e.g. lactational mastitis, medical 466 

implant biofilm infections, chronic lung infections, osteomyelitis or chronic wounds) were also 467 

considered pathogens, including organisms present in healthy carriers53,54. Bacteria causing 468 

urinary tract infections or sexually transmitted diseases transiently found in the oral cavity were 469 

also considered pathogens55. Bacteria were classified as “oral" if detected in more than 10% of 470 

the population in oral samples according to the Human Oral Microbiome database. If a bacterial 471 

species or genus had been isolated from the oral cavity of an animal, it was also classified as 472 

oral.  473 

For assignment of bacteria to pathogenic or non-pathogenic, we used species-level ASVs, 474 

given that there are multiple cases where different species from the same genus had a different 475 

assignment. If taxonomic classification of the ASV was only possible at the genus level, it was 476 

considered a pathogen if: i) >90% of named species within the genus were pathogenic, or ii) the 477 

genus included a major pathogenic species but the remaining species within the genus were not 478 

classified as oral by the Human Oral Microbiome Database56. ASV with a top hit to a sequence 479 

classified as “Oral taxa” in databases but without a species assignment were not considered 480 

named species and were discarded from the analysis. Cases where taxonomic classification of the 481 

ASV was only possible at the family level or higher were also discarded.  482 
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