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Abstract 27 

Humans can label and categorize objects in a visual scene with high accuracy and speed—a 28 

capacity well-characterized with neuroimaging studies using static images. However, motion is 29 

another cue that could be used by the visual system to classify objects. To determine how 30 

motion-defined object category information is processed in the brain, we created a novel 31 

stimulus set to isolate motion-defined signals from other sources of information. We extracted 32 

movement information from videos of 6 object categories and applied the motion to random dot 33 

patterns. Using these stimuli, we investigated whether fMRI responses elicited by motion cues 34 

could be decoded at the object category level in functionally defined regions of occipitotemporal 35 

and parietal cortex. Participants performed a one-back repetition detection task as they viewed 36 

motion-defined stimuli or static images from the original videos. Linear classifiers could decode 37 

object category for both stimulus formats in all higher order regions of interest. More posterior 38 

occipitotemporal and ventral regions showed higher accuracy in the static condition and more 39 

anterior occipitotemporal and dorsal regions showed higher accuracy in the dynamic condition. 40 

Significantly above chance classification accuracies were also observed in all regions when 41 

training and testing the SVM classifier across stimulus formats. These results demonstrate that 42 

motion-defined cues can elicit widespread robust category responses on par with those elicited 43 

by luminance cues in regions of object-selective visual cortex. The informational content of these 44 

responses overlapped with, but also demonstrated interesting distinctions from, those elicited by 45 

static cues.  46 
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Significance Statement 47 

Much research on visual object recognition has focused on recognizing objects in static images. 48 

However, motion cues are a rich source of information that humans might also use to categorize 49 

objects. Here, we present the first study to compare neural representations of several animate and 50 

inanimate objects when category information is presented in two formats: static cues or isolated 51 

dynamic cues. Our study shows that while higher order brain regions differentially process object 52 

categories depending on format, they also contain robust, abstract category representations that 53 

generalize across format. These results expand our previous understanding of motion-derived 54 

animate and inanimate object category processing and provide useful tools for future research on 55 

object category processing driven by multiple sources of visual information.   56 
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Introduction 57 

Humans can categorize objects with striking speed and accuracy. Previous research on 58 

the neural basis of visual object recognition has largely focused on the processing of static 59 

features from images along the ventral visual hierarchy of the primate brain (reviewed in Peissig 60 

& Tarr, 2007). However, real-world scenes are not static. In fact, decades of behavioral research 61 

have shown that motion cues can contain category-relevant information that humans use to make 62 

judgements about objects. Behavioral studies using point-light displays (PLDs, Johansson, 1973; 63 

Johansson, 1976) have established that, even with the impoverished motion information 64 

available in PLDs, humans can quickly perceive a moving person, identify the action being 65 

performed, and even determine the actor’s age, gender, and affect (e.g., Barclay et al., 1978; 66 

Bassili, 1978; Cutting and Kozlowski, 1977; Dittrich et al., 1996).  67 

The majority of biological motion research has focused on the perception of human 68 

motion due to the significant role that it plays in our social lives. However, our sensitivity to 69 

information in motion cues is not restricted to perceiving humans. Humans can also infer 70 

animacy and complex social relations from the movements of basic geometric shapes (Schultz & 71 

Bülthoff, 2013; Heider & Simmel, 1944; Scholl & Gao, 2013) and can recognize animal 72 

categories such as chickens, dogs, horses and cats in PLDs (Mitkin & Pavlova, 1990; Mather & 73 

West, 1993; Pinto & Shiffrar, 2009; Pinto, 1994; Pavlova et al., 2001).  74 

Investigations of the neural underpinnings of object categorization from motion 75 

information with neuroimaging have identified the superior temporal sulcus (STS) as a key 76 

region involved in processing biological motion. The STS has been shown to track animacy 77 

signals in motion cues from simple shapes and to process dynamic movements of human faces 78 

and bodies (Schultz & Bulthoff, 2013; Hirai & Hiraki, 2006; Pitcher et al. 2011, Pavlova et al., 79 
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2004). Neuropsychological studies have also suggested the involvement of parietal regions in the 80 

integration of motion and form information during form-from-motion identification tasks 81 

(Schenk & Zihl, 1997).  82 

Despite extensive research into neural substrates of human motion processing (Giese, 83 

2013), there have been comparatively few studies that have investigated how non-human motion 84 

is processed in the brain. Previous studies suggest preferential processing of human motion over 85 

that of one or two other classes, e.g., mammals or tools, in regions in lateral occipito-temporal 86 

cortex (LOTC) including the posterior STS (Papeo et al., 2017), human middle temporal 87 

complex (Kaiser et al., 2012), and fusiform gyrus (Grossman & Blake, 2002), as well as the 88 

inferior parietal lobe, inferior frontal gyrus (Saygin et al., 2004), the posterior and anterior 89 

cingulate cortices and the amygdala (Bonda et al., 1996; Ptito et al., 2003).  90 

The limited neuroimaging studies that have directly compared object representations 91 

driven by motion to those driven by static images have focused on human (or monkey) faces and 92 

bodies (Furl et al., 2012; Hafri et al., 2017; Pitcher et al., 2011) or have only compared humans 93 

with tools (Beauchamp et al., 2003). Furthermore, these studies (with the exception of 94 

Beauchamp et al., 2003), have used videos containing both static and dynamic cues as their 95 

dynamic condition and thus have not been able to carefully separate the contributions of motion- 96 

and image-information to the responses. Thus, a systematic comparison of several object 97 

category representations driven by isolated motion and static cues has yet to be undertaken.   98 

Here, we devised a novel method to generate stimuli that only contained motion cues. We 99 

extracted motion signals from videos of objects and simulated object movements using flow 100 

fields of moving dots. We first demonstrated that humans can recognize a wide variety of 101 

animate and inanimate objects in our dynamic stimuli. We then used these stimuli, along with 102 
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static images, in an fMRI study to compare object category representations derived from 103 

dynamic and static cues in occipito-temporal and parietal regions of interest across visual cortex.  104 

Materials and Methods 105 

Stimuli  106 

Stimulus creation pipeline 107 

Eight categories were selected to sample a wide range of animate and inanimate object 108 

categories: human, non-human mammal, bird, reptile, vehicle, tool, pendulum/swing, and ball. 109 

We sought videos of objects performing a wide range of movements. Video clips were 110 

downloaded from various sources on the Internet or shot with in-house equipment in accordance 111 

with the following criteria: 1) contained a single moving object, 2) contained the entire object in 112 

frame without occlusion, 3) shot without camera movement (no zooming, panning, tracking), 4) 113 

contained no movement in the background, and 5) lasted at least 3 seconds. 114 

 We used in-house Matlab code, the Psychtoolbox extension, and in-house python code to 115 

generate moving dot patterns that followed the movement of the objects in the videos.  To do 116 

this, first, all videos were trimmed to 3 seconds, cropped with a 3:2 x/y aspect ratio to center the 117 

object, and resized to 720 x 360 pixel resolution. Videos with 30 frames per second were then 118 

up-sampled so that all videos had a frame rate of 60 fps. The local, frame-by-frame motion of the 119 

objects in each video in x and y directions was then extracted using the Farneback optical flow 120 

algorithm (Farneback, 2003). 121 

 Next, object movements extracted from the full videos were projected on moving dot 122 

patterns. To create the moving dot stimuli, 2500 white dots (2 pixel diameter) were randomly 123 

initialized on a grey background (360 x 720 pixels). Dots that fell within pixels with nonzero 124 

motion vector values were moved in the direction and magnitude specified by the extracted 125 
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motion matrix in the next frame. The lifetime (number of contiguous frames of movement) of 126 

any dot was randomly sampled from a uniform distribution between 1 and 17 frames. The 127 

lifetime value decreased on every frame. If the lifetime of a dot reached 0 or they reached the 128 

boundaries of the frame, they were reinitialized with a lifetime of 17 frames. 129 

 The number of dots for a given frame and their lifetime was set to mitigate the formation 130 

of dot clusters that could induce perception of an edge in individual frames of the video. The 131 

frames were qualitatively examined to see if they induced a perception of any kind of edge or 132 

form. Videos that produced such artifacts were removed from the stimulus set. For the fMRI 133 

experiment, these moving dot videos were rendered live for each trial so that the dot 134 

initializations were always random.  135 

 136 

Stimulus Validation Experiment 137 

To ensure that the stimuli contained clear category information, we conducted an online 138 

experiment. 430 participants (223 women, aged 18-65) were recruited on Amazon Mechanical 139 

Turk to perform an object categorization task on the dynamic stimuli. Participants each 140 

performed between 10-11 trials. For each trial, participants were asked 3 questions about the 141 

object in a looped video: 1) whether the object in the video was of an animal or non-animal, 2) 142 

which of 8 listed categories the object belonged to, and 3) whether they could label the object. If 143 

subjects responded ‘yes’ for the third question, they were required to type the label in a response 144 

text box. Each of the three questions contained an “I don’t know” option. Subjects had to answer 145 

all three questions to complete each trial.  146 

Overall, subjects categorized objects based on their motion in the moving dot stimuli with 147 

an average accuracy of 76% (202 total videos). The three animate (human, mammal, reptile) and 148 
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three inanimate (tool, ball, pendulum/swing) categories with the highest accuracy were used for 149 

the fMRI experiment. For each category, the 6 videos with the highest accuracy were selected 150 

(mean accuracy = 96%). 151 

The overall ‘motion energy’ of each video was calculated by averaging the motion 152 

vectors across all pixels in all frames. Non-zero motion vectors were also used to calculate the 153 

average non-zero ‘motion energy’. The average overall and non-zero motion energy for the 6 154 

videos in each category were entered into pairwise two-sample heteroscedastic t-test 155 

comparisons to ensure that there were no significant differences between categories for either 156 

metric. Neither the overall nor the non-zero motion energies were significantly different across 157 

categories (all ps > 0.05, even without correction for multiple comparisons).     158 

After the dynamic video stimulus set was finalized, the static image stimulus set was 159 

generated by randomly selecting three frames of the full form video from which the moving dot 160 

stimulus was created. The frame with the object in clearest view was selected and further 161 

processed to extract the object from the frame. For the fMRI experiment, the isolated object was 162 

pasted onto a background of 2500 randomly initialized white dots on a grey background, to 163 

mimic a frame of the dynamic moving dot stimuli.  164 

 165 

Functional MRI experiment 166 

Participants 167 

Fifteen healthy human subjects (six women, age range 19-42) with normal or corrected to 168 

normal vision were recruited for the fMRI experiment. Participants were brought in for a 2 h 169 

fMRI session that included the main experiment and three localizer tasks. Prior to entering the 170 

scanner, all participants practiced the tasks for the main experiment and localizer runs and 171 
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underwent a short behavioral task to familiarize themselves with the stimuli. All subjects 172 

provided informed consent and received compensation for their participation. The experiments 173 

were approved by the NIH ethics committee. 174 

Training Session 175 

The independent norming study performed with mTurk demonstrated that people can 176 

recognize the objects in these stimuli with high accuracy after minimal instruction. However, to 177 

avoid introducing any random factors across subjects and differential processing during the first 178 

run of the session relative to the rest, participants participated in a training session prior to 179 

entering the scanner. During the training session, they familiarized themselves with the 36 180 

dynamic stimuli and were subsequently tested to ensure accurate recognition. Each video was 181 

shown on loop until subjects could verbally report which of the 6 categories the object belonged 182 

to. If the subject categorized the object correctly, the experimenter advanced to the next stimulus; 183 

incorrect categorizations were verbally corrected by the experimenter. After all stimuli had been 184 

verbally categorized, subjects underwent a testing session. In each trial, a random video was 185 

shown once without looping, followed by a grey screen with 6 category labels placed in a circle 186 

around the center of the screen. Subjects were instructed to categorize the object in the video by 187 

clicking on the corresponding category label. No feedback was provided during the testing 188 

session. If a subject performed above 90% accuracy, they continued on to the fMRI experiment. 189 

The training and testing session took no longer than 15 minutes. Subjects required little to no 190 

correction during the training session and performed with an average of 99% accuracy in the test 191 

session on the first iteration (n = 13, data for two subjects were lost due to technical problems).  192 

 193 

 194 
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MRI Methods 195 

MRI data were collected from a Siemens MAGNETOM Prisma scanner at 3 Tesla 196 

equipped with a 32-channel head coil. Subjects viewed the display on a BOLDscreen 32 LCD 197 

(Cambridge Research Systems, 60 Hz refresh rate, 1600 x 900 resolution, at an estimated 198 

distance of 187 cm) through a mirror mounted on the head coil. The stimuli were presented using 199 

a Dell laptop with MATLAB and Psychtoolbox extensions (Brainard, 1997; Kleiner, Brainard, & 200 

Pelli, 2007).  201 

For each participant, a high resolution (1.0 x 1.0 x 1.0 mm) T1-weighted anatomical scan 202 

was obtained for surface reconstruction. All functional scans were collected with a T2*-weighted 203 

single-shot, multiple gradient-echo EPI sequence (Kundu et al., 2012) with a multiband 204 

acceleration factor of 2 slices/pulse. 50 slices (3 mm thick, 3 x 3 mm2 in-plane resolution) were 205 

collected to cover the whole brain (TR 2 s, TE = 12 ms, 28.28 ms, 44.56 ms, flip angle = 70°, 206 

FoV = 216 mm). 207 

Experimental Design 208 

Main Experiment: The main task of the experiment included 6 categories: human, 209 

mammal, reptile, tool, pendulum/swing, and ball and 2 stimulus conditions: dynamic (moving 210 

dot videos) and static (object images pasted on dot background). Both dynamic and static stimuli 211 

were presented at the same size and location (subtending 9.6° x 4.8° visual angle). We used a 212 

block design to present alternating blocks of dynamic and static stimuli while also alternating 213 

between animate and inanimate blocks. The order of the six categories and the two formats were 214 

counterbalanced within and across runs. Four different counterbalancing designs were created 215 

and each subject was randomly assigned one of the designs. 216 
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Each run contained 12 condition blocks, one for each condition (2 formats x 6 217 

categories), began with an initial fixation block of 8 s, and ended with a final fixation of 12 s. 218 

Each condition block began with an 8 s fixation period in which a red fixation dot (5 pixels in 219 

radius) was shown on a grey background. The fixation period was then followed by the stimulus 220 

presentation period in which 4 stimuli were presented from the same condition, each for 2.8 s 221 

followed by a 200 ms inter-stimulus interval, resulting in 12 s of stimulus presentation. The 222 

duration of each condition block was 20 s (8 s fixation and 12 s stimulus presentation). For each 223 

run, the 12 condition blocks and the initial and final fixation blocks lasted 252 s (4 min 12 s). 224 

Each participant completed 12 runs. 225 

To maintain their attention, subjects were given a one-back repetition detection task in 226 

which they were instructed to press a button on an MRI-compatible button box (fORP, 227 

Cambridge Research Systems) to indicate detection of a repeated stimulus within each block. 228 

There was one stimulus repetition per block and the repeated stimulus of each block type was 229 

changed across runs. Because there were only 3 unique trials per block but each condition had 6 230 

unique stimuli, half of the stimuli of each category were shown on odd runs and the other half 231 

were shown on the even runs. These blocks were later combined during analysis. Average 232 

performance on this task was 94%. To ensure proper fixation, eye movements were monitored 233 

using an ASL eye-tracker.  234 

 Object Localizer task: To localize functional ROIs in ventral and lateral occipito-235 

temporal cortex, we presented images of objects in 6 conditions: faces, scenes, head-cropped 236 

bodies, central objects, peripheral objects (4 objects per image), and phase-scrambled objects in a 237 

block design paradigm. Subjects were instructed to fixate while 20 images were presented in 238 

each block for 750ms with a 50ms fixation screen in between. Each block lasted 16 s and was 239 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 4, 2022. ; https://doi.org/10.1101/2022.05.03.490462doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.03.490462
http://creativecommons.org/licenses/by-nd/4.0/


 12

repeated 4 times per condition. Each run started with a 12s fixation period. Additional 8 s 240 

fixation periods were presented after every 5 blocks. Total run duration was 436 s (7 min 16 s). 241 

Subjects performed a motion detection task. During each block, a random image would jitter by 242 

rapidly shifting 4 pixels back and forth horizontally from the center of the screen. Subjects 243 

indicated detection of motion with a button press. Each participant completed 1-2 runs of this 244 

task.    245 

Motion localizer task: To localize functional ROIs related to the perception of biological 246 

and non-biological motion, we presented blocks of point light display (PLD) videos of humans 247 

performing various actions in four conditions: 1) biological motion: normal PLD video (e.g. 248 

walking, riding a bicycle), 2) random motion: the points in the PLD were spatially scrambled in 249 

each frame, 3) translation: randomly positioned dots translated across the screen in a random 250 

direction with the speed set to the average speed of the movement from the PLD videos, and 4) 251 

static: a random frozen frame of the PLD was shown as an image. There were 8 exemplars per 252 

condition, each presented for 1.5 s followed by a 500 ms interstimulus fixation period. Each 253 

block lasted 16 s and was presented 4 times per condition. Each run began with a 6s fixation 254 

period and 8 s fixation periods were interspersed between each block making the total run 255 

duration 422.7 s (7 min 3 s). Subjects performed a one-back repetition detection task, in which 256 

they indicated detection of a repeated stimulus during each block by pressing a button. Each 257 

subject completed 1-2 runs of this task.  258 

Topographic mapping: Topographic visual region V1 was mapped using 16 s blocks of 259 

a vertical or horizontal polar angle wedge with an arc of 60° flashing black and white 260 

checkerboards at 6 Hz. During the stimulus blocks, subjects fixated on a red fixation dot (5 pixel 261 

radius) and detected a dimming on the wedge, that occurred randomly either at the inner, middle, 262 
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or outer ring of the wedge at 4 random times within the 16 s block. There was a 16 s fixation 263 

period after each block and each run began with a 16 s period of fixation. Each run lasted 272 s 264 

(4 min and 40 s), and subjects completed 1-2 runs of this task. 265 

Data Analysis 266 

fMRI data were analyzed using AFNI (Cox, 1996) and in-house MATLAB codes. The 267 

data were pre-processed by removing the first 2 TRs of each run, motion correction, slice timing 268 

correction, smoothing with 5mm FWHM, and intensity normalization. The EPI scans were 269 

registered to the anatomical volume. The three echoes were combined using a weighted average 270 

(Posse et al., 1999; Kundu et al., 2012). TRs with motion exceeding 0.3 mm as well as outliers 271 

were excluded from further analysis. A general linear model analysis with 12 factors (2 stimulus 272 

conditions x 6 categories) was used to extract t-values for each condition in each voxel. The 6 273 

degrees of freedom movement parameters was used as an external regressor. To account for the 274 

effect of residual autocorrelation on statistical estimates, we applied a generalized least squares 275 

time series fit with restricted maximum likelihood (REML) estimation of the temporal auto-276 

correlation structure in each voxel. The t-values were calculated across all runs for the univariate 277 

analysis and per-run for the multivariate analysis. 278 

ROI Definition: Group-constrained subject specific method 279 

We used a systematic, unbiased method for creating individualized regions of interest 280 

constrained by group responses to our localizer experiments, basing our approach on a method of 281 

region of interest definition developed by Kanwisher and Fedorenko (described in Kanwisher et 282 

al., 2011).  283 

First, t-values were extracted from generalized linear models (GLMs) of individual 284 

activation maps from the localizer experiments. All subjects’ statistical activation maps (N = 15) 285 
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were converted to Talairach space. For each subject, the individual localizer contrast maps were 286 

thresholded at p < 0.0001. Group overlap proportion maps were then created for each contrast.  287 

Second, we thresholded the group proportion maps for each contrast separately to 288 

counteract contrast- or localizer-specific differences in spatial variability or overall activation. 289 

The thresholds for specific contrast maps were as follows: For the object localizer experiment, 290 

the thresholds were N ≥ 0.7 for objects vs scrambled (lateral occipital, LO; posterior fusiform 291 

sulcus, pFS), N ≥ 0.5 for bodies vs objects (extrastriate body area, EBA), and N ≥ 0.25 for 292 

peripheral objects vs scrambled (inferior intraparietal sulcus, infIPS). For the biological motion 293 

experiment, the threshold for biological motion vs translation was N ≥ 0.5 (lateral occipito-294 

temporal biomotion region, LOT-biomotion). For the retinotopy experiment, positive and 295 

negative maps were created separately and thresholded at N ≥ 0.5.  296 

Third, we used a Gaussian blur of 1mm FWHM. The blurred maps were then clustered 297 

using the nearest neighbors method and a minimum cluster size of 20 voxels. For V1, positive 298 

and negative maps were clustered separately and then combined with a step function. Two steps 299 

were required to finalize the group-constrained ROIs. Anatomical landmarks were used to 300 

separate pFS from LO, and LO from infIPS. V1 was separated from V2 using a hand-drawn 301 

region based on the group map. All ROIs were then selected to have no overlapping voxels. 302 

The final nonoverlapping group-constrained ROIs were made subject specific by creating 303 

masks based on the individual subject’s activity during the localizer experiments (localizer 304 

contrast threshold: p < 0.05). For example, for each subject’s EBA, the group-constrained EBA 305 

was masked by the subject’s response to bodies > objects with a threshold of p < 0.05. If this 306 

process did not yield an ROI with at least 100 voxels across the two hemispheres, the ROI was 307 
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instead created with a mask made from the mean response during the main experiment (task vs308 

fix, p < 0.0001 uncorrected). 309 

The supramarginal (SMG) region of interest was anatomically defined using a Freesurfer310 

parcellation (Desikan et al, 2006). To make the subject specific supramarginal ROIs, individual311 

masks were made from the mean response during the main experiment (task vs fixation, p <312 

0.0001 uncorrected) and intersected with the template SMG region.  313 

 314 

Figure 1. Regions of interest of a single example subject generated by the group-constrained single-315 
subject method. The supramarginal area (SMG) is colored in pink, the inferior intraparietal sulcus316 
(infIPS) is colored in dark green, the lateral occipital complex (LO) is colored in light green, the317 
extrastriate body area (EBA) is colored in yellow, the biological motion related lateral occipito-temporal318 
area (LOT-bio) is colored in dark blue, the posterior fusiform sulcus (pFS) is colored in teal, and primary319 
visual cortex (V1) is colored in red.  320 
 321 
Univariate analysis 322 

To calculate the average fMRI response per condition for each ROI, using a general323 

linear model analysis, whole brain t-value maps were extracted for each of the 12 conditions and324 

masked with a task > fixation threshold of p < 0.0001 for each subject. The group-constrained325 

subject-specific ROIs were intersected with these maps, resulting in a t-value response per voxel326 

in each ROI for all 12 conditions in each subject. The average responses for four conditions were327 

then calculated from these ROI responses: dynamic animate, dynamic inanimate, static animate,328 

and static inanimate. The animacy preference in each ROI was calculated as the difference329 

between the animate and inanimate conditions, separately for the static and dynamic stimulus330 
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formats. One-sample and paired t-tests were conducted to determine respectively: 1) if the 331 

animacy preference in each ROI and each format was significantly different from 0, and 2) if the 332 

animacy preference was significantly different across stimulus formats within each ROI. All t-333 

tests were corrected for multiple comparisons with False Discovery Rate correction (Benjamini 334 

and Hochberg, 1995) across ROIs. 335 

Multivariate pattern analysis (MVPA) 336 

We performed multivariate pattern analyses to investigate whether object category 337 

information was present in the fMRI responses to the dynamic and static stimuli. We extracted t-338 

values in each voxel for every condition in each run using a GLM analysis. To perform pairwise 339 

object category decoding, we used a linear support vector machine classifier (SVM; Chang and 340 

Lin, 2011) with feature selection. The SVM was trained using leave-one-out cross validation on 341 

data that was normalized with z-scoring to avoid magnitude differences between conditions. 342 

Using t-tests, we calculated the top 100 most informative voxels per ROI (Mitchell et al., 2004) 343 

to equate the number of voxels analyzed per ROI and facilitate comparisons between them. This 344 

feature selection was performed separately for each iteration of training. Results did not 345 

qualitatively change when the analysis was performed without feature selection. 346 

 We trained and tested the linear SVM in two conditions: 1) within-classification, in 347 

which the SVM was trained and tested on the same stimulus format, and 2) cross-classification, 348 

in which SVM was trained in one stimulus format and tested on the other format. The 349 

classification was performed on all unique pairs of object categories to obtain classification 350 

accuracy matrices. The off-diagonal values of the matrices were averaged to produce two within-351 

format and two cross-format average object category decoding accuracies per subject. The two 352 

cross-format values were then averaged to obtain one cross-classification accuracy. One-sample 353 
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and paired t-tests were conducted to determine respectively: 1) if the decoding accuracy in each 354 

ROI and each format was significantly different from chance (0.5), and 2) if the decoding 355 

accuracy was significantly different across stimulus formats within each ROI. All p-values listed 356 

from t-tests and ANOVAs were corrected for multiple comparisons with False Discovery Rate 357 

correction across ROIs (Benjamini and Hochberg, 1995). For ANOVAs, effect sizes were 358 

calculated with generalized eta squared (�
�

� ), for the one sample and paired t-tests, Cohen’s d 359 

was used.  360 

Multidimensional scaling of fMRI responses 361 

To visualize how stimulus format and object category impact the responses in our regions 362 

of interest, we quantified the similarities between the patterns of fMRI responses to the 12 363 

conditions in each ROI by calculating all pairwise Euclidean distances. The individual subject 364 

Euclidean distances per ROI were averaged across subjects to create group Euclidean distances, 365 

which will be referred to as the fMRI-Euclidean matrix. We then visualized these similarities by 366 

applying classical multidimensional scaling (Shepard, 1980) on the fMRI-Euclidean matrix and 367 

plotting the first two dimensions for each ROI. 368 

We measured the reliability of the fMRI-Euclidean matrix by performing a permutation 369 

analysis wherein the individual subject matrices were split into two groups, averaged to create 370 

two group matrices, and then correlated to get a measure of the split-half reliability. Correlations 371 

for every possible combination of subjects in the two groups were measured and averaged to 372 

produce a final reliability score. The reliabilities of the dynamic and static fMRI-Euclidean 373 

matrices were evaluated separately. 374 

 375 

 376 
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 377 

Object similarity behavioral experiment 378 

 353 participants (32% female among the 85% who responded to the demographic survey) 379 

were recruited on Amazon Mechanical Turk to perform an object similarity task on the dynamic 380 

or static stimuli. All participants were located in the United States. 381 

 For each trial, participants were presented with three stimuli on a grey screen and were 382 

instructed to select the ‘odd-one-out’ stimulus (the stimulus that was most distinct among the 383 

three) by clicking on it. Dynamic and static stimuli were tested separately. Participants 384 

performed blocks of 15 trials to complete the task and were permitted to perform more than one 385 

block. To ensure data quality, trials with RTs smaller than 0.6 s and 1.2 s and larger than 10 s or 386 

20 s were removed for the image and video tasks, respectively. These cutoffs were decided based 387 

on the distributions of RTs. If 5 or more trials in a block were eliminated, the entire block (or 388 

HIT in mTurk terminology) was removed. The eliminated blocks were resubmitted to mTurk to 389 

ensure that we had at least 2 repetitions for each unique triplet allowing for 68 trials for each pair 390 

of stimuli.  391 

 To build a dissimilarity matrix based on the odd-one-out image and video tasks, a 392 

response matrix of the pairwise dissimilarity judgments was constructed for each task by treating 393 

each triplet as three object pairs and assigning 1’s to dissimilar pairs (i.e. the two pairs that 394 

included the selected odd object) and a 0 to the similar pair (i.e. the pair that did not include the 395 

selected odd object). We also constructed a count matrix to determine how many times each pair 396 

was shown together in a triplet. By dividing the response matrix by the count matrix, we 397 

obtained a dissimilarity matrix with values ranging from 0-1 with higher values denoting higher 398 

dissimilarity. To produce a category level behavioral dissimilarity matrix, we took the off-399 
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diagonal upper triangle of the 36 x 36 matrix and averaged the item distances that belonged to 400 

the same category, resulting in a 6 x 6 matrix, which will be referred to as the behavioral-401 

dissimilarity matrix. The diagonal was nonzero due to nonzero distances between exemplars 402 

within each category. Only the off-diagonal of this matrix was used in further analyses.  403 

To gauge the stability of the behavioral-dissimilarity matrix, we performed a split-half 404 

reliability analysis. Because each subject only saw a small set of all possible triplets, instead of 405 

splitting the data by subject, we split based on repeats of stimulus pairs (3 pairs per triplet) into 406 

two groups. The binary similarity values for all pairs were correlated across the two groups to 407 

produce a measure of reliability of the similarity judgments.  408 

 409 

Multi-dimensional scaling and hierarchical clustering of object similarity responses 410 

 We visualized the structure of the object similarity judgments from the odd-one-out tasks 411 

at the category level using classical multidimensional scaling on the behavioral-dissimilarity 412 

matrices of the dynamic and static stimuli separately (Shepard, 1980). The two behavioral-413 

dissimilarity matrices were also correlated to quantify their degree of similarity. To investigate 414 

the structure of the object similarity judgments at the exemplar level, we used a hierarchical or 415 

agglomerative clustering algorithm available in the Python package scipy (Virtanen et al., 2020) 416 

on the dynamic and static behavioral-dissimilarity matrices separately. For visualization 417 

purposes, images of the individual exemplars, which were adapted from the static stimuli used in 418 

the experiment, were included under the resultant dendrograms for both static and dynamic 419 

conditions (note that dynamic stimuli are not recognizable in static frames). 420 

 421 

Brain-behavior correlation 422 
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To determine the relationship between the multivariate information for the six categories 423 

in each region of interest (fMRI-Euclidean matrix) with behavioral assessments of the category 424 

similarity (behavioral-dissimilarity matrix), we correlated the two measures. For each subject, 425 

the off-diagonal of the fMRI-Euclidean matrix was correlated with the off-diagonal behavioral-426 

dissimilarity matrix using Pearson’s linear correlation coefficient, separately for the dynamic and 427 

static experiments. The correlations were then averaged across subjects. The noise ceiling of 428 

these correlations was then calculated for each ROI as the square root of the product of the 429 

reliabilities of the fMRI-Euclidean matrix and the behavioral-dissimilarity matrix. As the 430 

reliability of the behavioral-dissimilarity matrix was calculated with only one split, the standard 431 

error of the noise ceiling was calculated based on the mean and standard deviation of the 432 

reliability scores generated on each permutation of the fMRI-Euclidean reliability analysis.  433 

 434 

Brain-optic flow correlation 435 

To ensure that optic flow information from the six object categories was not predictive of 436 

the multivariate fMRI responses in any of the regions of interest, we performed a control 437 

analysis. We first calculated the Euclidean distances between the dynamic stimulus information 438 

of each category by vectorizing the 4-dimensional stimuli (x-coordinates, y-coordinates, x- and 439 

y-magnitudes of optic flow, and time) and averaging the distances between stimuli of the same 440 

category, creating the optic flow-Euclidean matrix. We then correlated the optic flow-Euclidean 441 

matrix with the dynamic fMRI-Euclidean matrix of each ROI for each subject. The correlations 442 

were averaged across subjects to generate group mean correlations and one-sampled t-tests were 443 

used to determine whether any positive correlations were significantly above zero.  444 

 445 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 4, 2022. ; https://doi.org/10.1101/2022.05.03.490462doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.03.490462
http://creativecommons.org/licenses/by-nd/4.0/


 21

 446 

 447 

Results 448 

Effect of stimulus format on univariate animacy preference 449 

We first looked at the mean amplitude of responses to the two superordinate object450 

categories (animate/inanimate) in the two stimulus formats (static/dynamic). We extracted451 

individual subjects’ t-values from the GLM analysis and averaged the response for the three452 

animate and the three inanimate categories within each image format to get 4 values per subject.453 

Figure 2 shows the pooled results of this analysis across subjects. A two-way ANOVA with454 

stimulus format and animacy as factors showed a significant main effect of stimulus format in all455 

ROIs (fs > 7.26, ps ≤ 0.02, s > 0.02) with higher response amplitude in the dynamic compared456 

to the static condition. A main effect of animacy was also found in LO, pFS, EBA, LOT-457 

biomotion, and left SMG (fs > 7.68, ps < 0.03, s > 0.02), but not in V1, infIPS, or right SMG458 

(fs < 3.38, ps > 0.12, s < 0.009). For the four ventrotemporal cortical areas, average responses459 

were significantly higher for the animate object categories, while in left SMG the average460 

response was higher for the inanimate object categories. The pattern of responses in SMG was461 

not solely driven by the tool category as removing tools from the inanimate objects did not462 

qualitatively change the results (data not shown). 463 

 464 
Figure 2. Univariate fMRI 465 
responses to dynamic and static 466 
stimuli averaged within animate 467 
and inanimate categories for 468 
each region of interest. Results 469 
do not qualitatively differ when 470 
removing the human and tool 471 
categories from the analysis. 472 
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Error bars represent standard errors. 473 
 474 

 475 
Figure 3. Univariate fMRI response preference for animate compared to inanimate object categories in476 
dynamic and static stimuli for each region of interest. *ps < 0.05. Error bars represent standard errors. 477 
 478 

To better visualize and investigate the interaction between stimulus format and animacy,479 

we subtracted inanimate responses from animate responses to produce a measure of animacy480 

preference within each stimulus format (Figure 3). Unpaired t-tests evaluating animacy481 

preference against 0 revealed that there was no animacy preference in V1, inferior IPS, and the482 

right SMG area in either stimulus format (dynamic: ts < 1.56, ps > 0.21, Cohen’s ds < 0.42,483 

static: ts < 0.76, ps > 0.55, Cohen’s ds < 0.20). In contrast, for both stimulus formats, LO, pFS,484 

and EBA showed a preference for animate categories (dynamic: ts > 3.15, ps < 0.02, Cohen’s ds485 

> 0.84, static: ts > 5.05, ps < 0.0002, Cohen’s ds > 1.35) while left SMG preferred inanimate486 

categories (dynamic: t(14) = 5.59, p = 0.0005, Cohen’s d = 1.49). LOT-biomotion had significant487 

preference for animate categories in the static (t(14) = 3.97, p = 0.003, Cohen’s d = 1.06) but not488 

in the dynamic condition (t(14) = 1.14, p = 0.31, Cohen’s d = 0.31). All regions showed a489 

preference in the same direction for dynamic and static conditions.  490 
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pFS and left SMG further showed a significant difference in the magnitude of their 491 

animacy preference across formats. pFS, a ventral region known to be involved in object 492 

recognition, showed a stronger preference for animate object stimuli in the static compared to the 493 

dynamic condition (paired t-test: t(14) = 3.07, p = 0.03, Cohen’s d = 0.79), while left SMG, a 494 

parietal region thought to be involved in tool processing and action observation had a stronger 495 

preference for inanimate object stimuli in the dynamic compared to the static condition (paired t-496 

test: t(14) = 3.73, p = 0.02, Cohen’s d = 0.96). These significant interactions between stimulus 497 

format and animacy preference suggest that the category preference responses in pFS and left 498 

SMG are modulated by the format through which the category information is provided. The most 499 

ventral region, pFS, is more sensitive to static form presentations of animate objects and the most 500 

dorsal lateral region, left SMG, is more sensitive to dynamic motion information about inanimate 501 

objects.  502 

 503 

Effect of stimulus format on multivariate object category representations 504 

We next examined the multivariate patterns of each of our regions of interest to further 505 

explore how object category information is represented in the brain when sourced from dynamic 506 

movements and static images. We first sought to test if each of our regions contained information 507 

about the 6 object categories within each stimulus format. To do this, we calculated average 508 

pairwise classification accuracy for the 6 object categories for the static and dynamic conditions 509 

using a linear SVM classifier (Chang and Lin, 2011). Figure 4a shows the pooled results of this 510 

analysis across subjects. Unpaired t-tests revealed that the object categories were decoded 511 

significantly above chance in both dynamic and static formats in all regions but V1 (dynamic: ts 512 

> 7.04, ps < 0.00001, Cohen’s ds > 1.82; static: ts > 2.73, ps < 0.02, Cohen’s ds > 0.71). In V1, 513 
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significant decoding was only found in the static stimulus condition (static: t(14) = 8.31, p = 514 

0.00001, Cohen’s d = 2.15; dynamic: t(14) = 2.05, p = 0.06, Cohen’s d = 0.53). In all regions but 515 

infIPS, there were significant differences between the decoding accuracies across stimulus 516 

format (infIPS: t(14) = 0.59, p = 0.57, Cohen’s d = 0.15). In V1, LO, pFS, and EBA decoding 517 

accuracies were higher in the static condition than the dynamic (ts > 2.32, ps < 0.001, Cohen’s ds 518 

> 0.60), while in LOT-biomotion and bilateral SMG, decoding accuracies were higher in the 519 

dynamic condition (ts > 3.24, ps < 0.008, Cohen’s ds > 0.84).  520 

To ensure that the significant decoding of object category from dynamic information was 521 

due to differences in the responses to object categories and not contingent upon optic flow 522 

information differences that were confounded with category in our stimulus set, we performed a 523 

control analysis in which we correlated the dynamic stimulus information with the multivariate 524 

fMRI responses (see Methods). No significant positive correlations were observed for any of the 525 

regions of interest (ts < 2.8, ps > 0.06). 526 

We next used a cross-classification method to determine if abstract responses to object 527 

categories irrespective of stimulus format exist in our ROIs. The SVM classifier was trained in 528 

one stimulus format and then tested in the other format. Decoding accuracies when training on 529 

static and testing on dynamic and training on dynamic and testing on static were averaged to 530 

produce the light grey bars shown in Figure 4b. We also calculated the within-classification 531 

accuracy for training and testing within stimulus format (dark grey bars in Figure 4b; average of 532 

the two bars in Figure 4a). Significant cross-classification was observed in all regions of interest 533 

(ts > 5.31, ps < 0.0001, Cohen’s ds > 1.37), and was significantly lower than within-534 

classification in all ROIs (ts > 5.24, ps < 0.0001, Cohen’s ds > 1.35). This suggests that the 535 

information about object categories in the multivariate pattern responses to the dynamic and 536 
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static stimuli was sufficiently similar to allow for significant decoding in one stimulus format537 

after being trained on the other.  538 

 539 

Figure 4. Object category SVM decoding accuracies in each ROI. a) Average SVM decoding accuracies 540 
when training and testing within the dynamic (pink) and static (teal) conditions. Asterisks within the bars 541 
represent significance in t-tests against chance. All average decoding accuracies were significantly above 542 
chance except for the dynamic condition in V1. Asterisks above bars represent paired t-tests across 543 
format. In all regions but infIPS, accuracies were significantly higher for one of the formats—LO, pFS, 544 
and EBA had significantly higher accuracy in the static condition while LOT-biomotion and bilateral 545 
SMG had significantly higher accuracy in the dynamic condition. b) The within stimulus format decoding 546 
accuracies, depicted in dark grey bars, were produced by averaging the dynamic and static decoding 547 
accuracies in A. The cross-format decoding accuracies are shown in light grey bars. Cross classification 548 
was significantly above chance in all regions of interest. Within classification was significantly higher 549 
than cross classification in all regions of interest. Error bars represent standard errors. Asterisk notation: * 550 
p < 0.05, ** p < 0.001, *** p < 0.0001. 551 
 552 

To further visualize the similarity between the fMRI responses to the object categories in 553 

the dynamic and static conditions, we calculated the pairwise Euclidean distances between the 554 

patterns of responses to the 6 object categories and the two stimulus formats in each ROI. We 555 

then performed a multidimensional scaling analysis on the resultant dissimilarity matrix and 556 

visualized the first two dimensions in each of the regions of interest (Figure 5). In all regions, 557 

there was a clear separation between the responses to the dynamic (shown in purple and pink) 558 

and static stimuli (shown in green and teal). In addition, the ventro-temporal regions and inferior 559 
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parietal cortex showed a separation amongst the individual object categories. The nearly parallel 560 

lines connecting the dynamic and static conditions of the same category indicate that categories 561 

with responses that were similar to each other in one condition were also similar to each other in 562 

the other condition and is in line with the results of the cross-classification analysis performed 563 

earlier. In bilateral supramarginal areas, this object category separation was evident for the 564 

dynamic stimulus responses, but the static stimulus responses remained clustered together.  In 565 

V1, while there was a separation between dynamic and static, the arrangement of categories does566 

not appear to be consistent across conditions. 567 

Figure 5. Multidimensional scaling visualization of fMRI response similarity between the object568 
categories presented in the dynamic and static formats. MDS was performed on the similarity matrix569 
obtained from the Euclidean distances of response patterns for the 12 conditions in each ROI. Dotted lines570 
connect dynamic and static presentations of the same object category. The dynamic condition is signified571 
by purple and the static condition is signified by green. Within each condition, the darker hues represent572 
the animate categories while the lighter hues represent the inanimate categories. The 6 object categories573 
are symbolized as with the following icons: human (person from side profile), mammal (cat), reptile574 
(snake), tool (hammer 575 
 576 
Odd-one-out behavioral experiment 577 

To investigate how the responses of each ROI to the 6 object categories in each format578 

relates to the behavioral measure of similarity we performed two behavioral experiments on579 

Amazon Mechanical Turk in which we showed participants three objects (either in static580 
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condition or in dynamic condition) and asked them to judge the similarity between the three581 

objects and pick the odd-one-out. We calculated two dissimilarity matrices based on the582 

responses, one for the static stimuli and one for the dynamic stimuli (see Methods). We then583 

averaged the individual object distances from each category to obtain dissimilarity scores584 

between the 6 object categories for the two stimulus formats (Figure 6a). The reliability of these585 

similarity judgments was evaluated for each stimulus format separately (see Methods).586 

Participants rated both stimulus formats with highly stable similarity judgments (r = 0.98 for587 

both dynamic and static stimuli). We used multidimensional scaling on the pairwise588 

dissimilarities of each stimulus format to visualize the distance between object categories in the589 

first two dimensions (Figure 6b).  590 

The dynamic and static similarity judgments had highly similar structure, showing a clear591 

separation between animate and inanimate categories in the first dimension. The animate592 

(human, mammal, and reptile) and inanimate (tool, pendulum/swing, and ball) categories were593 

also separated from each other along the second dimension in both tasks. Overall, the594 

dissimilarities from the dynamic and static tasks were highly correlated (r = 0.98, p = 2.80e-10),595 

however, there also appeared to be slight qualitative differences in the arrangement of the596 
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inanimate object categories along the second dimension.  597 

Figure 6. Odd-one-out similarity judgements of dynamic and static stimuli at the category level. The 598 
matrices depict pairwise dissimilarity scores between object categories in dynamic (a) and static (c) 599 
stimulus formats. The circle plots represent the object categories project into the first two dimensions 600 
from multidimensional scaling on their dissimilarities in the dynamic (b) and static (d) stimuli.  601 

To further explore the similarity structure of the dynamic and static stimuli at the 602 

exemplar level, a hierarchical clustering algorithm was used on the odd-one-out similarity 603 

judgments (Figure 7). Similar to the MDS of odd-one-out judgements at the category level, a 604 

gross distinction between animate and inanimate objects was observed for both the static and 605 

dynamic conditions. Moreover, as in the MDS, the three object categories within 606 

the animate and inanimate superordinate 607 categories are largely distinguished in both 607 

formats. However, the clustering algorithm 608 also revealed several interesting differences in 608 

the similarity judgments of the same objects 609 when presented in either static image or 609 

dynamic optic flow format. For example, the 610 dynamic baboon stimulus, a clip of a baboon 610 

sitting and feeding, was grouped with the 611 human stimuli, while the static baboon 611 

stimulus was grouped with the mammal 612 stimuli. Similarly, the dynamic presentation of 612 

the two pendulum stimuli were grouped with 613 the swings, presumably due to their shared 613 

movement patterns, while their static 614 presentations were grouped with the balls, 614 

likely due to their shared global form. These 615 deviations of specific exemplars from their 615 

category clusters illustrate important differences in the category information provided by 616 

dynamic and static visual cues and shed light on some of the heuristics that are used to guide 617 

similarity judgments in the absence of either form or motion information. When luminance-618 

defined edges are not available, robust category information can be derived from dynamic 619 

motion-isolated inputs. 620 

 621 
 622 
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Figure 7. Hierarchical clustering of odd-one-out similarity judgments of the dynamic and static stimuli at 623 
the exemplar level. Edited versions of the static stimuli were used to visualize the similarity structure of 624 
both the dynamic (top) and static (bottom) stimuli as category of the dynamic stimuli cannot be gleaned 625 
from individual frames. The scale and position of the objects are not representative of the stimuli during 626 
presentation. Stimulus borders were colored to distinguish the six object categories. The human stimulus 627 
examples were modified into two-tone images for this figure to deidentify the individuals in the stimuli. 628 
 629 

To investigate how the object category fMRI responses to each format relate to 630 

behavioral judgements of similarity, we correlated the dissimilarity scores from the dynamic and 631 

static behavioral experiments (dynamic and static reliability: 0.985) to those obtained from the 632 

Euclidean distances between the multivariate response patterns in each region of interest (rs: 633 

dynamic > 0.03; static > 0.02, apart from right SMG, see below). As shown in Figure 8, most 634 

ventral and lateral temporal regions—LO, pFS, EBA, LOT-biomotion—showed significant 635 

correlations with the object similarity judgments for both the dynamic and static stimuli 636 

(dynamic: ps < 0.01; static: ps < 0.05). The responses in infIPS were not correlated to object 637 

similarity judgments for either the dynamic or static stimuli (dynamic: p = 0.12, static: p = 0.59). 638 

The activity in left SMG was significantly correlated with the similarity judgments for the 639 

dynamic stimuli (p = 0.001), but not for the static stimuli (p = 0.59). Similarly, the activity in V1 640 

was significantly correlated with similarity judgments for the static stimuli (p = 0.02), but not for 641 

the dynamic stimuli (p = 0.14). The only significant difference between the correlations of the 642 

behavioral similarity judgments and the fMRI responses to the two conditions was found in the 643 

left SMG area, in which the correlation was significantly higher with similarity judgments of the 644 

dynamic stimuli compared to the static stimuli (t(14) = 3.32, p = 0.04, Cohen’s d = 0.86). In the 645 

right SMG area, the r value was -0.0083 for the static condition, signifying a reliability of zero. 646 

As this suggests that the responses to the static stimuli in this region were unreliable, the 647 

correlation between the multivariate fMRI responses in the right SMG to the static stimuli with 648 

behavioral assessments of their similarity will not be interpreted.  649 
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 650 

 651 

 652 

Figure 8. Correlation of Euclidean distance between multivariate fMRI responses and behavioral653 
dissimilarity matrices for a) dynamic and b) static stimuli. * ps < 0.05. Error bars represent standard654 
errors. Shaded regions represent the average noise ceiling (dotted line) and the standard error of noise655 
(shaded region) for each ROI. 656 
 657 
Discussion 658 

Motion is an important visual cue that can provide category-relevant information in the659 

absence of luminance-defined edges and form. Here, we introduce a novel approach to660 

systematically separate form and motion signals and study the contribution of the motion signal661 

to object category processing in isolation. To our knowledge, our study is the first to use this662 

approach to compare the neural processing of form and motion signals from several animate and663 

inanimate object categories. We sought to determine whether category-relevant information from664 

the two sources is shared across the visual system by comparing dynamic and static category665 

processing in regions of interest across visual occipito-temporal and parietal cortices. The two666 

highly dissimilar information sources produced distinct but overlapping representations of667 
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animate and inanimate object categories, with a shift in processing primarily static information in 668 

more ventral regions to primarily dynamic information in more dorsal regions of cortex.  669 

 670 

Categorizing Objects with Motion Information 671 

An object identification task was used to determine whether our method for simulating 672 

the extracted motion information in dynamic flow fields could produce stimuli in which objects 673 

were recognizable. Our findings illustrate that, not only do people categorize motion-defined 674 

animate objects with high accuracy (Pinto, 2006; Pinto, 1994; Pavlova et al., 2001), this high 675 

performance also holds for three inanimate object categories: tools, swinging objects, and balls. 676 

These results extend previous research by showing that a wide range of objects spanning animate 677 

and inanimate categories can be recognized from just motion information. Our odd-one-out 678 

judgment task further demonstrated that the similarity judgments for the dynamic and static 679 

stimuli were highly correlated. This consistency suggests that people infer the similarity of 680 

objects from the two sources of information in a similar way.  681 

When discussing the perception of objects from motion, it is important to distinguish 682 

between two types of information that can be gleaned from motion cues: 1) structure from 683 

motion, a percept of a form arising from the global integration of coherent local motion vectors, 684 

and 2) types of actions that are diagnostic of a particular object category such as walking, 685 

swinging, tool use, bouncing, etc. Though it was not within the scope of this study to 686 

systematically distinguish these two sources, the exemplar level clustering of our odd-one-out 687 

data qualitatively suggests that both factors may play an important role in subjects’ judgements 688 

of object similarity. For example, images of pendulums and bouncing balls maybe judged to be 689 
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similar since they both contain a round shape, but distinct in dynamic form because they move 690 

differently.  691 

 692 

 693 

 694 

Format-dependent processing of object categories 695 

Comparison of the object category information across the two stimulus formats revealed 696 

differences in many of our regions of interest. Our findings suggest that stimulus format matters 697 

for: 1) processing of animate and inanimate objects—indicated by the regions of interest with 698 

significant interactions between stimulus format and univariate animacy preference (i.e., pFS and 699 

left SMG)—and 2) discriminating object categories within format—indicated by regions with 700 

significant differences in the multivariate classification accuracy of the responses to dynamic and 701 

static stimuli (i.e., all regions but infIPS). Broadly speaking, we found that the most ventral and 702 

posterior regions we examined (LO, EBA, and pFS) showed higher classification in the static 703 

condition, while most dorsal and anterior regions (LOT-biomotion and bilateral SMG) had 704 

stronger classification in the dynamic condition. Interestingly, infIPS used both sources of 705 

information without dominance of one source over the other. Importantly, all regions of interest 706 

but V1 showed robust responses to, and significant decoding accuracies of, all categories 707 

presented in both static image and dynamic motion formats. Thus, differential multivariate 708 

processing of object category based on stimulus format in these regions is a matter of degree. 709 

These results align with predictions from the model presented by Giese and Poggio (2003), in 710 

which form and motion signals are processed by distinct neural populations that largely overlap 711 

in topographic regions across ventral and dorsal cortex. 712 
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 713 

Animate and Inanimate Category Processing 714 

Relative to static images, investigation of topographic organization of object category 715 

processing driven by motion information has been largely neglected. However, an important 716 

exception can be found in the work of Beauchamp and colleagues (2003), in which they 717 

compared univariate fMRI responses between 1) full form videos and static images of humans 718 

and tools and 2) full form videos and point-light displays of humans and tools. Beauchamp et al. 719 

(2003) argued for two processing pathways—form and motion. Lateral temporal regions (STS 720 

and MTG), respond to their preferred category, humans and tools, respectively, in both PLDs and 721 

videos, suggesting category preference from motion without requiring form. Meanwhile, ventral 722 

temporal cortex (lateral and medial fusiform), needed form information for category preference 723 

responses. Our results are in agreement with these findings and demonstrate that the topography 724 

of animacy preference is not dependent on or exclusive to the human and tool categories—it also 725 

expands to other animate objects such as mammals and reptiles, and other inanimate objects such 726 

as pendulums/swings, and balls. These results suggest that large-scale animacy preference maps 727 

(Konkle & Caramazza, 2013, Sha et al., 2015) found with static objects in the brain might also 728 

be present for motion defined stimuli. Future studies with a larger stimulus set and sufficient 729 

power to perform whole-brain analyses will be crucial for expanding our findings beyond 730 

functionally defined regions of interest in VOTC and parietal cortex.  731 

 732 

Distinct but Overlapping Representations of Object Category for Dynamic and Static 733 

Stimuli 734 
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Using linear SVM classifiers, we decoded object category with high accuracy in all 735 

regions tested. In all regions but V1 and the right supramarginal area, both information sources 736 

drove object representations that were sufficiently distinguishable from each other to allow for 737 

high classification performance. Extracting form and motion information from the same objects 738 

and presenting them separately also allowed us to investigate the extent to which the 739 

representations are overlapping across stimulus formats. We used a cross-classification approach 740 

to identify regions that have format independent responses. A similar analysis has been used 741 

previously to study fMRI responses to human actions in full form videos and images (Hafri et al., 742 

2017). Our results are largely in qualitative agreement with those of Hafri and colleagues, with 743 

the exception that we found significantly more widespread cross-classification, possibly because 744 

our static stimuli were source matched to our dynamic stimuli. Cross-decoding in all regions 745 

(apart from V1) suggests that the object category representations driven by static and dynamic 746 

information were sufficiently distinct to allow for significant within format classification, but 747 

also sufficiently overlapping that their shared information could lead to significant cross-748 

classification. These results suggest the existence of abstract object category responses that pool 749 

information about object category across various cues in the visual input. 750 

 751 

Relationship between brain and behavior 752 

Multivariate responses to both the dynamic and static conditions in LO, pFS, EBA, and 753 

LOT-biomotion—the ventral and lateral regions—were correlated with the object similarity 754 

judgments of the dynamic and static stimuli, respectively, with no differences across condition. 755 

This implies that the fMRI responses in these regions follow the structure of the stimulus 756 

similarity characterized by our odd-one-out experiment. The only region to show a difference in 757 
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correlation across the stimulus conditions was the left supramarginal area, which showed higher 758 

correlations for the fMRI responses to the dynamic relative to the static stimuli. By contrast, the 759 

right supramarginal area showed no significant correlation to behavioral judgments of either 760 

condition, which indicates a lateralization of inanimate category processing to the left 761 

supramarginal area. This left lateralization has been shown previously in research on tool 762 

processing (Beauchamp et al., 2003). Importantly, not all regions that showed significant 763 

animacy preference or object category decoding had responses that were significantly correlated 764 

with the similarity structure of the behavioral judgments. In V1 and infIPS, the fMRI responses 765 

to both conditions were unrelated to the similarity judgments of both stimulus types, suggesting 766 

that these regions were extracting features irrelevant to similarity judgments on the objects. 767 

 768 

Conclusion 769 

In sum, our study demonstrates that in regions across occipito-temporal and parietal 770 

cortices, category responses driven by isolated motion signals parallel category responses to 771 

static form signals in a number of interesting ways. Regions that are traditionally considered part 772 

of the visual object recognition pathway that processes static information, such as the pFS, LO, 773 

and EBA, also extract robust object category information from isolated motion signals relevant 774 

to behavioral judgments of object similarity. Furthermore, cross-classification of object 775 

categories in all regions suggests that object-category information from static and dynamic 776 

signals overlap. Lastly, preferential processing of certain kinds of objects, such as animate or 777 

inanimate objects, is sensitive in some regions, i.e., the pFS and left SMG, to the format of visual 778 

information. Using the stimulus generation approach we have introduced, future studies can 779 

expand beyond the six object categories tested here and introduce parametric manipulations of 780 
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dimensions that are likely to play an important role in differential processing of motion-derived 781 

object categories. Candidate dimensions include the type of action or movements that the objects 782 

are performing as well as the orientation from which the movements are viewed. Such studies 783 

will be important for furthering our understanding of how various visual cues to object-category 784 

are processed and integrated together to form rich and robust object representations in the human 785 

brain.    786 
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