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Abstract 15 

Polygenic indices (PGIs) are increasingly used to identify individuals at high risk of developing diseases 16 

and disorders and are advocated as a screening tool for personalised intervention in medicine and 17 

education. The performance of PGIs is typically assessed in terms of the amount of phenotypic variance 18 

they explain in independent prediction samples. However, the correct ranking of individuals in the PGI 19 

distribution is a more important performance metric when identifying individuals at high genetic risk. 20 

We empirically assess the rank concordance between PGIs that are created with different construction 21 

methods and discovery samples, focusing on cardiovascular disease (CVD) and educational attainment 22 

(EA). We find that the rank correlations between the constructed PGIs vary strongly (Spearman 23 

correlations between 0.17 and 0.94 for CVD, and between 0.40 and 0.85 for EA), indicating highly 24 

unstable rankings across different PGIs for the same trait. Simulations show that measurement error in 25 

PGIs is responsible for a substantial part of PGI rank discordance. Potential consequences for 26 

personalised medicine in CVD and research on gene-environment (G×E) interplay are illustrated using 27 

data from the UK Biobank.  28 

Keywords: polygenic indices/scores, rank discordance, personalised medicine, gene-environment 29 

interactions 30 
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Introduction 31 

Since the publication of the first genome-wide association study (GWAS) in 2005, it has become clear 32 

that most common human behavioural and disease traits are polygenic: they are influenced by 33 

thousands of single nucleotide polymorphisms (SNPs), each with a tiny effect
1,2

. GWAS estimates can be 34 

used to calculate an individual’s genetic risk or predisposition using a polygenic index (PGI; also known 35 

as a “polygenic (risk) score”): a weighted sum of SNPs, with the weights proportional to the effect size 36 

estimates obtained from a GWAS in an independent sample
3,4

. The recent increase in the predictive 37 

power of PGIs has opened the door to their usage in clinical settings
5–7

. For example, one study found 38 

that individuals ranking in the top quintile of the PGI distribution for cardiovascular disease are most 39 

likely to benefit from statin treatment, lowering the 10-year relative risk of coronary heart disease by 40 

45%, and no risk reduction for individuals in the lowest PGI quintile
6
. More controversially, PGIs are also 41 

starting to be used for embryo selection
8–10

, and it has been suggested that in the future PGIs might be 42 

used to select against embryos predisposed to learning disorders
11,12

. 43 

While the performance of a PGI is typically assessed by its explained phenotypic variance in an 44 

independent prediction sample
11

, a PGI’s precision in correctly ranking individuals in the PGI distribution 45 

is arguably more important when using PGIs for personalised interventions. In personalised 46 

interventions, individuals at elevated genetic risk are typically identified by their rank in the PGI 47 

distribution (e.g., top quintile). Moreover, ranking precision is also likely to be important for the 48 

estimation of gene-by-environment (G×E) interplay. G×E studies analyse heterogeneity in treatment 49 

effects as a function of individuals’ PGI: this is possible using the full (continuous) PGI distribution or on 50 

the basis of  quantile-stratified samples of the PGI distribution (e.g., above/below the median)
13–16

. 51 

Imprecise PGI rankings may therefore lead to noisy decision-making in the clinic and bias our 52 

understanding of G×E interplay. 53 

While recent studies have started to stress the importance of transparency about the construction of 54 

PGIs
17–20

, empirical studies often implicitly assume that PGIs for a specific trait are interchangeable.  PGIs 55 

can be constructed in various ways. The most important features that have been highlighted are (i) the 56 

choice of GWAS discovery sample, (ii) the number of SNPs included, and (iii) the weights used to 57 

construct the aggregated polygenic index – e.g., corrected for linkage disequilibrium or not
21

. In this 58 

study, we empirically analyse individuals’ rank concordance across PGIs with different construction 59 

methods and discovery samples and explore the mechanisms underlying the discordance. Rank 60 

discordance between PGIs could arise from differences between construction methods, differences in 61 
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the environmental context of the discovery samples, or random measurement error stemming from the 62 

finite discovery samples. In the empirical analyses, we focus on the first two of these: the discovery 63 

sample and the construction method. We use simulations to explore the extent to which measurement 64 

error in the PGIs is responsible for PGI rank discordance. 65 

We start by investigating individuals’ rank concordance for two different polygenic traits that have been 66 

highlighted as promising targets for personalised screening: cardiovascular disease (CVD)
5,6,22,23

 and 67 

educational attainment (EA)
11,12

. We compare the PGIs constructed using different discovery samples 68 

(i.e., UK Biobank (UKB)
24

, CARDIoGRAM
25

, and 23andMe, Inc.
26

) as well as the two most commonly used 69 

construction methods: the “clumping and thresholding” algorithm as implemented in Plink (henceforth 70 

C+T)
27,28

 and the Bayesian LDpred method
29

. C+T is widely used given its relative simplicity and low 71 

computational cost
21

, although Bayesian methods such as LDpred are gaining popularity due to the 72 

increased predictive power compared to C+T. The central difference between Plink C+T and LDpred lies 73 

in the fact LDpred corrects the SNP weights for linkage disequilibrium (LD) and uses a large set of SNPs 74 

(i.e., >1 million) in the PGI, whereas Plink deals with LD by only keeping one SNP from each LD block —75 

typically the SNP with the lowest p value. Because the differences between different Bayesian PGI 76 

construction methods like LDpred, PRS-CS, or S-Bayes-R are relatively less pronounced
30

, they are not 77 

explicitly considered in this paper. 78 

We find limited concordance in individuals’ ranking across PGIs that are created with different 79 

construction methods or discovery samples. For example, for EA, 17% of the individuals who are in the 80 

top quintile of the UKB-based PGI (C+T) are in the bottom quintile of the 23andMe-based PGI (C+T). For 81 

LDpred-based PGIs constructed on the basis of the same discovery samples, the switch from top to 82 

bottom quintile is around 9%. We present two applications to illustrate the impact of such rank 83 

discordance. First, we show how PGI rank discordance can affect treatment decisions. Following an 84 

earlier study
22

, we assess which individuals should be given statin treatment by combining classical CVD 85 

risk factors and CVD PGIs in a prediction model. Here, we find that treatment decisions can vary highly 86 

depending on the PGI used in the model. Second, inspired by a study
31

 analysing how genetic effects on 87 

EA (among other traits) differ across birth cohorts, we investigate G×E interactions using different EA 88 

PGIs and birth year. We show that choices in the PGI construction stage can affect G×E estimations and 89 

with that, our understanding of the interplay between nature and nurture. 90 

To understand the source of PGI rank discordance, we conduct simulations that show how accurately 91 

one can identify an individual’s true PGI rank and phenotype rank under various degrees of 92 
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measurement error in the PGI. Our simulations indicate that for a trait with a SNP-heritability of 25% 93 

and a PGI that explains 12% of the total phenotypic variation (i.e., the ‘explained SNP-heritability’ is 94 

about 50%; this is roughly the state-of-the-literature for EA
26

), we only classify half of the individuals 95 

correctly in the top PGI quintile. Importantly, we show that the rank misclassification depends on the 96 

explained SNP-based heritability and is largely independent of the absolute SNP-based heritability. 97 

Overall, the simulations show that measurement error in the PGI is an important driver of the lack of 98 

concordance across PGIs, and that rigidly ranking individuals into quantiles based on current-day PGIs 99 

will inevitably lead to major misclassifications of true genetic risk. 100 

Results 101 

Rank concordance across PGIs 102 

We present the results on the rank concordance of PGIs constructed with (i) different construction 103 

methods (i.e., C+T with p value threshold = 1, and LDpred with a prior fraction of causal SNPs = 1), but 104 

the same GWAS discovery sample; and (ii) the same construction method, but two different GWAS 105 

discovery samples (i.e., UKB and CARDIoGRAM/23andMe for CVD/EA respectively). The UKB GWAS 106 

discovery sample includes those of European ancestry and excludes the sibling holdout sample and their 107 

relatives. The subset of UKB siblings serves as our holdout sample here (Supplementary Information 108 

1.1). Using bivariate LD Score regression
32

, we find that the genetic correlations between the GWAS 109 

summary statistics from different discovery samples are high. We estimate the genetic correlation rg 110 

between the discovery samples to be 0.96 (SE = 0.03) for CVD and 0.88 (SE = 0.01) for EA. Hence, SNP 111 

effect sizes are generally concordant between the GWAS discovery samples. This suggests that 112 

differences in the environmental context of the discovery sample cannot be the main driver for 113 

discordance between PGIs, especially for CVD.  114 

The LDpred PGI based on the meta-analysis of two samples (UKB and 23andMe for EA; UKB and 115 

CARDIoGRAM for CVD) results in the PGI with the highest explained variance for each trait (Fig. 1d and 116 

Fig. 2d). We refer to these PGIs as the “benchmark PGIs”. Fig. 1 and Fig. 2 visualise the rank concordance 117 

between the different PGIs for EA and CVD, respectively. Fig. 1a and Fig. 2a show the rank concordance 118 

in deciles of the PGI, with the size and shading of the bubble visualizing the extent of overlap. With full 119 

concordance of PGI deciles, all circles would fall on the diagonal line and be of the same size. However, 120 

we find especially low rank concordance between PGIs that use different GWAS discovery samples, and 121 

there is more discordance for PGIs constructed using C+T compared to those using LDpred. Fig. 1b and 122 
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Fig. 2b show the Spearman correlation matrix for the differently constructed PGIs. We find rank 123 

correlations ranging between r = 0.40-0.85 for EA PGIs, and between r = 0.17-0.94 for CVD PGIs.  124 

In Fig. 1c and Fig. 2c, the rank switching is visualised for a random subset of N = 1,000 individuals from 125 

our analysis sample. The vertical axis shows the exact PGI rank for these 1,000 individuals on the 126 

benchmark PGI, highlighting those in the top quintile (i.e., those above the red threshold line). The 127 

horizontal axis displays the different PGI construction methods. The lines show the extent to which 128 

individuals who are in the top quintile of the benchmark PGI switch ranks when using different 129 

construction methods. With full rank concordance, all “top”-ranked individuals would remain above the 130 

red line. However, we observe strikingly large rank switching: of all those in the top quintile of the 131 

“benchmark PGI” for CVD (CARDIoGRAM+UKB, LDpred), we find that between 21% (for our second-best 132 

performing PGI – CVD (UKB, LDpred)) and 63% (for our worst-performing PGI - CVD (CARDIoGRAM, C+T)) 133 

of individuals fall outside of the top quintile, i.e., move below the red line in panel (c). Only 10% of the 134 

individuals are in the top quintile for each of the six CVD PGIs. For EA, only 22% of individuals who are in 135 

the top quintile of the benchmark PGI are also in the top quintile of rest of the PGIs.136 
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Figure 1. Concordance across six PGIs for educational attainment. a. Rank concordance in deciles of the PGI distribution. b. Spearman rank correlations across 

PGIs. c. rank switching across the PGIs for a random N = 1,000 individuals from the UKB holdout sample, with the red line denoting the top quintile. d. 

explained phenotypic variance of the PGIs with error bars showing 95% confidence intervals. PGI = polygenic index, C+T = clumping and thresholding. 
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Figure 2. Concordance across six PGIs for cardiovascular disease. a. Rank concordance in deciles of the PGI distribution. b. Spearman rank correlations across 

PGIs. c. Rank switching across the PGIs for a random N = 1,000 individuals from the UKB holdout sample, with the red line denoting the top quintile. d. 

Explained phenotypic variance of the PGIs in terms of pseudo-R
2
 from a logit regression with error bars showing 95% confidence intervals. PGI = polygenic 

index, C+T = clumping and thresholding. 
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Personalised interventions 163 

We examine the extent to which rank switching between PGIs may influence individualised drug 164 

prescription for CVD. We illustrate the overlap in individuals to be prescribed statins (a type of 165 

cholesterol-lowering medication) according to recently proposed clinical guidelines to involve PGI data
22

. 166 

While statins reduce the risk of cardiovascular events in individuals with high cholesterol levels
33

, their 167 

benefits need to be assessed against their potential adverse effects, which includes a higher risk of 168 

developing diabetes
34

. Current guidelines from the American College of Cardiologists/American Heart 169 

Association (ACC/AHA) recommend statins for three groups of patients: those with high LDL cholesterol 170 

(≥190 mg/dL); 2) those with a combination of elevated LDL cholesterol (≥70 mg/dL) and diabetes; and 3) 171 

those with a combination of elevated LDL cholesterol (≥70 mg/dL) and a ≥7.5% (“high”) risk to develop 172 

atherosclerotic cardiovascular disease (ASCVD) within ten years
35

. These ten-year ASCVD risks can be 173 

calculated with prediction models from the ACC/AHA
36

. The ACC/AHA welcomes the inclusion of 174 

alternative risk factors to identify additional individuals who might benefit from statin therapy because 175 

they are at “borderline” (i.e., ≥5%) ten-year ASCVD risk
22

. Accordingly, an earlier study
22

 uses the top 176 

quintile of an LDpred PGI (based on CARDIoGRAM 2015 GWAS results
25

) as a risk factor to identify 177 

additional candidates for statin therapy for CVD-free individuals at borderline ASCVD risk. We follow 178 

their strategy and examine the variation in individuals to be recommended statins based on 179 

differentially constructed PGIs. For this analysis, we create a CVD-free holdout subsample in the UKB 180 

siblings sample (N = 4,061) consisting of individuals i) who report to not use statins and without a history 181 

of CVD; ii) who are not recommended statins according to current ACC/AHA guidelines; iii) who do have 182 

a have ≥5% ten-year ASCVD risk; and iv) who score in the top quintile of at least one of five CVD PGIs 183 

(we here drop the meta-analysed score from UKB + CARDIoGRAM (C+T) for visualisation purposes). The 184 

threshold determining the top PGI quintile is calculated in the full UKB holdout sample (i.e., including 185 

individuals who do have a history of CVD or use statins). 186 
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 187 

Figure 3. Venn diagram depicting the overlap in individuals ranked in the top quintiles of five CVD PGIs188 

(N = 4,061). Individuals included in this figure are potential candidates for statin therapy
22

: they have an189 

intermediate ten-year ASCVD risk (≥5%); have no (self-reported) history of CVD; are not statin users; and190 

are not yet candidates according to current ACC/AHA guidelines. C+T = clumping and thresholding. 191 

 192 

Fig. 3 shows a Venn diagram depicting the overlap in individuals’ ranking in the top quintile across the193 

five CVD PGIs. Only 6% of the individuals are in the top quintile for all five CVD PGIs (inner cell), while194 

38% of the individuals are in the top quintile for only one PGI (outer layer). Discordance is especially high195 

for PGIs created based on CARDIoGRAM GWAS summary statistics only (as in the study we follow196 

here
22

), with 35% (i.e., 10% + 12% + 13%) of the individuals scoring in the top quintile of the197 

CARDIoGRAM C+T or LDpred PGI distributions but not in the other PGI distributions. Out of the N =198 

2,007 individuals eligible for statins according to the meta-analysis (UKB + CARDIoGRAM) LDpred PGI,199 

only 38.6% would have received statins if this decision was based on the CARDIoGRAM (C+T) PG200 

instead. These results show that different sets of individuals may be selected for personalised201 

intervention based on decisions made at the PGI construction stage. 202 

G×E interplay 203 
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We then explore whether the estimation of G×E interaction effects may vary by PGI construction 204 

method.  G×E research explores how environments can moderate genetic susceptibilities, or vice versa, 205 

how genetic susceptibility can moderate environmental effects. For instance, assessing if the 206 

effectiveness of drug treatment varies by quantiles of genetic risk is a form of G×E research. If, however, 207 

the extent of genetic susceptibility in empirical studies is dependent on how the PGI is constructed, so 208 

may its estimated interaction with the environment. Here, we explore whether PGI rank discordance can 209 

affect G×E estimates. We follow  a previous study design which found that association between the EA 210 

PGI and EA has decreased over time in the United States
31

, and explore how different methods of PGI 211 

construction influence the association between six different EA PGIs and EA across birth cohorts in the 212 

UKB.
31

 213 

We assess whether modelling the PGI as a continuous or stratified measure of genetic predisposition 214 

alters the estimation of G×E. We run two regressions: in the first regression we use the EA PGI as a 215 

continuous variable, in the second regression we employ four binary indicators for the EA PGI quintiles. 216 

We do this separately for the six different PGIs. Fig. 4a shows the coefficients of the interaction term 217 

between the continuous PGI and year of birth, while Fig. 4b shows the coefficients of the interaction 218 

term between year of birth and PGI quintiles 1, 2, 4 and 5 (with quintile 3 serving as the baseline). In line 219 

with earlier evidence
31

, we find that the size of the association between the EA PGI and EA decreases for 220 

later-born cohorts as evidenced by the negative interaction terms in Fig. 4a and the negative slope of 221 

the interaction terms over the PGI quintiles in Fig. 4b. The most negative interaction terms in Fig. 4a are 222 

estimated using the two UKB-based PGIs, which is mirrored by the clearest negative gradient in Fig. 4b 223 

for the quintile-stratified PGIs. The interaction term that is closest to zero in Fig. 4a is estimated using 224 

the two 23andMe-based PGIs, which is mirrored by a less clear negative gradient in Fig. 4b. Although the 225 

estimates do not vary greatly across the different PGIs in that they are all negative and mostly 226 

statistically significant, a joint F-test rejects the hypothesis that the interaction coefficients are equal to 227 

each other. A pairwise F-test suggests that the divergence is driven by PGIs constructed using C+T 228 

(Supplementary Information 1.6). Overall, these results again illustrate that choices made at the PGI 229 

construction stage can affect the results in G×E analyses. 230 
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 231 
 232 
Figure 4. Results of OLS regressions explaining years of education by the EA polygenic index (PGI), year of birth 233 
(YoB), and the interaction between the EA PGI and YoB in the subsample of siblings of the UK Biobank (N = 234 
38,049). a. The PGI analysed as a continuous variable. b. The PGI split into binary indicators for each quintile (with 235 
quintile 3 serving as the baseline). The figure visualises the estimated interaction terms with their 95% confidence 236 
intervals. C+T = clumping and thresholding. 237 
 238 

Simulations 239 

The empirical analyses show that choices during the PGI construction phase may lead to the ranking of 240 

individuals in different quantiles of the resulting PGI distribution, but the underlying reason for such 241 

discordance across PGIs is not clear. Here, we use simulations to assess to what extent a discordance 242 

across different PGIs could be the result of measurement error in the PGI. Measurement error in the PGI 243 

stems from the fact that any underlying GWAS is conducted on a finite sample, with the coefficients that 244 

are used to construct the PGI exhibiting a degree of statistical noise that decreases with the size of the 245 

GWAS discovery sample
37

. As a result of measurement error in the coefficients, the predictive power of 246 

the PGI will fall short of the SNP-based heritability, which constitutes the upper bound of the predictive 247 

power of a PGI in terms of variance explained
38

. We define the “explained SNP-based heritability” as the 248 

ratio of the explained variance of a PGI and the SNP-based heritability of the trait of interest. In our 249 
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simulations, we model measurement error to be classical, and we use EA as our benchmark trait, which 250 

has a SNP-heritability of around 25%, a PGI that explains 12% of its variation, and with that, an explained 251 

SNP-heritability of around 50%
39,40

. 252 

Fig. 5 shows that “rank precision” of a PGI  (i.e., the fraction of individuals correctly classified into the 253 

top quintile of the “true” PGI) strongly depends on the explained SNP-based heritability. Naturally, an 254 

explained SNP-based heritability of 100% is necessary to accurately place individuals in the top quintile 255 

of the PGI distribution. For 80% accuracy, an explained SNP-based heritability of 88% is needed. With a 256 

current explained SNP-based heritability of 50% for EA, we can expect a 57% correct placement in the 257 

top quintile of the PGI distribution. 258 

 259 

Figure 5. The relationship between the predictive power of the PGI and the correct classification of individuals in 260 
the top quintile of the PGI distribution. This figure visualises the relationship between the explained SNP-based 261 
heritability (%) and the fraction of correctly classified individuals in the top quintile of the PGI distribution. 262 
 263 

Fig. 6 shows decile overlap between the simulated “true” PGI and PGIs with varying degrees of explained 264 

SNP-based heritability, quantifying to which extent individuals are placed into the correct decile of the 265 

true PGI given a noisy PGI. While concordance increases with increasing explained SNP-based 266 

heritability, even for a PGI with an explained SNP-based heritability of 80% the fraction of off-diagonal 267 

elements is only 72.7 percent.  268 

 269 
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270 

Figure 6. Results of the simulations analysing the relationship between the predictive power of a PGI and the271 
ranking of individuals in the PGI distribution. This figure shows the rank concordance in terms of deciles between272 
the “true” PGI and PGIs with varying degrees of explained SNP-based heritability (h

2
). 273 

 274 

In Supplementary Information 1.7, we show that these simulation results are independent of the275 

absolute level of the SNP-based heritability of a trait. In other words, correct classification into quintiles276 

of genetic risk depends on the explained SNP-based heritability, regardless of the absolute level of277 

heritability. Correct classification into the quintiles of the trait distribution, however, does depend on278 

the absolute level of the SNP-based heritability. For example, the 25% SNP-based heritability for EA279 

implies that, even with a perfect PGI, the prediction accuracy of the correct quintile in the trait280 

distribution is only around 40% (Supplementary Information 1.7). Thus, the increasing predictive power281 

of PGIs implies better rank concordance across PGIs due to increases in the explained SNP-based282 

heritability. Nonetheless, prediction accuracy of the PGI on the trait level is constrained by the SNP-283 

based heritability of the trait. Hence, there are two layers of uncertainty when using PGIs for trait284 

prediction: first, any estimated PGI is a noisy proxy for the “true” PGI, and second, any risk prediction of285 

even the “true” PGI is limited by the SNP-based heritability. 286 
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Discussion 287 

Despite high genetic correlations between GWAS discovery samples, the ranking of individuals across 288 

differently constructed PGIs can vary substantially. This rank discordance between PGIs can have 289 

implications for personalised interventions and gene-environment interaction research. We focus on 290 

two traits that have recently garnered attention as candidates for individualised intervention: 291 

cardiovascular disease (CVD) for individualised drug prescription, and educational attainment (EA) for 292 

individualised learning trajectories. PGIs for both traits are also currently being put to use for pre-293 

implantation genetic testing for embryos
9
. 294 

We show that using differentially constructed CVD PGIs for individualised statin prescription identifies 295 

different groups of individuals eligible for statins, with only 6% of individuals in our sample ranking 296 

consistently in the top quintile for each of the five PGIs (Fig. 3). Importantly, misclassifications may lead 297 

to adverse treatment effects
34

. With regards to educational attainment, our simulations show that we 298 

classify just over 50% of individuals correctly in the top quintile of the “true” PGI with current-day PGIs. 299 

Hence, using PGIs for “precision education”
11

 is likely to lead to educational customisations that are 300 

channelled to the wrong individuals in a substantial number of cases. Classifying individuals into 301 

quantiles of a PGI distribution can also have repercussions for empirical research, as we find that the PGI 302 

construction method can affect the estimates of the importance of the nature-nurture interplay in 303 

shaping life outcomes. 304 

Our study joins earlier studies in their call for making the use and reporting of PGIs and their 305 

construction more transparent and standardised
17–19,41

 and contributes to the set of recent studies 306 

highlighting the divergent predictive power of PGIs
20,42–44

. Pain et al. compare a very extensive set of 307 

traits and test the predictive power of a wide variety of PGI construction methods
43

. Ware et al. 308 

compare a more limited set of PGI construction methods and analyse the intra-individual correlation of 309 

PGIs
42

. Finally, two studies that were independently developed around the same time
20,44

 are similar in 310 

spirit as the present study in comparing the rank concordance of individuals in the PGI distribution 311 

depending on the GWAS discovery sample. Our study complement these studies by i) explicitly focusing 312 

on rank discordance and its source, ii) comparing across PGI construction methods (e.g., C+T and 313 

LDpred), and iii) analysing the implications for empirical applications such as personalised medicine or 314 

G×E analysis. 315 

Our findings are of crucial importance now that PGIs are becoming increasingly accessible to physicians, 316 

consumers, and applied researchers
19

. We complement recent work that showed that an individual’s 317 
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PGI can span several deciles when the uncertainty of GWAS estimates are taken into account during PGI 318 

construction
45,46

. While the source of uncertainty emphasised in these papers does not derive from the 319 

construction method or GWAS discovery sample per se, we draw a similar conclusion: ranking 320 

individuals on basis of their position in a PGI distribution is prone to large uncertainty. Therefore, 321 

transparent reporting
17

 and robustness checks against different PGIs should become routine in analyses 322 

that use PGI ranks. We conclude that while PGIs can be a useful tool for identifying individuals at risk, 323 

rigidly relying on a PGI rank from a single (noisy) PGI may lead to misinformed decision and 324 

policymaking. 325 

Methods 326 

Sample and data. Participants of this study were sourced from UK Biobank, a prospective cohort study 327 

in the UK that collects physical, health and cognitive measures, and biological samples (including 328 

genotype data) in about 500,000 individuals
24

. UK Biobank has received ethical approval from the 329 

National Health Service North West Centre for Research Ethics Committee (11/NW/0382) and has 330 

obtained informed consent from its research participants. In our analyses, we include only European 331 

ancestry respondents (81% of the UKB). The UK Biobank’s sibling subsample serves as the holdout 332 

sample. Siblings and their relatives are identified using the UKB’s kinship matrix based on genetic 333 

relatedness and containing relatives of third degree and closer. The sibling subsample consists of N = 334 

39,296 individuals (16,556 males and 22,740 females). The age of these individuals ranges from 40 to 71 335 

years with the average age of 57. years at recruitment. More information about the analysis sample and 336 

the construction of variables can be found in Supplementary Information 1.1 and 1.2. 337 

Statistical analyses. The PGIs used in this study are based on four sets of GWAS summary statistics: 338 

GWAS summary statistics for EA (N = 389,419) and CVD  (N = 392,789) resulting from our GWAS 339 

conducted in the UKB sample (excluding the siblings subsample and their relatives, Supplementary 340 

Information 1.3), GWAS summary statistics for EA from 23andMe (N = 365,536), and GWAS summary 341 

statistics for CVD from the CARDIoGRAM
25

 consortium (N = 184,305). Mixed linear model GWAS were 342 

conducted with fastgwa
47

, using the sparse genotype matrix provided by the UKB to account for 343 

relatedness between participants. The CVD phenotype is based on hospital and death records (ICD9 410-344 

414 or ICD10 I20-I25). The PGIs were constructed using LDpred
29

 (prior fraction of causal SNPs = 1) and 345 

Plink clumping and thresholding
28

 (p value threshold is = 1, more details in Supplementary Information 346 

1.4). The personalised intervention analysis (Supplementary Information 1.5) and G×E analyses 347 
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(Supplementary Information 1.6) as well as the simulations (Supplementary Information 1.7) were 348 

performed in STATA. 349 

Data availability statement 350 

Individual-level genotype and phenotype data are available by application via the UKB Biobank website 351 

(https://www.ukbiobank.ac.uk/).  The genome-wide summary statistics from 23andMe can be obtained 352 

by completing the 23andMe publication dataset access request form at 353 

https://research.23andme.com/dataset-access/. The genome wide summary statistics from 354 

CARDIoGRAM are available at http://www.cardiogramplusc4d.org/. The authors declare that the results 355 

supporting the findings of this study are available within the paper and its supplementary information 356 

files. 357 

Code availability statement 358 

Analysis code will be made available on Github. 359 
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