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Abstract. Many studies have found that sequence in the 5’ untrans-
lated regions (UTRs) impacts the translation rate of an mRNA, but the
regulatory grammar that underpins this translation regulation remains
elusive. Deep learning methods deployed to analyse massive sequencing
datasets offer new solutions to motif discovery. However, existing works
focused on extracting sequence motifs in individual datasets, which may
not be generalisable to other datasets from the same cell type. We hy-
pothesise that motifs that are genuinely involved in controlling transla-
tion rate are the ones that can be extracted from diverse datasets gener-
ated by different experimental techniques. In order to reveal more gener-
alised cis-regulatory motifs for RNA translation, we develop a multi-task
translation rate predictor, MTtrans, to integrate information from multi-
ple datasets. Compared to single-task models, MTtrans reaches a higher
prediction accuracy in all the benchmarked datasets generated by various
experimental techniques. We show that features learnt in human samples
are directly transferable to another dataset in yeast systems, demonstrat-
ing its robustness in identifying evolutionarily conserved sequence motifs.
Furthermore, our newly generated experimental data corroborated the
effect of most of the identified motifs based on MTtrans trained using
multiple public datasets, further demonstrating the utility of MTtrans
for discovering generalisable motifs. MTtrans effectively integrates bio-
logical insights from diverse experiments and allows robust extraction of
translation-associated sequence motifs in 5’UTR.

Keywords: sequence modeling · multi-task learning · motif discovery ·
eukaryotic translation · explainable AI.

Introduction

For eukaryotic translation systems, the primary point of regulation of translation
occurs at the initiation stage [17, 38, 31]. The 5’ untranslated regions (5’UTR)
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encode many important sequence features, collectively shaping the initiation
efficiency [12, 3]. While the molecular mechanism of translation regulation has
been studied for decades, it remains challenging to predict how well the 5’UTR of
a transcript impacts its translation. The discovery of predictive sequence motifs
in the 5’UTR and how the interplay of these elements exert their regulatory
effects remain an important research area in molecular biology.

There is a rapid evolution in methods, both experimental and computational,
to identify the regulatory code of translation control from the high through-
put sequencing-based translation rate profiling. The most common sequencing-
based techniques include Ribosome Profiling [16], Fluorescence-Activated Cell
Sorting (FACS) screening coupled sequencing, and Massively Parallel Reporter
Assays (MPRA) [10, 32]. Previous hypothesis-driven methods required one to
firstly have a set of query elements and test them in the RP dataset or FACS-
screening dataset afterwards [12, 24, 27, 8]. More recently, with the rise of deep
learning methods in the field of regulatory genomics, data-driven approaches
have emerged as another direction to discover the regulatory code by the model
without hypothesis. [10, 1, 40, 20, 4]. MPRA methods can yield by far the high-
est to half millions of 5‘UTR-translation rate pairs and offer rich data for the
deep learning methods to capture the detailed pattern of how translation rate is
controlled by the sequence context in 5’UTRs [32, 18].

However, deep neural networks can capture unintended rule that relies on
dataset-specific covariates, also called the ‘short-cut’ [13, 11]. Even though seem-
ingly successful in one dataset, short-cut features may fail to generalise to slightly
different circumstances. Existing studies often only extracted and evaluated the
elements in a single library or with datasets generated by the same technique.
Karollus et al. have found that the sequence motifs discovered from the MPRA
dataset can hardly generalize to endogenous datasets [18], which is likely caused
by the difference of the truncated UTRs used in MPRA datasets from their full-
long origin. This could also be explained by the fact that each of these translation
rate measuring methods is probing the translation control system from a differ-
ent angle. This poses a challenge to distinguish actual translation-related motifs
from the false positives caused by dataset-specific artefacts [13].

To resolve the issue, we propose a multi-task translation rate prediction model
MTtrans which can gather insight from various datasets for more accurate pre-
diction and co-optimize a set of translation regulatory features that generalise
across techniques. The prediction of TR for each dataset is taken to formulate
individual tasks for MTtrans, which turns up to predicting highly related tasks
simultaneously. Multi-task learning with the shared encoder can be regarded as a
regularisation technique in our case to prevent the model from over-committing
to a single task, therefore enforcing the generalisability of the learnt features [22,
34]. We here assume that the genuine regulatory elements can be found in mul-
tiple datasets, even if they were measured by different experimental techniques.
The fundamental assumption of our work is that robust sequence features in
5’UTR that predict translation rate across multiple datasets generated by dif-
ferent experimental techniques are more likely to be actual regulatory elements
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for mRNA translation. Our shared encoder design enables the model to craft fea-
tures beneficial for all tasks while retaining task specificity in the higher layers.
In this work, we demonstrated that our model could outperform existing meth-
ods in both synthetic sequences and endogenous sequences. Further, our model
identifies sequence features that are generalisable to an independent dataset col-
lected from yeast. We determined what combinations of tasks would lead to the
most robust predictive models and derive sequence motifs. As further valida-
tion, we conducted an independent FACS screening experiment to validate the
identified sequence motifs.

Methods

MTtrans model

Our multi-task learning model MTtrans applies the hard parameter sharing to
encode the information from several task-specific inputs. The model consists
of a shared encoder fe to embed sequences into a shared space and the task-
specific towers f t

w to capture the variance of the translation rate for the t-th task.
Suppose a total of T tasks which are sequence libraries from any techniques, are
integrated to train the model and the data for task t is denoted as {xt

i, y
t
i} with

paired translation rate yti , t = {1, ..., T}, i = {1, ..., N t}.

The shared encoder We stacked four 1d-convolution filters layers as the main
building block for the shared encoder. Raw sequences will first be one-hot en-
coded, ending up a 4 dimensional input xt

i for conv1. Noted we don’t include
any pooling operation in the encoder following the convolution layer for a better
sense of the location. Instead, Batch Normalisation (BN) and drop-out oper-
ation is performed after each convolution layer to stabilise the activation and
have a more robust model performance. The hidden unit at layer l is com-
puted by ht,l

i = ReLU(W lhxt,l−1
i + bl) and the batch-normalized activation

by at,li = BN(ht,l
i ).

The task specific tower The number of towers corresponds to the number
of tasks selected. The t-th tower f t

w consists of 2 layer Gated Recurrent Units
and an output dense layer. The hidden size of the GRU is set to 80 and the
hidden state of the last time point is taken to connect to the output layer. Taken
together, the translation rate is predicted by ŷti = f t

w(a
t,L
i ) = f t

w(fe(x
t
i)) wherein

at,Li is the activation from the last convolution layer.

Model training

One of the biggest differences in training our multi-task model is that only the
t-th towers will be updated at one time. Technically, there is a task switch
activating the corresponding tower for each mini-batch sampled from X t, while
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the shared encoder receives gradient for all the tasks. Each instance in X t is a
pair of sequences xt

i and the translation rate yti , which is defined by the mean
ribosome loading for MPRA tasks [32] and the translation efficiency for RP tasks
[2, 15, 37]. The cost is quantified by the naive mean square error weighted by λt

for t ∈ {1, .., T}:
Lt = λt

∑
i∈B

[yti − f t
w(fe(x

t
i))]

2

A learning rate scheduler is applied to wrap the Adam optimizer so f t
w and fe

will be updated in a rate that is boosted in the beginning and then goes through
a dramatic decay. The small learning rate in the late training phase restricts
the parameters in a narrow range. Therefore, each f t

w docks to a similar θfe and
stabilise the models. The learning rate ϵ is mediated by the largest dimension
of the model d, two constants τ1, τ2 and a step-renewing variable δ, following by
δ = δ +min(τ2, 2δ).

θ∗ft
w
= θft

w
− ϵ∇θft

w
Lt

θ∗fe = θfe − ϵ
∑
t∈T

∇θfe
Lt

ϵ = d−
1
2 ×min(δ−

1
2 , δ ∗ (τ−

3
2

1 ))

Model evaluation

All the datasets used in our study were split into train, validation and test set.
For all the MPRA tasks, the same train-test splitting was kept as in Sample et
al [32] so that the model performance was directly comparable. The remaining
dataset was randomly splited into training and validation set in a ratio of 9:1.
The training process was terminated when the validation loss converged. For the
RP tasks, the entire dataset will be splited into train, validation , test set in
a ratio of 8:1:1. We set up 10 runs of experiments with different random seed
each time to minimize the influence of data splitting. Similarly, the prediction
accuracy was calculated by averaging the results on test set by different random
seed using the Spearman correlation coefficient.

Transfer learning

Transfer learning is a useful deep learning technique to exploit the knowledge
learnt from related datasets to a new, and usually smaller, dataset [26, 28]. It
could also be used to evaluate how informative are the learned features when
fixing the feature extractor [39]. We relied a lot on the transferred performance
to compare feature generalisability. All four convolutional layers are frozen when
transferring MTtrans 3M to the yeast dataset. We randomly re-initialised a tower
module, including 2 GRU layers and an output layer, and only updated param-
eters in these layers. The same MSE loss was used as the objective function.
To transfer to our FACS-seq dataset for classification, in addition to the above-
mentioned parameter fixing and tower re-initialization, we wrapped the output
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neuron with a sigmoid function and changed the objective function to binary
classification. For FramePooling and Optimus models, we also fixed all of their
convolutional layers and re-initialised the last two dense layers.

Data pre-processing

We collected a total of 7 public translation profiling datasets to evaluate MT-
trans, including 3 massively parallel assays by polysome profiling, 1 massively
parallel assay by yeast growth and 3 ribosome profiling for 3 cell lines.

The massively parallel assays MPRA-U, MPRA-H, and MPRA-V were col-
lected from GSM3130435, GSM3130443, and GSM4084997 from the Gene Ex-
pression Omnibus (GEO), respectively. Their pre-processing are described in
[32]. The Mean Ribosome Loading (MRL) is defined as the translation rate for
these three libraries.

A similar technique performed on the yeast uses the growth assay to probe the
translation level. Sample GSM2793752 under the accession GSE104252 is used in
this study with the pre-processing described in [10] and is termed MPRA-yeast.
The growth rate is taken to represent the translation rate.

For ribosome profiling data, three datasets collected from HKE293T cell line
[2], PC-3 cell line [15] and muscle tissue [37] were selected because they are
the benchmark datasets on which the random forest model with the handcraft
features [8] was built. The ribosome profiling data were first pre-processed as
in [8]. Later, to prevent data leakage, we filter the isoforms with the same se-
quence 100nt upstream of the start codon and keep the most abundant isoforms.
The translation rate is defined as the logarithmic translation efficiency (TE),
which is the division of ribosome protected fragments (RPF) reads count from
the ribosome profiling to the reads count of transcripts from a paired RNA-seq
sample.

For our in-house FACS-seq library, the entire UTR candidates by was used
to constructed the reference. The consensus sequences were taken as the reads
to map back to the reference file to quantify their count using Bowtie2 [23]. For
GSE176581 FACS-seq library, the preprocessing part is done and described as
in [8].

Task combination strategies

The performance of the multi-task model is influenced by model capacity, dataset
size and the relationship among tasks [34, 19]. We thereby set the channel size of
the encoder to be the same for each strategy regardless of the number of tasks
grouped. The dataset size of MPRA related tasks is generally higher than the
RP tasks, so each MPRA task is down-sampled to represent a comparative data
size with the RP tasks. Model 3R and 3M are two extreme strategies tasked
with datasets from the same sequencing techniques. To search for an optimal
task grouping strategy with diverse tasks, we empirically tested the strategy in
the following order:
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1. On top of 3R, we first introduced a sub-sampled MPRA-H dataset to have a
light touch on the massively parallel assay, making a new combination sM3R

2. Based on the previous result, we replaced the sub-sampled MPRA-H with the
full-sized MPRA-H to make a new strategy M3R, increasing the proportion
of MPRA-tasks.

3. The strategy 2M3R consisted of two MPRA tasks, with MPRA-V added
in, and all three RP tasks. The involvement of MPRA-V here alleviates the
technical imbalance on RP side.

4. Adding the MPRA-U dataset, model 3M3R integrated all the datasets so
the number of towers for the RP side and MPRA side is now equal. The
direction of updating for the encoder is no more biased to the RP side.

5. We then removed the smallest task RP-muscle, to make up the new strategy
3M2R. The task infinity of RP-muscle is also the smallest of the other five.

6. By removing the task RP-PC3, the strategy 3MR totally consists of datasets
performed in the HEK-293T cell line.

Extraction of sequence motifs from convolutional filters

The hidden features formulated within the convolution neuron represent the
local sequence combinations that are useful for predicting the translation rate.
Here in this study, we use a technique called Maximum Activation Seqlet [1, 32].
This technique can reveal the short sequence segments the convolutional filters
are detecting, and then these segments are used to construct the Position Weight
Matrices (PWMs) [1, 32]. Here we first segment an input sequence xt

i into several
subsequences (Seqlet) xt

i,j at the same length as the receptive field of the target
neuron c. We searched for Seqlet from Xt that have the highest activation values
for convolutional filter c and bagged them into Pc.

Pc = argmax
{xt

i,j
∈X t}

at,li

Piling up the short sequences in Pc, we can calculate the frequency of nucleotide
at each position, thus is the Position Weight Matrices(PWMs). From here, the
convolutional filters were converted into PWMs and were visualized by sequence
logo using python package logomaker version 0.8.

Motif similarity comparison

Important translation regulatory elements can be captured independently by
models trained with different datasets. In order to identify which motifs are
significantly similar to annotated RBP binding motifs, motifs similarity analysis
was performed using tomtom from the tool-kit meme-suite version 5.4.1. The
query motifs are explained from the models in the way we described and target
motifs are labelled by RNAcompete [30] which is a built-in database in meme-
suite version 5.4.1. Only motif pairs satisfying FDR ≤ 0.05 and E−value ≤ 10
at the same time will be noted as significantly similar.
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Motifs matching using the extracted position weight matrices

We derived 256 PWMs from the convolutional filters. Each matrix is scanning
a 9bp long sequence window, whose matching score is produced by the inner
product between the flattened PWM and one-hot sequence. We scanned along
the query sequence in the stride of 1 bp and we only kept the maximal matching
value across windows of every position. A UTR is considered to contain the
motif when this collapsed score goes above a defined threshold. Because the
score distribution differs from motif to motif, we set the activation threshold to
the quantiles of their score distribution.

Building logistic regression and random forest model on
PWM-derived scores

The PWMs generate a positive real number which reflects the presence and
strength of the motifs when scanning the input sequence. We could obtain 256
PWM scores for each sequence, which formulate the feature set to describe a
sequence. The feature vector is standard scaled across all 1,052 UTRs from
the two classes of our in-house FACS-seq dataset. We implemented the model
training using scikit-learn package version 1.1.3. The training set and test set
were then split in a ratio of 9:1 with different random seeds. The performance
metric F1-score and AUROC score were evaluated in the test set for the Logistic
Regression (LR) and Random Forest (RF) model, as well as the three deep
learning baselines.

Identification of important motifs

Leveraging the white-box nature of the RF and LR model, we can obtain fea-
ture importance for 256 motifs and assign their regulation direction with the
coefficient of LR. We first select the top half of the motifs ranking by the RF
importance score. Motifs remain the same sign for all MPRA tasks that were
first filtered (45 positives and 150 negatives), where we further identified 25 neg-
ative motifs by their intersection over negative LR coefficients. Because of fewer
positive motifs left, we identified them from the top half of important features,
resulting in 29 positive motifs.

Design and construction of 5‘ UTR library

Ribo-Seq and RNA-Seq data on HEK293T and hESC cells were extracted from
RPFdb v2.0 [36] and Gene Expression Omnibus [7] respectively. Reads Per Kilo-
base of transcript per Million mapped reads (RPKM) was used as the primary
input. Rare genes with RPKM less than 1 were eliminated. The translation effi-
ciency (TE) score was defined as the ratio of RPKM of the ribosome protected
fragments (RPFs) by ribosome profiling over the average RPKM of the tran-
scripts by RNA-seq. Average RNA-seq RPKM was calculated from 3 HEK293T
and 4 hESC samples respectively. Natural 5‘ UTR sequences were defined from
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-100 to -1 with respect to the start codon of the coding sequence on mRNA tran-
scripts documented in the Reference sequence (RefSeq) database [29]. The -100
to -9 sequences were extracted and attached CTAGCCACC containing a NheI
overhang and Kozak sequence for cloning purposes. Synthetic sequences were
generated by dividing the -100 to -9 sequences into 7mer or 31mer windows and
scrambling them, followed by CTAGCCACC attachment. The natural sequences
were ranked according to TE scores. Top and bottom 5% of the population in
each cell line were selected and 4,800 of them were placed in the library pool,
with 1,032 HEK293T specific, 1,532 hESC specific and 2,236 double specific 5‘
UTRs. 3,200 synthetic sequences were also selected for the library with 1,400
generated from HEK293T specific, 1,400 generated from hESC specific and 400
generated from double specific 5‘ UTRs. Together, an 8,000 library was designed.
The library was then generated by the GenScript Precise Synthetic Oligo Pools
service.

To insert the 5‘ UTR library into an expression plasmid, the 5‘ UTR se-
quences were firstly amplified from the Oligo Pool by Phusion DNA polymerase
(New England Biolabs). The resulting fragments were digested by SbfI and BbsI
(New England Biolabs) and ligated into a SbfI and NheI (New England Biolabs)
digested lentiviral GFP expression plasmid using T4 DNA ligase (New England
Biolabs) overnight at 16 ◦C. The ligation products were transformed into chem-
ical competent E. coli strain DH5α and selected by 50 µg mL1 carbenicillin. The
resulting library was extracted and purified using Plasmid Midi (Qiagen) kits.

Validation of discovered motifs with the FACS screening library

Our core assumption is that collectively training the model with datasets from
diverse techniques can lead to a more biologically relevant feature set. The FACS
sequencing method was used here as a complement of the RP and MPRA to test
the robustness of the sequences motifs derived from MTtrans. When sorting the
cells carrying 5’UTRs with high translation efficiency, their reads count y in the
sorted bin becomes a proxy of the translation efficiency.

We firstly encoded the 5’UTRs by MTtrans to extract the feature map of
layer 3. Then we searched the sequences that can uniquely activate the motifs.
For each convolutional filter, the 5’UTR sequences were then ranked by the
activated values in the feature map. The top-ranked sequences were regarded as
the activated sequence for the corresponding filter. Each sequence can only be
assigned to one filter. When one sequence ranks top for multiple filters, the filters
with the highest activation values will be assigned to it, and it will be added to
the uniquely activating set for each convolution filter (channel). The effect of a
motif converted from filter c is therefore defined as the mean of log count in the
uniquely activating set minus the the average read count of the library. In other
words, if the reads count of the activated set is higher than average, we assign
it as a positive motif and vice versa for negative motif. Lastly, we compared
the estimated effect with the effect they displayed in the FACS library. If their
direction is the same, the motif effect is consistent in the new library.
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Cell culture and cell sorting

HEK293T cells were obtained from the American Type Culture Collection (ATCC)
and cultured in DMEM supplemented with 10% FBS and 1× antibiotic–antimycotic
(Life Technologies) at 37 °C with 5% CO2.

Lentivirus production of the 5‘ UTR library was similar as previously de-
scribed [9]. The resulting lentivirus was titrated to a multiplicity of infection of
0.15 to achieve low copy number delivery of the 5 ’UTR library into HEK293T
cells while achieving 100 fold representation.

On day 7 post-transduction, cell sorting was performed on a BD Influx cell
sorter (BD Biosciences). Live single cells were gated and sorted by GFP signals.
A two-round sorting approach was used by enriching the total GFP population
and further sorting them into three bins according to their GFP intensity.

Deep sequencing

Genomic DNA of collected samples were extracted by DNeasy Blood and Tissue
kit (Qiagen). The inserted 5 ’UTR region was amplified by PCR using Kapa
HiFi Hotstart Ready-mix (Kapa Biosystems). The fragments were gel purified
by QIAquick Gel Extraction Kit (Qiagen) and sent to HKU LKS Faculty of
Medicine Centre of PanorOmic Science for SMRTbell Library construction and
Single Molecule, Real-Time (SMRT) sequencing (PacBio).

Results
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Fig. 1. The model architecture of our multi-task learning method MTtrans. The model
consists of a shared encoder and several task-specific towers. We use the shared CNN
encoder (bright yellow) to extract features and transform task-specific input xt into
task-specific feature map. The task specific tower takes in the feature map and predicts
the translation rate yt for the corresponding task. Blue, green and orange color stand
for different tasks.

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 7, 2023. ; https://doi.org/10.1101/2022.05.03.490410doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.03.490410


10 WZ Zheng et al.

MTtrans learns the shared patterns from multiple experimental
systems

MTtrans is developed as a multi-task learning method to account for the vari-
ance in translation rate given by different experimental systems. We adapted
the canonical hard parameter sharing architecture which consists of a shared
encoder (bottom) and several task-specific upper layers (towers) (Figure 1). To
train the model, we collected datasets from different translation systems and
diverse techniques, including three artificially synthesised libraries constructed
with MPRA combined with polysome profiling in human HEK293T cell line
(MPRA-U, MPRA-H, MPRA-V), one synthetic library from MPRA with yeast
growth as the readout (MPRA-Yeast) and three ribosome profiling studies mea-
suring the translation efficiency of the nature transcripts from HEK293T cell
line, PC-3 cell line and human muscle tissue respectively (RP-293T, RP-PC3,
RP-Muscle).

In general, we break down the typical translation rate prediction process
into two parts: sequence feature extraction and regression. We let the shared
bottom take care of sequence feature extraction. Basically, the bottom module
was mainly made up of four 1D convolution layers, analogous to the translation
initiation process of scanning through the input sequences from the 5‘ to 3‘ end to
detect the patterns of interest. One important merit of using convolutional neural
networks is the emergence of many network explanation approaches in recent
years [4, 14, 33], allowing for the visualisation of the regulatory signal encoded in
the higher layers. The towers will learn to reorient the extracted pattern for each
task and make the regression from sequence pattern to translation rate (Figure
1). The tower module is built up with a two-layer Gated Recurrent Unit network
(GRU) to deal with the various length of inputs and a dense layer to project the
GRU memory to the output value, which is the predicted translation rate.

MTtrans better coordinates MPRA tasks and improves translation
rate prediction

We started with the MPRA datasets, in which the translation rate is measured
with mean ribosome loading (MRL), to evaluate the effectiveness of our MTtrans
model. We included two published model OptimusN [32] and FramePooling [18]
for comparison. Another baseline called mixing was trained with a dataset merg-
ing all the MPRA libraries. The involvement of mixing was to account for the
benefit of being trained from a larger integrated dataset.

Our multi-task method can predict the translation rate more accurately than
the alternatives in all MPRA tasks, regardless of input length or sequence origin
(Fig.2 a&b). In the largest MPRA dataset (fixed length random UTRs, short for
MPRA-U), our model can consistently exceed the state-of-art result (r2 = 0.932
by OptimusN, r2 = 0.928 by FramePooling) [32, 18] and push translation rate
prediction to the highest of 0.947 in r2 (p=0.0037 compared to FramePooling,
one-sided unpaired T-test, Figure 2c & Supplementary Table 2). Interestingly,
model mixing showed a performance loss on the fixed length human UTRs (task
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MPRA-H for MTtrans, the left panel of Figure 2b), suggesting that it could be
harmful to simply mix the datasets probably due to covariates like batch effect
and shift in sequence composition between randomly synthetic sequences and
natural sequences. When modelling 5‘UTR sequences with varying lengths, it
turned out that using more data together with GRU layers can boost the per-
formance strikingly. Thus, with the designed task-specific towers, our method
could alleviate the conflict and could effectively coordinate datasets with differ-
ent study designs to finally benefit all the tasks.

MTtrans learns more transferable sequence features

To test whether the shared encoder of MTtrans captures a more universal fea-
ture set, we fixed the encoder and then transferred the model to a new MPRA
random 5‘UTR dataset (MPRA-Yeast) generated in Saccharomyces cerevisiae.
The performance of the transferred model with the fixed encoder can imply how
general these learned features [39].

MTtrans has learnt more transferable motifs than the single-task models (Op-
timusN, FramePooling) significantly. However, MTtrans was not on par with the
model trained from scratch (box coloured with mauve in Fig. 2d), which showed
the evolutionary divergence between the two translation systems despite a con-
siderable convergence they shares. This performance gap may imply the existence
of yeast-specific patterns shaped by the evolution process that can not be filled
by learning more human data. The result may suggest that MTtrans has cap-
tured more generalisable sequence features in 5‘UTR for translation initiation.
Although not comparable with the yeast-oriented model, there is a significant
improvement over the single-task models. Apart from seeing more sequence com-
position during training, using more datasets may also prevent the encoder from
capturing dataset-specific patterns as it will hamper the other tasks and increase
the overall loss during optimization. Overall, using the shared encoder to gather
different tasks is a good strategy for learning more transferable features and may
lead to genuine regulatory motifs.

MTtrans is robust across replicates

MTtrans has achieved amazing accuracy on the MPRA-U task, but it’s reason-
able to question whether it is over-fitted on the MPRA-U task and captured
some unwanted batch effect. To answer that, we collected sequences having two
experimental replicates from MPRA-U. Models fitted on replicate-1 were then
evaluated in the test set of replicate-2.

The translation rate predicted by MTtrans is more consistent with that mea-
sured in replicate-2 (Fig.2 e). The absolutes prediction error was calculated be-
tween the predicted MRL and the observed MRL in replicate-2. The error made
by our methods mostly fell in ±1MRL and has the closest mean of error get-
ting to 0. The consistency, measured by the r2 in replicate-2, also showed the
advantage of our multi-task method over the single-task methods. Interestingly,
despite a higher accuracy than FramePooling in replicate-1 (Fig.2 a), OptmiusN
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made more error than FramePooling in replicate-2. We further asked whether
the failure cases by MTtrans were caused by the incorrect signal in the data. We
correlated the error in replicate-1 with the variance of measurement and found
a weak correlation. There are sequences strongly deviated from our prediction
but highly consistent between replicates, serving as interesting cases for further
investigation. Overall, training with multiple datasets can correct the model to
become more robust between replicates.

MTtrans better predicts the translation rate of endogenous
transcripts in human cell lines

We next turned to the human endogenous 5‘UTRs in their natural genomic con-
text, whose translation rate is typically assessed via ribosome profiling (RP).
Due to their smaller data size and intrinsic confounders, such as regulation that
occurred in the CDS region and 3‘UTR region of the same transcript [24], It is
naturally a harder task to predict the translation rate for RP datasets. Here-
with MTtrans, we attempt to tackle this long-standing issue by adding an extra
layer of features learned from MPRA datasets, whose sequence context is more
revealing of translation initiation signal.

To train the MTtrans on ribosome profiling data, we selected three sequenc-
ing libraries from human HEK293T cell line [2], PC-3 cell line [15] and muscle
tissue [37]. With the same datasets, Cao et al. built a random forest regressor
(which is named 5‘UTR RF in the later text) to predict the translation effi-
ciency (TE) of each transcript [8]. They manually crafted features to describe
the known regulators in 5’UTR and thousands of kmer frequencies to cover other
possible elements. Their RF model and the single-task model were taken as the
baseline. Highly similar transcripts of the same gene were filtered for all the
datasets to avoid information leakage from the training set to the evaluation set
(see Methods).

MTtrans greatly surpasses other methods in the noisy RP data (Figure
3a&b). Deep learning-based algorithms seem to be more suitable in modelling
RP when we compare single-task with 5‘UTR RF, which may be explained by
the learnt regulatory features not included in the RF model. A consistent per-
formance gain was conferred by MTtrans in all cell lines. The improvement was
not only observed in small source tasks like muscle but also held true for tasks
of larger size (i.e. PC-3, Figure 3a). Notably, adding two human 5‘UTR MPRA
datasets further improved the performance of all three RP tasks, suggesting
beneficial information sharing from the MPRA sequence features.

Proper task selection enables MTtrans to balance across datasets
generated from different techniques

Multi-task learning can be deleterious when there are outlier tasks sharing con-
flict optimising signal.[41]. To learn a set of general features, various task com-
bination strategies were designed with a different mixture of MPRA tasks and
RP tasks. To order the combination, we defined a gradient with 3R and 3M at
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Fig. 2. MTtrans make accurate and robust translation rate prediction by combining the
signal from different task. a Performance for predicting mean ribosome loading (MRL)
on fixed length random synthetic sequences MPRA dataset (left) and also a varying
length synthetic sequences dataset(right). These 2 dataset forms 2 MTtrans prediction
tasks which were learned simultaneously.. Prediction performance was measured by the
r2 between the observed mrl value and the predicted in the held-out test set (n=20,000
for fixed length and n=7,600 for varing length). OptimusN [32], FramePooling [18]
and the counterpart MTtrans model simply trained by mixing all the dataset were
compared by evaluating them on the same test set. b Performance for predicting mean
ribosome loading (MRL) on the MPRA dataset ofs human 5’utr sequences (left) and
also a varying length synthetic sequences dataset(right). Prediction performance was
measured by the r2 between the observed mrl value and the predicted in the held-
out test set (n=25,000 for fixed length and n=7,600 varing length). OptimusN [32],
FramePooling [18] and the counterpart MTtrans model simply trained by mixing all
the dataset were compared by evaluating them on the same test set. c the scatter
plot showing the performance for task fixed length random UTRs (MPRA-U). A high
fidelity of r2 at 0.947 is reached. Sequences with uORF was colored with blue and
sequences without uORF with orange respectively. d Transferring encoder trained from
human MPRA datasets to MPRA-Yeast dataset. All the parameters in encoder are
fixed for OptimusN, FramePool and MTtrans. While for model Yeast, the entire model
is trained from scratch in MPRA-Yeast. e Robustness shown by the absolute prediction
error in technical replicate. Absolute prediction error is calculated by subtracting the
model prediction for MPRA-task to the label from MPRA-U replicate-2. The larger
density plot showed the overall spread of error and the value ranging from 0 to 1.4
|∆MRL| magnified in the upper right panel. The upper right box plot highlighting
the densest region to display the mean and quantile of the error distribution. The
bottom right bar plot label the consistency of model prediction for replicate-1 and
observed value of replicate-2 by r2 f The absolute prediction error is weakly correlated
to with the variation observed between two replicates. Prediction error is calculated in
replicate-1. Variation between replicates is calculated by firstly normalizing MRL to
σ = 1 for each replicate and then the absolute different of the two normalized MRL so
that the dift of MRL by a unit of σ.
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a b

Fig. 3. MTtrans supports a flexible task combination strategy to make effective infor-
mation sharing and promote the prediction for the noisy ribosome profiling data. a
Observed log translation Efficiency (TE) against the log TE predicted by MTtrans 3R
on the cell line PC-3 dataset. Color shows an increasing dot density from blue to red.
b Model performance in three ribosome profiling datasets. Model 5‘UTR RF was from
the The MTtrans 3R here was trained by the three RP datasets. The red box indicates
a single-task counterpart. The blue box indicates the strategy 2M3R. The MTtrans
model was trained with two MPRA tasks and three RP tasks.

the two ends, between which are a mixture at different levels (Supplementary
Table 1).

Generally, task performance positively correlates with the proportion of sim-
ilar tasks in the training data, but an appropriate task selection can overcome
the data imbalance. For the encoder with limited model capacity, the hidden
features were updated in a competitive way so that only those universal features
could be kept during the training. With more MPRA tasks joined, MPRA tasks
enjoyed a stable increase in the prediction accuracy, which climbed to the peak
at 3M. Interestingly, RP tasks could also benefit from the integrative training
with MPRA tasks by referring to more refined sequence features identified from
the large sequence space (see RP tasks in model M3R and 2M3R). For model
3MR, MPRA tasks dominate the overall tasks, and RP-293T becomes an outlier,
pulling down not only RP-293T itself but also the MPRA tasks if compared to
3M.

Thus, training the multi-task model required a careful balance of their co-
variates, such as the sequencing techniques and cell type. Taken together, model
3M3R stood out from all other tested combinations (Supplementary Table 1)
because it retained a comparable performance on diverse tasks regarding the
technique and cell type, maximising the chance to learn more general motifs.

Discovery of 5’UTR sequence motifs from the deeper layer of shared
encoder

We next explained the convolutional filters in the shared encoder to see what
features MTtrans has learned. There are studies that only explain the parameters
of the first convolution layer [1, 40], but one could argue that features extracted
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Fig. 4. Sequence motifs discovered by MTtrans. A total of 256 motifs are projected
into PHATE space by reducing the last layer feature map input from all sequences to 2
dimension. The sequence logos of convolutional filters were generated from the position
weight matrices using Maximal Activation Seqlet. Colour fo the dots denotes the regu-
latory effect estimated in dataset MPRA-H, which is the Pearson correlation between
motifs activity and translation rate. Diamonds indicate motifs that are significantly
similar to known RBP in [30].

from higher layers confer more abstraction and are more likely to represent the
regulatory grammar [10, 4].

By taking the feature map from each layer for fitting random forest models,
we found out that the deeper layers confers more information. (Supplementary
Figure 2a). To explain the sequence motifs, we use the maximum activation
seqlet [1, 32] to visualise individual convolutional filters at the last layer, for
a longer receptive field to cover the 5 to 7bp long annotated binding sites of
RNA-binding Proteins (RBP). The sequence segment that activates the neuron
the most is clipped out from the sequence and grouped to generate the position
weight matrix. With this method, each convolutional filter will be interpreted
as a sequence motif with a receptive field of nine nucleotides. The correlation
between neural activities and the translation rate can indicate the effect of the
motif it derives.

The sequence features derived from the last layer of MTtrans 3M can recon-
struct many biologically meaningful motifs. 43 motifs are significantly similar to
the RBP binding motifs annotated by RNAcompete [30], indicating that MT-
trans captured the biological meaningful elements to some degree(Figure 4). For
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example, HuR have been proved to bind to 5’UTR; PABR4 has high poly-U
affinity [6]; RMB4 is known to suppress the cap-dependent initiation process
[25].

The upstream start codon (uAUG) and the Kozak consensus are well-characterised
regulatory signals that can alter the translation initiation [17, 38, 21]. AUG is
present in a substantial fraction of the found motifs. 56 of the 67 uAUG de-
tecting motifs, the majority of which include guanine right to the uAUG, are
negatively correlated to the translation rate. The positive uAUG motifs, on the
other hand, represent a more interesting feature set as they define the sequence
context to cancel the upstream initiation. An apparent pattern is a Uracil or
Adenine flanking around the uAUG, which violates the preference of the Kozak
consensus. MTtrans also re-discovered upstream stop codon UGA and UAA in
filter 150 and filter 215.

In conclusion, by interpreting the learnt shared encoder, we can rediscover
many genuine regulatory signals, suggesting the advantage of MTtrans as a motif
discovery tool.

The discovered regulatory motifs can be experimentally validated

To validate whether the discovered motifs remain predictive in datasets gener-
ated by a different experimental technology, we generated an in-house library
with FACS-seq to measure the translation rate of a newly designed 5’UTRs li-
brary. 8,000 UTR sequences of length 99bp were inserted into vectors to control
the translation of the GFP protein. The engineered plasmids were then delivered
into the HE293T cell line, which is the same as the MPRA datasets that MT-
trans was trained from. Finally, we applied FACS screening to sort cells by their
GFP fluorescence and collected highly fluorescent cells for further sequencing so
that the read count could represent the translation rate of the 5’UTR sequence
(Figure 5a). When using neuron activation to detect the presence of motifs in a
sequence, 72 motifs (out of 123 positive motifs) showed a higher read count than
the average in the FACS library. For negative motifs, 83 out of the 141 motifs
showed a lower read count in this dataset. The result suggested a (p=0.0066,
binomial test with k = 153 n = 256, Supplementary Figure 6b).

To test the extent to which the discovered motifs are preditive without the
specific neural network, we used the PWMs generated by the Maximum Activa-
tion Seqlet to score the strength of motifs and perform binary classification by
logistic regression and random forest for this FACS-seq dataset (Figure 5b). Us-
ing MTtrans motifs, LR and RF model succeeded in separating the two classes
(average F1 0.714 & 0.740, average AUROC 0.725 & 0.745, respectively) and
outperformed the deep neural network baselines Optimus100 and FramePool100
in F1-score. These results showed that the discovered motifs alone are robust
and highly informative in modelling translation regulation.

Inspecting the learned parameters of logistic regression and random forest can
give us insights into the role of each motif in the FACS-seq dataset. Basically, we
can assign a motif to a positively regulating signal or negatively regulating signal
according to the sign of its coefficients in the logistic regression model. Compared
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with the MPRA-V dataset, which also has 99bp-long UTRs, 59% of the motifs
remain in a consistent regulatory direction, and it is significantly different from
random (p-value = 0.016 by scrambling the motifs 1000 times see Supplementary
Figure 8a). The feature importance scores by random forest evaluated the motifs
from another way and were weighted more onto positive motifs (Supplementary
Figure 8b). Combining insights from the LR and RF models, we identified 29
positive and 25 negative important and consistent motifs.

We next tested these identified motifs in another independent FACS-seq
dataset to evaluate their robustness. We curated another public FACS-seq library
GSE176581 [8] in which the translation rate is also represented by the enrich-
ment of UTR-carrying cells in the high GFP fluorescence bin (log fold change of
Bin5). For motif detection, a motif is considered to occur in the sequence when its
PWM matching score is higher than the defined quantile threshold of the score
distribution (see Method). Collectively, UTRs which score higher averagely on
the positive motif set are more translated than that on the negative motifs (Fig-
ure 5c, p-value = 7.65×104 for the threshold of 90% quantile, one-sided unpaired
T-test), and the significance also holds for different threshold (Supplementary
Figure 6), indicating a robust regulatory direction of these motif features. For
individual motifs, we specifically checked out sequences that only contained one
motif and with a low average score on the opponent set (Figure 5d&f). Only 10
positive and 11 negative motifs left meet the above criteria, and the majority of
them maintained the same regulatory effect on the translation rate.

Overall, using two FACS-seq datasets, we demonstrated that the MTtrans-
derived motifs are transferable to a new experimental system and can distinguish
between low TR class and high TR class without the neural network. Two subsets
of features, identified by PWM-based models, show a robust regulatory direction
across two FACS-seq libraries. These results supported that MTtrans can indeed
combine different datasets to yield biologically meaningful motifs.

Discussion

In this study, we demonstrate that our multi-task learning model MTtrans, is
effective to predict mRNA translation rate using 5’UTR sequences for diverse
experimental data. MTtrans works by treating each dataset as an individual
task so that useful information across tasks can be underlined repeatedly. Im-
portantly, we found that this framework enables the extraction of highly robust
sequence motifs that predict the increase or decrease of translation rate. This is
achieved by the hard-sharing architecture in our multi-task model.

Previous studies on transcription factor motif discovery usually can extract
predictive features from the first convolutional layer [1, 40]. Koo et al. even pro-
pose an ambiguous pooling to enforce the motifs detection finished in the first
layer [20]. Interestingly, in the context of translation rate prediction based on
5’UTR, it is necessary to look beyond the first layer to extract features. Fur-
thermore, we found that the improvement does not result from the longer re-
ceptive field (Supplementary Figure 2). As the deeper features are assembled
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Fig. 5. FACS experiment to validate the discovered motifs. a cells carrying designed
UTR are sorted by their GFP fluorescence, screened for high GFP expression and
then sequenced to identify the delivered UTRs. The read count of the UTRs can thus
approximate its translation rate. UTRs with the lowest translation rate were grouped as
the negative class (class 1) and the positive class ( class 2) for the highest one. b Result
of binary classification for the above two classes. The box shows the performance of
models for different train-test splitting random seeds. LR is the logistic regression built
on the features scored by MTtrans-explained PWMs. RF stands for the random forest
model built using the same features. c The distribution of translation rate (log fold-
change in Bin5) for UTRs on another FACS-seq library GSE176581. Red curve and bins,
UTRs that enriched with the 29 identified positive motifs, has higher translation rate
than the blue curve and bins that contains the 25 negative motif sets (p-value = 7.65×
104 for threshold of 90% quantile, one-side unpaired T-test). d The translation rate
of sequences from GSE176581 that contain only one motif among the selected positive
feature set. f The translation rate of the sequence from GSE176581 that contains only
one motif among the selected negative feature set.

from the lower layer patterns by convolution filters, translation rate prediction
may thereby require better arranging the basal motifs to sense the sequence
context. This might partially explain how the CNN model surpasses the k-mer-
linear model [32] because k-mer models lose the sequential relationship of the
features despite a broader k-mer coverage. Future work should explore how to
best extract features from different layers of neural networks for the prediction
of transcription factor binding and translation rate.

A core premise of our work is that more robust and transferable features can
be extracted from a model learned from diverse data sets generated from different
experimental techniques and cell types. To evaluate this hypothesis, we tested the
use of different combinations of data as the tasks in MTtrans and found, indeed,
the most cross-platform model is the one with a balanced task source (3M3R in
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Supplementary Table 1). Models trained with the data generated by the same
technique, such as MPRA, obtained the specificity for the same experimental
setup (Figure 2a), but fail to predict results generated by another experimental
technique (Supplementary Figure 1). This suggests that such models are learning
the short-cut to some degree, more explicitly, the experimental-specific artefact
that may be not biologically relevant to translation. Therefore, our MTtrans
framework is indeed important to allow multiple data types to be integrated to
identify robust features that can work well across different conditions.

Although we have yielded robust regulatory motifs with maximally activated
Seqlet (Figure 4), there is still rich information in the model that is not fully
explained, such as the motif interaction. Recent studies analyse the motif inter-
action in an instance-based way. Ziga et al. identified the cooperative TF binding
interaction by permuting the spacing of two candidate motifs [5]. Preserving the
reading frame position of of the extracted feature is necessary for the model
to correctly identify the in-frame or out-of-frame motifs [18]. For MTtrans, we
choose to employ the GRU layers in the task-specific tower because it is effective
at handling the spatial arrangement of the motif detected by the last convolu-
tional layer. Visualisation of the GRU layer, however, usually requires an extra
architectural plugin like attention [35]. Although the task-specific syntax expla-
nation of the GRU layers is not the focus of this work, future work can reveal
how the essential elements are coordinated to predict the translation rate.

Overall, MTtrans provides a solution to extract the robust translation regu-
latory elements in the 5’UTR from a collection of related yet noisy systems. We
expect this multi-task framework can extend to learn the technique-invariant
determinant for other sequence modelling questions to reveal the biologically
meaningful signal from the sequence.

Appendix

There is one additional file containing Supplementary Tables 1-2 and Supple-
mentary Figures 1-8.
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