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Abstract 30 

Ecological and genetic factors have influenced the composition of the human 31 

microbiome during our evolutionary history. We analyzed the oral microbiota of 32 

the Agta, a hunter-gatherer population where part of its members is adopting an 33 

agricultural diet. We show that age is the strongest factor modulating the 34 

microbiome, likely through immunosenescence as there is an increase of 35 

pathogenicity with age. Biological and cultural processes generate sexual 36 

dimorphism in the oral microbiome. A small subset of oral bacteria is influenced 37 

by the host genome, linking host collagen genes to bacterial biofilm formation. Our 38 

data also suggests that shifting from a fish/meat to a rice-rich diet transforms their 39 

microbiome, mirroring the Neolithic transition. All these factors have implications 40 

in the epidemiology of oral diseases. Thus, the human oral microbiome is 41 

multifactorial, and shaped by various ecological and social factors that modify the 42 

oral environment. 43 

 44 

Introduction 45 

The composition and diversity of the human oral microbiota has been influenced by 46 

several factors during our evolutionary history1,2. Some are intrinsic biological 47 

characteristics of the host, such as age, sex, and genetic composition, while others such 48 

as diet, drinking water sources, oral hygiene, lifestyle and social interactions are 49 

external factors2–4. These factors modulate the physiological conditions of the oral 50 

cavity and affect the composition and diversity of the oral microbiota. While the oral 51 

microbiota is one of the most diverse sites in the human body and shows high variability 52 

between individuals, it remains stable within individuals over time5. Little is known 53 
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about how the composition of the oral microbiome is modulated in populations adapted 54 

to the hunting and gathering niche, where the fully mature oral biofilm microbiome can 55 

be studied without the confounding effects of tooth brushing or professional dental 56 

cleaning, similar conditions to how the human oral microbiome must have evolved in 57 

the past6. 58 

To investigate the multiple ecological and genetic factors shaping the human oral 59 

microbiome, we have analysed the oral microbiome of the Agta hunter-gatherers from 60 

the Philippines. The Agta are predominantly hunter-gatherers (fishing, hunting, and 61 

gathering)7, and while their main source of animal protein is obtained by riverine and 62 

marine spearfishing or by hunting, other activities such as inter-tidal foraging, wild food 63 

gathering, low-intensity cultivation, wage labour and trade complement their 64 

economy8,9. Interestingly, there is high variability among the Agta on the amount of 65 

hunting, gathering and sea foraging products that is traded for rice and other items (such 66 

as tobacco) with farming neighbours7, causing the Agta lifestyle to range from 67 

completely mobile foragers with a protein-rich diet, to settled low intensity farmers, 68 

with a rice-rich diet7,9,10. 69 

To detect fine-scale variation in the oral microbiome of Agta hunter-gatherers, we 70 

collected saliva samples from 138 Agta, aged 5 to 65 years, sequencing the 16S rRNA 71 

region, and identified 5430 amplicon sequence variants (ASVs)11 belonging to 110 72 

genera. To study the genetic host factors associated with the microbiome composition 73 

we also genotyped all individuals with the Axiom Genome-wide Human Origins array. 74 

We combined this information with additional individual data on household 75 

composition, age, sex, and diet, measured as the proportion of meals including meat/fish 76 

(any animal protein), and proportion of meals that consisted of only agricultural 77 

products (rice) (Supplementary Figure 1). By using this rich dataset, we have been able 78 
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to discern the different contributions of age, sex, diet, and host genetics in the making of 79 

the oral environment. 80 

 81 

Results 82 

Factors influencing Agta oral microbiome composition. The Agta oral microbiome is 83 

mostly composed by Firmicutes (mean ASV prevalence = 33.1%, sd = 11.4), 84 

Proteobacteria (27±14.6%), Actinobacteria (15.5±8.3%) and Bacteroidetes 85 

(14.5±7.7%) (Supplementary Figure 2). To compare and identify the main ecological 86 

and social factors contributing to microbiome variation, we performed a constrained 87 

logratio analysis (LRA)12 on the bacterial genus abundance. Marginally, age explains 88 

7.2% of the total logratio variance (P < 0.0001, based on 9999 permutations), sex 89 

explains 2.2% (P = 0.018), and diet 3.6% (P = 0.015). Altogether they explain 13.0% of 90 

the total logratio variance. We also applied a bipartite stochastic block model (biSBM) 91 

approach13 at the ASV level, where we assigned each bacterium to an individual, and 92 

then clustered the individuals according to the bacteria they have in common. We 93 

restricted the analysis to the Core Measurable Microbiota (CMM), that we define as 94 

ASVs present in at least 10% of the Agta to reduce random errors due to low-prevalent 95 

taxa (Supplementary Figure 3). The best model produced two clusters of people and 96 

three clusters of bacteria (Figure 1a). While we did not find differences in diet or 97 

proportions of sexes between the clusters of individuals (Supplementary Figure 4), they 98 

strongly differ in their age distribution: adults (mean age = 38 years old) and youth 99 

(mean age = 18 years old) (Welch t-test, t = 5.78, df = 71.35, P < 0.0001), with 55.48% 100 

of ASVs in the CMM being more associated with one of the clusters of individuals. 101 

Thus, while age, diet, and sex influence the composition of Agta microbiome, the 102 
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biSBM singles out age as the main modulator of the hunter-gatherer core oral 103 

microbiome. 104 

 105 

 106 

 107 
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Figure 1. Age and sex-related effects in the hunter-gatherer oral microbiome. a) 108 

Network representation of the hunter-gatherer CMM. ASVs (triangles) are colour-coded 109 

as: putatively pathogenic (purple), non-pathogenic (orange) or unclassified (white). 110 

Inset shows age distribution for the two clusters of individuals (squares). b) Logratio 111 

analysis constrained to age and sex differences on the bacterial composition at genus 112 

level. The effects of diet were partialed out. Only genera statistically significant in at 113 

least 20 (for age) or 10 (for sex) logratios are displayed (p-value < 0.05 after Benjamini-114 

Hochberg correction). Dashed lines enclose all individuals (dots) within a category of 115 

sex, with 95% confidence ellipses for their means. Taxa are colour-coded depending on 116 

the associated variable: age, sex, or both. The starting point of the grey arrow indicates 117 

the mean age of the population (30 years old). Log ratio of c) Haemophilus and 118 

Selenomonas abundance and d) Moraxella and Bacteroides according to age. Line and 119 

shaded area indicate the 95% confidence interval of the mean. Relative abundance of e) 120 

Bifidobacterium and f) Comamonas according to age and sex. Lines and shaded areas 121 

indicate the 95% confidence interval of the mean for each sex. 122 

 123 

Old age is associated with increased frequency of oral pathogens. To investigate the 124 

independent effects of ageing on the oral microbiome, we performed a LRA constrained 125 

with age and sex after partialing out the effects of diet. The resulting ordination shows 126 

that the effects of age and sex are mostly independent, with only few genera being 127 

affected by both variables (Supplementary Figure 5): as expected, the first dimension is 128 

associated with the age of the individuals, while the second dimension separates them 129 

according to sex (Figure 1b).  130 

There is a clear change in the composition and frequency of certain bacteria with 131 

age (Figure 1c-d). At young age, we observe organisms that typically live in mucosa, 132 

such as Haemophilus and Moraxella, that infect the upper and lower respiratory tract 133 

but are detected in the oral cavity and saliva which are their vehicles of transmission. 134 

Other genera found at younger ages include bacteria normally associated to good oral 135 

health, such as Bergeyella and Rothia14. However, at older ages we observe a marked 136 

decline in the abundance of those genera and an increase of important pathogens related 137 

with periodontitis including the “red complex” periodontal pathogen Tannerella, as well 138 
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as other periodontitis-related bacteria (Filifactor, Fretibacterium, Saccharimonas, 139 

Selenomonas, and Phocaeicola), consistent with a higher incidence of this disease with 140 

older age15. We also found organisms associated with cavities (Olsenella), with dental 141 

plaque and dental calculus formation (Corynebacterium), with pulmonary infections, 142 

sepsis, or bacteremia, and with chronic diseases (Acholeplasma) (see Methods for in-143 

depth bacteria pathogenic classification). Another sign of ageing was the presence in the 144 

oral cavity of gut bacteria (Bacteroides) indicating a potential age-related decline in 145 

immunological function and filtering16. However, such changes are not associated with 146 

a decrease in the alpha-diversity of the total oral microbiome as measured by the 147 

number of bacteria observed or their phylogenetic complexity (Supplementary Figure 148 

6a-b), suggesting that the overall effect of aging is a replacement of protective and 149 

commensal bacteria by pathogenic ones. This is supported by an increase in the number 150 

of potential pathogenic bacteria in the CCM in bacterial clusters associated with older 151 

ages (Fisher exact test, P < 0.001) (Figure 1a).   152 

 153 

Sex differences shape composition but not diversity of the Agta oral microbiome. 154 

We found no differences in alpha-diversity in the Agta oral microbiome between males 155 

and females (Supplementary Figure 6c-d), which may be explained by sex equality 156 

within the Agta hunter-gatherer society regarding diet and social interactions17,18. 157 

Nevertheless, the LRA constrained to age and sex shows sex-related differences in the 158 

composition of the oral microbiome (Figure 1b). For example, Stomatobaculum and 159 

Eubacterium yurii, present in the oral cavity of smokers19, are associated with males, 160 

consistent with Agta men chewing tobacco more frequently than women. It is also 161 

interesting to mention Comamonas (Figure 1f), which even if it has been reported as a 162 

possible contaminant in microbiome studies20, its presence in females could be related 163 
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to its capacity of degrading the female hormone progesterone21. This bacterium has 164 

been found in subgingival samples, where female hormones could be present either in 165 

saliva or in gingival crevicular fluid. 166 

 167 

Age and sex interactions in microbiome composition. Some bacteria are significantly 168 

associated to both age and sex-related differences, such as Gemella, which is a prevalent 169 

inhabitant of the respiratory mucosa such as Haemophilus and Moraxella, supporting 170 

the idea that mucosa-associated and/or respiratory-tract organisms are more frequently 171 

acquired in young individuals, especially males. At older ages, the 172 

Bifidobacterium/Saccharibacteria ratio distinguishes between sexes: while 173 

Bifidobacterium is associated to females, the periodontal pathogen Saccharibacteria is 174 

associated to males. Thus, the observed trend of increase of periodontal pathogens with 175 

age is stronger in males, as expected by the global epidemiology of the disease22,23. On 176 

the other hand, we found an increase of the caries-related pathogens Scardovia and 177 

Bifidobacterium associated to reproductive age females. Caries incidence increases with 178 

age and is more prevalent in females24, a more saccharolytic or acidic salivary 179 

environment in older women, together with hormonal fluctuations and lower salivary 180 

flow25 could facilitate the proliferation of saccharolytic bacteria. The strong association 181 

of Bifidobacterium with adult females could also be explained by its presence in 182 

breastmilk26. Also, its proliferation coincides with the start of the reproductive age and 183 

the increase of childcare10 (Figure 1d).  184 

 185 

Influence of variation in rice consumption on the Agta oral microbiome. While the 186 

impact of diet on gut microbiome has been clearly established27–30, its role in the oral 187 

microbiome is still unclear. Some studies have found little or no effect, whereas others 188 
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have found associations with specific nutrients2,25,31,32. The variation in rice 189 

consumption in the Agta allows us to assess both the relationship between the hunter-190 

gatherer diet on the oral microbiome and the effects of the recent introduction of 191 

farming products. We performed a LRA on the bacterial genus abundance after 192 

partialing out the effects of age and gender (Figure 2). The first dimension of the 193 

ordination shows the gradient of the transition from a diet where all meals include meat 194 

to where most consist of only rice. Agta following a hunter-gatherer diet, where most 195 

meals contain meat, have large quantities of Actinobacillus, Alphaproteobacteria and 196 

Streptobacillus and lower abundance of Selenomonas, Atopobium, Peptoanaerobacter, 197 

and Pyramidobacter. The higher abundance of Actinobacillus in individuals ingesting a 198 

protein-rich diet is particularly interesting, given the extraordinary proteolytic potential 199 

of A. actinomycetencomitans, a well-known oral pathogen with destructive effects in the 200 

gingival tissue and in aggressive forms of periodontitis33. At the other extreme, in 201 

individuals with a rice-rich diet, there is an increase of the highly saccharolytic dental 202 

caries pathogen Scardovia, of Treponema, of gut organisms like Butyrivibrio and 203 

Erysipelotrichaceae, and of Eggerthia, a rare organism isolated from dental abscesses. 204 

We also ranked the ASV based on whether they are more present than expected in 205 

individuals with high or low proportion of meals with only rice or with meat/fish. We 206 

found that the scores associating each bacterial species with these two nutrients are 207 

negatively correlated (Spearman’s rho = -0.47, P < 0.0001). This fits with a general 208 

separation of oral microorganisms in saccharolytic (caries-related, acidogenic and 209 

acidophilic) and proteolytic (gum-disease and halitosis related, alkalophilic and NH4 210 

generators), as suggested in a metabolome-based study25. Our results suggest that more 211 

settled Agta, which consume more rice, experience a decline in oral health, confirming a 212 
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general pattern of health decline due to a Neolithic-like diet and a more farming-derived 213 

lifestyle9,34,35. 214 

Figure 2. Effect of diet on the oral microbiome in the Agta.  Logratio analysis 215 

constrained to diet differences on the bacterial composition at genus level. The effects 216 

of age and sex were partialed out. Only genera statistically significant in more than five 217 

(for rice) or three (for meat) logratios are displayed (p-value < 0.05 after Benjamini-218 

Hochberg correction). Taxa are colour-coded based on the variable they are associated: 219 

proportion of meals with meat (%Meat), proportion of meals with only rice (%Rice), or 220 

both. The original result was slightly rotated so that the dashed vector indicating the 221 

difference between %Meat and %Rice was horizontal, without any change in explained 222 

variance. 223 

 224 
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Pathogenic oral bacteria are associated with host collagen genes. The interaction 225 

between the host genetic makeup and microbiome composition differs across body 226 

sites36,37, and seems especially weak in the oral cavity37,38, making it difficult to assess 227 

the co-evolution of our genome and the oral microbiome. To overcome this, we 228 

performed a genome-wide association study (GWAS) using a mixed model approach in 229 

a population that evolved in a hunter-gatherer niche and without the confounding 230 

influence of antibiotics or brushing. We treated the relative abundance of each 231 

bacterium as an independent trait, adding age, sex, and household as covariates and 232 

kinship as a random effect. Household membership was used as proxy for the strength 233 

of social interactions between individuals, as social interactions predict microbiome 234 

sharing (Musciotto et al. companion paper). These analyses were performed using the 235 

CMM, and then using 92 genera present in at least 10 Agta. All bacteria identified in the 236 

Agta (Supplementary Table 1 and Supplementary Figure 7) overlap with those of other 237 

oral microbiome GWAS3,36,37 pointing to a small subset of oral bacteria influenced by 238 

the human genome (Figure 3). A pathway enrichment analysis linked this subset of the 239 

oral microbiome to several biological host functions (body fat metabolism, wound 240 

healing, and collagen trimmers) (Supplementary Table 2). Of relevance is an association 241 

between the pathogenic bacteria Aggregatibacter and Selenomonas with genetic 242 

variation in collagen genes. The ability to bind collagen is a vital feature in the oral 243 

cavity, as many oral bacteria require collagen-binding proteins to attach to oral tissues39 244 

suggesting a genetic basis for the predisposition of biofilm formation by those bacteria. 245 

We further tested if we could detect signatures of positive selection in the host genomic 246 

regions associated with the oral microbiome, but we found no signals indicating recent 247 

selective pressures caused by oral bacteria.  248 

 249 
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 250 

 251 

252 

Figure 3. Genome-wide association study on bacteria abundance. Aggregated 253 

Manhattan plot of the GWAS results of the a) seven ASV and b) eight genera with non-254 

zero PVE (“chip heritability”) estimates with at least one significant genetic association. 255 

Each dot is a SNP and significant SNPs-bacteria associations (q < 0.1) are color-coded 256 

according to the associated bacteria.  257 

 258 

Discussion 259 

The Agta microbiome is influenced by external factors such as social interactions 260 

(Musciotto et al. companion paper) as well as intrinsic and ecological factors such as 261 

age, sex, diet and host genetics. Among the latter, we have shown that age has the 262 

strongest effect, with commensal or beneficial microbiota being replaced by potentially 263 

pathogenic ones with ageing. The proliferation of oral pathogenic bacteria exhibits 264 
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sexual dimorphism, with caries-related (in females) and periodontitis-related (in males) 265 

bacteria increasing with age, likely associated with immunosenescence40 and with a sex-266 

specific oral environment due to biological and cultural factors. In the Agta, the increase 267 

of farming-derived novel foods such as rice influences their microbiome composition 268 

and health. The relatively small subset of bacteria linked to the host genome, which are 269 

also found associated to other factors, suggests that the Agta oral microbiome is mainly 270 

affected by environmental (diet) and intrinsic factors (age), with little influence of 271 

individual host genetic variation (Supplementary Figure 5). Thus, environmental factors 272 

and not host genetics are the main driving force for oral microbiota acquisition, in 273 

agreement with Mukherjee et. al41. Based on the case study of the Agta hunter-274 

gatherers, we conclude that the human oral microbiome is multifactorial with distinct 275 

subsets of bacteria shaped by specific ecological and social factors, reflecting multiple 276 

adaptations in the domains of life history, sociality, and diet. 277 

 278 

 279 

Methods 280 

Ethics approval 281 

This study was approved by UCL Ethics Committee (UCL Ethics code 3086/003) and 282 

carried out with permission from local government and community members. Informed 283 

consent was obtained from all participants, after group and individual explanation of 284 

research objectives in the indigenous language. A small compensation (usually a 285 

thermal bottle or cooking utensils) was given to each participant. The National 286 

Commission for Indigenous Peoples (NCIP), advised us that the process of Free Prior 287 

Informed Consent with the tribal leaders, youth and elders would be necessary to 288 

validate our data collection under their supervision. It was done in 2017 with the 289 
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presence of all tribal leathers, elders and youth representatives at the NCIP regional 290 

office, with the mediation of the regional officer and the NCIP Attorney. The validation 291 

process was approved unanimously by the tribal leaders, and the NCIP, and validated 292 

the full 5 years of data collection.  293 

 294 

Saliva sample collection 295 

Saliva samples from 155 Palanan Agta were collected over two field seasons: April-296 

June 2013 and February-October 2014. For comparative genetic studies we also used 297 

saliva samples from 21 Mbendjele Bayaka, an African hunter-gather population, 298 

collected in 2014, and 14 Palanan farmers collected in 2007-2009. In all cases saliva 299 

was collected using the Oragene·DNA/saliva kit and participants were asked to rinse 300 

their mouth with water and to spit into the vial until half full. After collection and 301 

transportation, saliva samples were stored at the UCL Department of Anthropology, 302 

London, UK at -20ºC. 303 

 304 

Microbial DNA extraction and 16S rRNA gene sequencing 305 

A total of 155 Agta saliva samples were selected to study their microbiome 306 

composition. DNA was extracted following the protocol for manual purification of 307 

DNA for Oragene·DNA/saliva samples. The 16S rRNA gene V3-V4 region was 308 

amplified by PCR with primers containing Illumina adapter overhang nucleotide 309 

sequences. All PCR products were validated through an agarose gel and purified with 310 

magnetic beads. Index PCR was then performed to create the final library which was 311 

also validated through an agarose gel. All samples were pooled together at equimolar 312 

proportions and the final pool was qPCR quantified prior to the MiSeq loading. Raw 313 

Illumina pair-end sequence data were demultiplexed, quality filtered and denoised with 314 
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QIIME 2 2019.142 and DADA243. DADA2 generates single nucleotide exact amplicon 315 

sequence variants (ASVs). ASV are biological meaningful entities as they identify a 316 

specific DNA sequence and allow for higher resolution than using operational 317 

taxonomic units (OTUs)11. Taxonomic information was assigned to ASVs using a naïve 318 

Bayes taxonomy classifier against SILVA database release 132 with a 99% identity 319 

sequence44. ASVs that did not belong to the kingdom Bacteria, or that were classified as 320 

mitochondrial or chloroplast sequences and samples with an extremely low number of 321 

sequences (8000) were excluded from further analyses. ASVs were aligned with 322 

MAFFT45 and a rooted phylogenetic tree was constructed with FastTree246 using default 323 

settings via QIIME 2. This resulted in a total of 5430 ASVs and 138 Agta (67 women 324 

and 71 men). We generated a rarefaction curve with R package vegan (version 2.5-7)47 325 

to determine that the richness of the samples had been fully observed (Supplementary 326 

Figure 8). The number of observed ASVs and Shannon Diversity index were calculated 327 

with R package Phyloseq (version 1.30.0)48. Faith's Phylogenetic Diversity index49 was 328 

calculated with R package picante (version 1.8.2)50 using the rooted phylogenetic tree 329 

generated in R51. To determine the set of microbial traits to be included in the analyses, 330 

we selected ASVs with at least 10 reads in at least 2 individuals (n = 1980), then we 331 

aggregated those with a taxonomic assignment at a genus level, resulting in 110 genera. 332 

At the ASV level we also defined a Core Measurable Microbiota (CMM), consisting of 333 

ASVs that appear in at least 10% of the Agta individuals (14 or more) resulting in 575 334 

ASVs (out of 1980) that represent 90% of the composition of the Agta microbiome. 335 

 336 

Genotype data 337 

A total of 190 saliva samples were genotyped with the Affymetrix Axiom Genome-338 

Wide Human Origins 1 array. DNA extraction was carried out following the protocol 339 
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for manual purification of DNA for Oragene·DNA/saliva samples in the same 340 

laboratory that sequenced the 16S rRNA data. Samples were analyzed with Axiom 341 

Analysis Suite v4.0 following the Axiom genotyping best-practices workflow for saliva 342 

samples. 618810 markers and 177 samples passed initial quality control. Single 343 

nucleotide polymorphisms (SNPs) with less than 95% genotyping rate and samples 344 

where the estimated gender from the genotypes did not match the recorded gender were 345 

excluded from the analysis. Duplicated samples were identified with KING52 and 346 

removed. This resulted in a total of 617063 markers and 174 samples: 141 Agtas, 19 347 

Bayaka and 14 Palanan farmers. 348 

 349 

Ethnographic data collection 350 

Ethnographic data collection occurred over two field seasons from April-June 2013 and 351 

February-October 2014. In the first season we censused 915 Agta individuals (54.7% 352 

which were male) across 20 camps, collecting basic information on household 353 

composition, sex, and estimated ages. Following relative aging protocols53, accurate 354 

ages were established for all individuals post data collection. 355 

 356 

Diet data collection 357 

Dietary recall data was collected at the household level over a period of 10 days. We 358 

asked the mother and the father at the end of the day (between 17:00 – 18:00) what 359 

foods they had eaten that day, including agricultural produces from trade with nearby 360 

farmers. We counted the total amount of meals we had recorded for a household and 361 

established what proportion of these consisted of meat, vegetables, fruits, honey, and 362 

rice. Therefore, this is only a rough guide to dietary composition and does not take 363 

calorific intake or absolute weighs of the different food types into account. Dietary data 364 
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for 80 individuals (37 males and 43 females) was annotated based on the proportion of 365 

meals that consisted of only rice, and the proportion of meals that included meat 366 

(primarily fish and other marine resources and game). 367 

 368 

Classification of oral bacteria as pathogens 369 

Bacteria were classified as potential oral pathogens if they have been reported as 370 

etiological agents of periodontitis or dental caries. Assignment as periodontal pathogen 371 

was performed according to the systematic review of Perez-Chaparro et al.54 and 372 

Socransky et al.55, or if they have been previously associated with this gum disease56,57. 373 

Bacteria were classified as caries pathogens if they were described in transcriptomic 374 

studies of human cavities, according to Simon-Soro et al.58 and Simon-Soro and Mira59, 375 

previously associated with caries60,61, with cavities62 or with dental plaque and dental 376 

calculus formation63,64. Bacteria reported as etiological agents of respiratory infections 377 

and biofilm-mediated infections were also considered pathogens, including organisms 378 

that can be present in healthy carriers. These included species described in Leung et 379 

al.65, Bellussi et al.66, and Natsis and Cohen67. Bacteria causing urinary tract infection 380 

or sexually transmitted diseases which can transiently be found in the oral cavity were 381 

also considered as potential pathogens and included microorganisms described in Lanao 382 

et al.68 and Jung et al.69. Common oral commensals potentially causing endocarditis or 383 

systemic infections in immunocompromised patients were not considered pathogens. If 384 

a bacterium was isolated from the oral cavity of an animal, it was considered an oral 385 

inhabitant for the sake of our classification. If taxonomic classification in our dataset 386 

could be assigned at the genus level only, it was considered a pathogen if: i) > 90 of 387 

species within the genus were pathogenic, or ii) it included a major pathogenic species 388 

but the rest of species within the genus were not oral inhabitants, according to the 389 
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Human Oral Microbiome Database (http://www.ehomd.org/)70. Bacteria with taxonomic 390 

assignments at higher levels than genus (family, order, class) were excluded from this 391 

analysis. 392 

For assignment of bacteria to pathogenic or non-pathogenic, we used species-393 

level ASVs, given that there are multiple cases where different species from the same 394 

genus had a different assignment. If taxonomic classification of the ASV was only 395 

possible at the genus level, it was considered a pathogen if: i) >90% of named species 396 

within the genus were pathogenic, or ii) the genus included a major pathogenic species 397 

but the remaining species within the genus were not classified as oral by the Human 398 

Oral Microbiome Database70. ASV with a top hit to a sequence classified as “Oral taxa” 399 

in databases but without a species assignment were not considered named species and 400 

were discarded from the analysis. Cases where taxonomic classification of the ASV was 401 

only possible at the family level or higher were also discarded.  402 

 403 

Multivariate compositional data analysis on microbial composition 404 

We performed a constrained logratio analysis (LRA) using the package easyCODA12 in 405 

R51 on the Agta oral microbiome at the genus level using as constraining covariates age 406 

(as continuous variable), sex (male and female), and diet (both proportion of meals with 407 

meat and proportion of meals with only rice). The microbiome abundance counts of 408 

each Agta individual were treated as compositional data71 and transformed to logarithms 409 

of ratios (logratios). Constrained LRA is a special case of redundancy analysis12 where 410 

the total logratio variance is decomposed into parts explained by the covariates (the 411 

"constrained variance") and a residual part (the "unconstrained variance", unrelated to 412 

the covariates). Then, the ordination resulting from the LRA explains a maximum of the 413 

constrained variance in a reduced two-dimensional solution. The statistical significance 414 
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of the three covariates was assessed using a multivariate permutation test (999 415 

permutations) in the R package vegan47. There is no correlation between these three 416 

covariates, except within the diet covariate, where the two variables are negatively 417 

correlated (Spearman’s rho = -0.54, P < 0.0001)  (Supplementary Figure 1). To focus on 418 

the genera affected only by internal factors (age and gender), we performed a 419 

constrained LRA on the microbial composition after partialing out the effects of diet. 420 

Similarly, to identify genera affected exclusively by the diet, we performed a 421 

constrained LRA after partialing out the effects of age and gender. Taxon-covariate 422 

association was ranked by counting the number of significant logratios for each of the 423 

taxa, with p-value < 0.05 controlling for the false discovery rate (FDR) at level α = 424 

0.0572,73. 425 

 426 

 Community detection 427 

To model the relationship between the Agta and the CMM, we used a stochastic block 428 

model (SBM) approach specifically suited for bipartite networks13. SBM infers the 429 

community structure74 that better fits the existing graph, by building a prior distribution 430 

for edges that holds no information on real data and using it in the framework of 431 

Bayesian inference (biSBM) to find a partition of the two types of nodes whose 432 

associated entropy is maximal. In this framework, the absence of links between nodes of 433 

the same type or set is not considered informative for the model, as it is expected given 434 

the bipartite nature of the graph, different from the general version of SBM. We selected 435 

the number of clusters in the two sets that minimize the description length75. Robustness 436 

of the clustering was assessed by calculating the average Adjusted Rand Index (ARI) 437 

between iterations (n = 100), finding a mean ARI on Agta = 0.90 and a mean ARI on 438 

ASV = 0.70. ARI measures the similarity of two partitions against a null hypothesis of 439 
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random assignment maintaining the size of the different clusters; the closer to 1 the 440 

more robust is the classification76. The resulting clusters were plotted with graph-tool77.  441 

 442 

 Ranking of bacteria associated with diet 443 

ASVs present in the Agta were ranked from -1 to 1 based on whether that ASV is more 444 

present than expected in individuals from a given category: low proportion versus high 445 

proportion of meals with only rice, and low proportion versus high proportion of meals 446 

with meat, based on the median value of the population for each variable. Thus, a meat 447 

associated score towards 1 indicates that an ASV is present more than expected in 448 

individuals with high proportion of meals with meat (above the median of the 449 

population), and a score towards -1 indicates that is present more in individuals with 450 

low proportion of meals with meat (below the median of the population). A rice 451 

associated score towards 1 indicates that an ASV is present more than expected in 452 

individuals with high proportion of meals that consist of only rice, and a score towards -453 

1 indicates that is present more in individuals with low proportion of meals with only 454 

rice. 455 

 456 

Microbiome genome-wide association studies 457 

To study the relationship between host genetics and the microbiome in the Agta, we 458 

used a genome-wide association study (GWAS) approach to identify specific SNPs 459 

associated with microbial abundance using GEMMA (version 0.94)78. GWAS were 460 

performed using the relative abundance of a given taxon in the Agta as a phenotype 461 

trait, adding as covariates age, sex, and household (as a proxy for diet and shared 462 

environment, as members of the same household share a hearth and their food on daily 463 

bases). A kinship matrix calculated by KING using identical by descent segment 464 
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inference52 was included as random effects. For the GWAS analyses, we applied the 465 

following quality control steps to the Agta genotypes. First, to detect ancestry outliers in 466 

the dataset, we filtered the samples to keep only bi-allelic autosomal SNPs with Minor 467 

Allele Frequency (MAF) > 5% and without missing data with PLINK 1.979. This dataset 468 

was pruned for linkage disequilibrium (LD) using --indep-pairwise 50 5 0.2, and we 469 

performed a principal component analysis (PCA) with EIGENSOFT (version 7.2.1)80 to 470 

identify ancestry outliers and exclude them from the analysis (Supplementary Figure 9). 471 

Second, per sample heterozygosity was calculated with PLINK and samples with 472 

overall increased/decreased heterozygosity rates (±3 s.d. from the mean of the 473 

population) were removed. A total of 129 Agta samples passed microbiome and 474 

genotype data quality controls and were included in the microbiome GWAS analyses. 475 

The analyses were done at the genus taxonomic level and on the CMM to study the 476 

effect of host genetics at different taxonomic levels. Depending on the taxon analyzed, 477 

as we included only samples with non-zero abundance, and SNPs with MAF < 10% and 478 

with more than 5% missing data were excluded, the number of individuals tested ranged 479 

from 10 to 129 and the number of SNPs tested ranged from 270569 to 313198 markers. 480 

When we performed the GWAS at the genus level, we only included in the analysis 92 481 

genera that are present in at least 10 Agta individuals to exclude low prevalent genera. 482 

P-values were adjusted for multiple testing by FDR, and SNP-taxa associations were 483 

considered significant at q-value < 0.1 on the cases where the proportion of variance in 484 

the bacterial abundance explained by the genotypes (PVE or “chip heritability”) was 485 

non-zero. The proportion of variance in the phenotype (bacterial abundance) explained 486 

by the genotypes tested (PVE or “chip heritability”) was estimated for each taxon and 487 

was considered non-zero if the standard error measurements did not intersect zero. We 488 

applied genomic control to correct for cryptic relatedness and population stratification 489 
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and minimize false positives induced by inflated association test statistics81. To do so, 490 

we estimated the genomic inflation factor as the median value of the likelihood ratio test 491 

(LRT) values divided by 0.456 (median of a χ2(1) distribution) and recalculated the p-492 

values after dividing the LRT values by the genomic inflation factor82. Threshold of 493 

significance was set at FDR 10%, and only genomic positions having at least three 494 

samples for the major homozygous genotype and for the heterozygous genotype were 495 

considered. SNPs were annotated with ANNOVAR83 in GRCh37 (hg19) using 496 

RefSeqGene and dbSNP 147. For the enrichment analyses, we extracted the genes 497 

associated to all non-intergenic SNPs and classified the genes in the background set, 498 

that consisted in all genes present in the Axiom Human origin array; and the set to test, 499 

that consisted of all genes that had a non-intergenic SNP significantly associated with 500 

an ASV or a genus. We performed a gene ontology enrichment analysis with 501 

ViSEAGO84 and TopGo85 R packages (Fisher exact test) and FUMA 502 

GENE2FUNCTION module (Functional Mapping and Annotation of Genome-Wide 503 

Association Studies)86 to perform pathway enrichment analysis (hypergeometric test) 504 

with FDR 5%. 505 

 506 

 Selection analyses 507 

To test whether the GWAS SNPs showed any signal of recent positive selection we 508 

performed a genome-wide scan of selection. We phased the Agta and Palanan farmer 509 

populations independently. For each population, samples that were identified as 510 

ancestry outliers by a PCA or with overall increased/decreased heterozygosity rates (±3 511 

s.d. from the mean of the population) were excluded from phasing. A total of 138 Agta 512 

samples were phased using SHAPEIT2 version v2 (r900)87 with the duoHMM method 513 

to improve the phasing by integrating the known pedigree information. SNPs with 514 
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missing data were removed and window size was set to 5Mb for phasing. Due to the 515 

small sample size, to phase the 14 unrelated Palanan farmers we used SHAPEIT2 with 516 

default parameters and the 1,000 Genomes Phase 3 panel of haplotypes88 as a reference 517 

dataset. SNPs with missing data were removed. For the selection analyses, we excluded 518 

one of each pair of related individuals by removing the sample in the pair with the 519 

lowest call rate in the Agta phased dataset. This resulted in 38 unrelated Agta 520 

individuals and 14 unrelated Palanan farmers. We ran the Integrated Haplotype Score 521 

(iHS)89 in the Agta phased dataset and the Cross-population Extended Haplotype 522 

Homozygosity (XP-EHH) test90 comparing the Agta against Palanan farmers as 523 

implemented in selscan version v1.3.091 to identify signals of positive selection in 524 

GWAS SNPs. Both tests were run with default parameters and with the genetic map 525 

provided by the 1,000 Genomes Phase 388. To identify regions under selection, for each 526 

test we selected markers with scores in the 95th percentile that had at least 3 markers in 527 

the 99th percentile in the surrounding area (± 10 Kb). For iHS we used absolute values, 528 

while only positive scores were analyzed for XP-EHH. 529 
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