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 2 

Abstract 27 

Humans can label and categorize objects in a visual scene with high accuracy and speed—a 28 

capacity well-characterized with neuroimaging studies using static images. However, motion is 29 

another cue that could be used by the visual system to classify objects. To determine how motion-30 

defined object category information is processed in the brain, we created a novel stimulus set to 31 

isolate motion-defined signals from other sources of information. We extracted movement 32 

information from videos of 6 object categories and applied the motion to random dot patterns. 33 

Using these stimuli, we investigated whether fMRI responses elicited by motion cues could be 34 

decoded at the object category level in functionally defined regions of occipitotemporal and 35 

parietal cortex. Participants performed a one-back repetition detection task as they viewed motion-36 

defined stimuli or static images from the original videos. Linear classifiers could decode object 37 

category for both stimulus formats in all higher order regions of interest. More posterior 38 

occipitotemporal and ventral regions showed higher accuracy in the static condition and more 39 

anterior occipitotemporal and dorsal regions showed higher accuracy in the dynamic condition. 40 

Significantly above chance classification accuracies were also observed in all regions when 41 

training and testing the SVM classifier across stimulus formats. These results demonstrate that 42 

motion-defined cues can elicit widespread robust category responses on par with those elicited by 43 

luminance cues in regions of object-selective visual cortex. The informational content of these 44 

responses overlapped with, but also demonstrated interesting distinctions from, those elicited by 45 

static cues.  46 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 23, 2022. ; https://doi.org/10.1101/2022.05.03.490462doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.03.490462
http://creativecommons.org/licenses/by-nd/4.0/


 3 

Significance Statement 47 

Much research on visual object recognition has focused on recognizing objects in static images. 48 

However, motion cues are a rich source of information that humans might also use to categorize 49 

objects. Here, we present the first study to compare neural representations of several animate and 50 

inanimate objects when category information is presented in two formats: static cues or isolated 51 

dynamic cues. Our study shows that while higher order brain regions differentially process object 52 

categories depending on format, they also contain robust, abstract category representations that 53 

generalize across format. These results expand our previous understanding of motion-derived 54 

animate and inanimate object category processing and provide useful tools for future research on 55 

object category processing driven by multiple sources of visual information.   56 
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Introduction 57 

Humans can categorize objects with striking speed and accuracy. Previous research on the 58 

neural basis of visual object recognition has largely focused on the processing of static features 59 

from images along the ventral visual hierarchy of the primate brain (reviewed in Peissig & Tarr, 60 

2007). However, real-world scenes are not static. In fact, decades of behavioral research have 61 

shown that motion cues can contain category-relevant information that humans use to make 62 

judgements about objects. Behavioral studies using point-light displays (PLDs, Johansson, 1973; 63 

Johansson, 1976) have established that, even with the impoverished motion information available 64 

in PLDs, humans can quickly perceive a moving person, identify the action being performed, and 65 

even determine the actor’s age, gender, and affect (e.g., Barclay et al., 1978; Bassili, 1978; Cutting 66 

and Kozlowski, 1977; Dittrich et al., 1996).  67 

The majority of biological motion research has focused on the perception of human motion 68 

due to the significant role that it plays in our social lives. However, our sensitivity to information 69 

in motion cues is not restricted to perceiving humans. Humans can also infer animacy and complex 70 

social relations from the movements of basic geometric shapes (Schultz & Bülthoff, 2013; Heider 71 

& Simmel, 1944; Scholl & Gao, 2013) and can recognize animal categories such as chickens, dogs, 72 

horses and cats in PLDs (Mitkin & Pavlova, 1990; Mather & West, 1993; Pinto & Shiffrar, 2009; 73 

Pinto, 1994; Pavlova et al., 2001).  74 

Investigations of the neural underpinnings of object categorization from motion 75 

information with neuroimaging have identified the superior temporal sulcus (STS) as a key region 76 

involved in processing biological motion. The STS has been shown to track animacy signals in 77 

motion cues from simple shapes and to process dynamic movements of human faces and bodies 78 

(Schultz & Bulthoff, 2013; Hirai & Hiraki, 2006; Pitcher et al. 2011, Pavlova et al., 2004). 79 
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Neuropsychological studies have also suggested the involvement of parietal regions in the 80 

integration of motion and form information during form-from-motion identification tasks (Schenk 81 

& Zihl, 1997).  82 

Despite extensive research into neural substrates of human motion processing (Giese, 83 

2013), there have been comparatively few studies that have investigated how non-human motion 84 

is processed in the brain. Previous studies suggest preferential processing of human motion over 85 

that of one or two other classes, e.g., mammals or tools, in regions in lateral occipito-temporal 86 

cortex (LOTC) including the posterior STS (Papeo et al., 2017), human middle temporal complex 87 

(Kaiser et al., 2012), and fusiform gyrus (Grossman & Blake, 2002), as well as the inferior parietal 88 

lobe, inferior frontal gyrus (Saygin et al., 2004), the posterior and anterior cingulate cortices and 89 

the amygdala (Bonda et al., 1996; Ptito et al., 2003).  90 

The limited neuroimaging studies that have directly compared object representations 91 

driven by motion to those driven by static images have focused on human (or monkey) faces and 92 

bodies (Furl et al., 2012; Hafri et al., 2017; Pitcher et al., 2011) or have only compared humans 93 

with tools (Beauchamp et al., 2003). Furthermore, these studies (with the exception of Beauchamp 94 

et al., 2003), have used videos containing both static and dynamic cues as their dynamic condition 95 

and thus have not been able to carefully separate the contributions of motion- and image-96 

information to the responses. Thus, a systematic comparison of several object category 97 

representations driven by isolated motion and static cues has yet to be undertaken.   98 

Here, we devised a novel method to generate stimuli that only contained motion cues. We 99 

extracted motion signals from videos of objects and simulated object movements using flow fields 100 

of moving dots. We first demonstrated that humans can recognize a wide variety of animate and 101 

inanimate objects in our dynamic stimuli. We then used these stimuli, along with static images, in 102 
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an fMRI study to compare object category representations derived from dynamic and static cues 103 

in occipito-temporal and parietal regions of interest across visual cortex.  104 

Materials and Methods 105 

Stimuli  106 

Stimulus creation pipeline 107 

Eight categories were selected to sample a wide range of animate and inanimate object 108 

categories: human, non-human mammal, bird, reptile, vehicle, tool, pendulum/swing, and ball. We 109 

sought videos of objects performing a wide range of movements. Video clips were downloaded 110 

from various sources on the Internet or shot with in-house equipment in accordance with the 111 

following criteria: 1) contained a single moving object, 2) contained the entire object in frame 112 

without occlusion, 3) shot without camera movement (no zooming, panning, tracking), 4) 113 

contained no movement in the background, and 5) lasted at least 3 seconds. 114 

 We used in-house Matlab code, the Psychtoolbox extension, and in-house python code to 115 

generate moving dot patterns that followed the movement of the objects in the videos.  To do this, 116 

first, all videos were trimmed to 3 seconds, cropped with a 3:2 x/y aspect ratio to center the object, 117 

and resized to 720 x 360 pixel resolution. Videos with 30 frames per second were then up-sampled 118 

so that all videos had a frame rate of 60 fps. The local, frame-by-frame motion of the objects in 119 

each video in x and y directions was then extracted using the Farneback optical flow algorithm 120 

(Farneback, 2003). 121 

 Next, object movements extracted from the full videos were projected on moving dot 122 

patterns. To create the moving dot stimuli, 2500 white dots (2 pixel diameter) were randomly 123 

initialized on a grey background (360 x 720 pixels). Dots that fell within pixels with nonzero 124 

motion vector values were moved in the direction and magnitude specified by the extracted motion 125 
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matrix in the next frame. The lifetime (number of contiguous frames of movement) of any dot was 126 

randomly sampled from a uniform distribution between 1 and 17 frames. The lifetime value 127 

decreased on every frame. If the lifetime of a dot reached 0 or they reached the boundaries of the 128 

frame, they were reinitialized with a lifetime of 17 frames. 129 

 The number of dots for a given frame and their lifetime was set to mitigate the formation 130 

of dot clusters that could induce perception of an edge in individual frames of the video. The 131 

frames were qualitatively examined to see if they induced a perception of any kind of edge or form. 132 

Videos that produced such artifacts were removed from the stimulus set. For the fMRI experiment, 133 

these moving dot videos were rendered live for each trial so that the dot initializations were always 134 

random.  135 

 136 

Stimulus Validation Experiment 137 

To ensure that the stimuli contained clear category information, we conducted an online 138 

experiment. 430 participants (223 women, aged 18-65) were recruited on Amazon Mechanical 139 

Turk to perform an object categorization task on the dynamic stimuli. Participants each performed 140 

between 10-11 trials. For each trial, participants were asked 3 questions about the object in a looped 141 

video: 1) whether the object in the video was of an animal or non-animal, 2) which of 8 listed 142 

categories the object belonged to, and 3) whether they could label the object. If subjects responded 143 

‘yes’ for the third question, they were required to type the label in a response text box. Each of the 144 

three questions contained an “I don’t know” option. Subjects had to answer all three questions to 145 

complete each trial.  146 

Overall, subjects categorized objects based on their motion in the moving dot stimuli with 147 

an average accuracy of 76% (202 total videos). The three animate (human, mammal, reptile) and 148 
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three inanimate (tool, ball, pendulum/swing) categories with the highest accuracy were used for 149 

the fMRI experiment. For each category, the 6 videos with the highest accuracy were selected 150 

(mean accuracy = 96%). 151 

The overall ‘motion energy’ of each video was calculated by averaging the motion vectors 152 

across all pixels in all frames. Non-zero motion vectors were also used to calculate the average 153 

non-zero ‘motion energy’. The average overall and non-zero motion energy for the 6 videos in 154 

each category were entered into pairwise two-sample heteroscedastic t-test comparisons to ensure 155 

that there were no significant differences between categories for either metric. Neither the overall 156 

nor the non-zero motion energies were significantly different across categories (all ps > 0.05, even 157 

without correction for multiple comparisons).     158 

After the dynamic video stimulus set was finalized, the static image stimulus set was 159 

generated by randomly selecting three frames of the full form video from which the moving dot 160 

stimulus was created. The frame with the object in clearest view was selected and further processed 161 

to extract the object from the frame. For the fMRI experiment, the isolated object was pasted onto 162 

a background of 2500 randomly initialized white dots on a grey background, to mimic a frame of 163 

the dynamic moving dot stimuli.  164 

 165 

Functional MRI experiment 166 

Participants 167 

Fifteen healthy human subjects (six women, age range 19-42) with normal or corrected to 168 

normal vision were recruited for the fMRI experiment. Participants were brought in for a 2 h fMRI 169 

session that included the main experiment and three localizer tasks. Prior to entering the scanner, 170 

all participants practiced the tasks for the main experiment and localizer runs and underwent a 171 
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short behavioral task to familiarize themselves with the stimuli. All subjects provided informed 172 

consent and received compensation for their participation. The experiments were approved by the 173 

NIH ethics committee. 174 

Training Session 175 

The independent norming study performed with mTurk demonstrated that people can 176 

recognize the objects in these stimuli with high accuracy after minimal instruction. However, to 177 

avoid introducing any random factors across subjects and differential processing during the first 178 

run of the session relative to the rest, participants participated in a training session prior to entering 179 

the scanner. During the training session, they familiarized themselves with the 36 dynamic stimuli 180 

and were subsequently tested to ensure accurate recognition. Each video was shown on loop until 181 

subjects could verbally report which of the 6 categories the object belonged to. If the subject 182 

categorized the object correctly, the experimenter advanced to the next stimulus; incorrect 183 

categorizations were verbally corrected by the experimenter. After all stimuli had been verbally 184 

categorized, subjects underwent a testing session. In each trial, a random video was shown once 185 

without looping, followed by a grey screen with 6 category labels placed in a circle around the 186 

center of the screen. Subjects were instructed to categorize the object in the video by clicking on 187 

the corresponding category label. No feedback was provided during the testing session. If a subject 188 

performed above 90% accuracy, they continued on to the fMRI experiment. The training and 189 

testing session took no longer than 15 minutes. Subjects required little to no correction during the 190 

training session and performed with an average of 99% accuracy in the test session on the first 191 

iteration (n = 13, data for two subjects were lost due to technical problems).  192 

 193 

 194 
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MRI Methods 195 

MRI data were collected from a Siemens MAGNETOM Prisma scanner at 3 Tesla 196 

equipped with a 32-channel head coil. Subjects viewed the display on a BOLDscreen 32 LCD 197 

(Cambridge Research Systems, 60 Hz refresh rate, 1600 x 900 resolution, at an estimated distance 198 

of 187 cm) through a mirror mounted on the head coil. The stimuli were presented using a Dell 199 

laptop with MATLAB and Psychtoolbox extensions (Brainard, 1997; Kleiner, Brainard, & Pelli, 200 

2007).  201 

For each participant, a high resolution (1.0 x 1.0 x 1.0 mm) T1-weighted anatomical scan 202 

was obtained for surface reconstruction. All functional scans were collected with a T2*-weighted 203 

single-shot, multiple gradient-echo EPI sequence (Kundu et al., 2012) with a multiband 204 

acceleration factor of 2 slices/pulse. 50 slices (3 mm thick, 3 x 3 mm2 in-plane resolution) were 205 

collected to cover the whole brain (TR 2 s, TE = 12 ms, 28.28 ms, 44.56 ms, flip angle = 70°, FoV 206 

= 216 mm). 207 

Experimental Design 208 

Main Experiment: The main task of the experiment included 6 categories: human, 209 

mammal, reptile, tool, pendulum/swing, and ball and 2 stimulus conditions: dynamic (moving dot 210 

videos) and static (object images pasted on dot background). Both dynamic and static stimuli were 211 

presented at the same size and location (subtending 9.6° x 4.8° visual angle). We used a block 212 

design to present alternating blocks of dynamic and static stimuli while also alternating between 213 

animate and inanimate blocks. The order of the six categories and the two formats were 214 

counterbalanced within and across runs. Four different counterbalancing designs were created and 215 

each subject was randomly assigned one of the designs. 216 
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Each run contained 12 condition blocks, one for each condition (2 formats x 6 categories), 217 

began with an initial fixation block of 8 s, and ended with a final fixation of 12 s. Each condition 218 

block began with an 8 s fixation period in which a red fixation dot (5 pixels in radius) was shown 219 

on a grey background. The fixation period was then followed by the stimulus presentation period 220 

in which 4 stimuli were presented from the same condition, each for 2.8 s followed by a 200 ms 221 

inter-stimulus interval, resulting in 12 s of stimulus presentation. The duration of each condition 222 

block was 20 s (8 s fixation and 12 s stimulus presentation). For each run, the 12 condition blocks 223 

and the initial and final fixation blocks lasted 252 s (4 min 12 s). Each participant completed 12 224 

runs. 225 

To maintain their attention, subjects were given a one-back repetition detection task in 226 

which they were instructed to press a button on an MRI-compatible button box (fORP, Cambridge 227 

Research Systems) to indicate detection of a repeated stimulus within each block. There was one 228 

stimulus repetition per block and the repeated stimulus of each block type was changed across 229 

runs. Because there were only 3 unique trials per block but each condition had 6 unique stimuli, 230 

half of the stimuli of each category were shown on odd runs and the other half were shown on the 231 

even runs. These blocks were later combined during analysis. Average performance on this task 232 

was 94%. To ensure proper fixation, eye movements were monitored using an ASL eye-tracker.  233 

 Object Localizer task: To localize functional ROIs in ventral and lateral occipito-temporal 234 

cortex, we presented images of objects in 6 conditions: faces, scenes, head-cropped bodies, central 235 

objects, peripheral objects (4 objects per image), and phase-scrambled objects in a block design 236 

paradigm. Subjects were instructed to fixate while 20 images were presented in each block for 237 

750ms with a 50ms fixation screen in between. Each block lasted 16 s and was repeated 4 times 238 

per condition. Each run started with a 12s fixation period. Additional 8 s fixation periods were 239 
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presented after every 5 blocks. Total run duration was 436 s (7 min 16 s). Subjects performed a 240 

motion detection task. During each block, a random image would jitter by rapidly shifting 4 pixels 241 

back and forth horizontally from the center of the screen. Subjects indicated detection of motion 242 

with a button press. Each participant completed 1-2 runs of this task.    243 

Motion localizer task: To localize functional ROIs related to the perception of biological 244 

and non-biological motion, we presented blocks of point light display (PLD) videos of humans 245 

performing various actions in four conditions: 1) biological motion: normal PLD video (e.g. 246 

walking, riding a bicycle), 2) random motion: the points in the PLD were spatially scrambled in 247 

each frame, 3) translation: randomly positioned dots translated across the screen in a random 248 

direction with the speed set to the average speed of the movement from the PLD videos, and 4) 249 

static: a random frozen frame of the PLD was shown as an image. There were 8 exemplars per 250 

condition, each presented for 1.5 s followed by a 500 ms interstimulus fixation period. Each block 251 

lasted 16 s and was presented 4 times per condition. Each run began with a 6s fixation period and 252 

8 s fixation periods were interspersed between each block making the total run duration 422.7 s (7 253 

min 3 s). Subjects performed a one-back repetition detection task, in which they indicated detection 254 

of a repeated stimulus during each block by pressing a button. Each subject completed 1-2 runs of 255 

this task.  256 

Topographic mapping: Topographic visual region V1 was mapped using 16 s blocks of 257 

a vertical or horizontal polar angle wedge with an arc of 60° flashing black and white 258 

checkerboards at 6 Hz. During the stimulus blocks, subjects fixated on a red fixation dot (5 pixel 259 

radius) and detected a dimming on the wedge, that occurred randomly either at the inner, middle, 260 

or outer ring of the wedge at 4 random times within the 16 s block. There was a 16 s fixation period 261 
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after each block and each run began with a 16 s period of fixation. Each run lasted 272 s (4 min 262 

and 40 s), and subjects completed 1-2 runs of this task. 263 

Data Analysis 264 

fMRI data were analyzed using AFNI (Cox, 1996) and in-house MATLAB codes. The data 265 

were pre-processed by removing the first 2 TRs of each run, motion correction, slice timing 266 

correction, smoothing with 5mm FWHM, and intensity normalization. The EPI scans were 267 

registered to the anatomical volume. The three echoes were combined using a weighted average 268 

(Posse et al., 1999; Kundu et al., 2012). TRs with motion exceeding 0.3 mm as well as outliers 269 

were excluded from further analysis. A general linear model analysis with 12 factors (2 stimulus 270 

conditions x 6 categories) was used to extract t-values for each condition in each voxel. The 6 271 

degrees of freedom movement parameters was used as an external regressor. To account for the 272 

effect of residual autocorrelation on statistical estimates, we applied a generalized least squares 273 

time series fit with restricted maximum likelihood (REML) estimation of the temporal auto-274 

correlation structure in each voxel. The t-values were calculated across all runs for the univariate 275 

analysis and per-run for the multivariate analysis. 276 

ROI Definition: Group-constrained subject specific method 277 

We used a systematic, unbiased method for creating individualized regions of interest 278 

constrained by group responses to our localizer experiments, basing our approach on a method of 279 

region of interest definition developed by Kanwisher and Fedorenko (described in Pitcher et al., 280 

2011).  281 

First, t-values were extracted from generalized linear models (GLMs) of individual 282 

activation maps from the localizer experiments. All subjects’ statistical activation maps (N = 15) 283 
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were converted to Talairach space. For each subject, the individual localizer contrast maps were 284 

thresholded at p < 0.0001. Group overlap proportion maps were then created for each contrast.  285 

Second, we thresholded the group proportion maps for each contrast separately to 286 

counteract contrast- or localizer-specific differences in spatial variability or overall activation. The 287 

thresholds for specific contrast maps were as follows: For the object localizer experiment, the 288 

thresholds were N ≥ 0.7 for objects vs scrambled (lateral occipital, LO; posterior fusiform sulcus, 289 

pFS), N ≥ 0.5 for bodies vs objects (extrastriate body area, EBA), and N ≥ 0.25 for peripheral 290 

objects vs scrambled (inferior intraparietal sulcus, infIPS). For the biological motion experiment, 291 

the threshold for biological motion vs translation was N ≥ 0.5 (lateral occipito-temporal biomotion 292 

region, LOT-biomotion). For the retinotopy experiment, positive and negative maps were created 293 

separately and thresholded at N ≥ 0.5.  294 

Third, we used a Gaussian blur of 1mm FWHM. The blurred maps were then clustered 295 

using the nearest neighbors method and a minimum cluster size of 20 voxels. For V1, positive and 296 

negative maps were clustered separately and then combined with a step function. Two steps were 297 

required to finalize the group-constrained ROIs. Anatomical landmarks were used to separate pFS 298 

from LO, and LO from infIPS. V1 was separated from V2 using a hand-drawn region based on the 299 

group map. All ROIs were then selected to have no overlapping voxels. 300 

The final nonoverlapping group-constrained ROIs were made subject specific by creating 301 

masks based on the individual subject’s activity during the localizer experiments (localizer contrast 302 

threshold: p < 0.05). For example, for each subject’s EBA, the group-constrained EBA was masked 303 

by the subject’s response to bodies > objects with a threshold of p < 0.05. If this process did not 304 

yield an ROI with at least 100 voxels across the two hemispheres, the ROI was instead created 305 
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with a mask made from the mean response during the main experiment (task vs fix, p < 0.0001 306 

uncorrected). 307 

The supramarginal (SMG) region of interest was anatomically defined using a Freesurfer 308 

parcellation (Desikan et al, 2006). To make the subject specific supramarginal ROIs, individual 309 

masks were made from the mean response during the main experiment (task vs fixation, p < 0.0001 310 

uncorrected) and intersected with the template SMG region.  311 

 312 

Figure 1. Regions of interest of a single example subject generated by the group-constrained single-subject 313 
method. The supramarginal area (SMG) is colored in pink, the inferior intraparietal sulcus (infIPS) is 314 
colored in dark green, the lateral occipital complex (LO) is colored in light green, the extrastriate body area 315 
(EBA) is colored in yellow, the biological motion related lateral occipito-temporal area (LOT-bio) is 316 
colored in dark blue, the posterior fusiform sulcus (pFS) is colored in teal, and primary visual cortex (V1) 317 
is colored in red.  318 

 319 

Univariate analysis 320 

To calculate the average fMRI response per condition for each ROI, using a general linear 321 

model analysis, whole brain t-value maps were extracted for each of the 12 conditions and masked 322 

with a task > fixation threshold of p < 0.0001 for each subject. The group-constrained subject-323 

specific ROIs were intersected with these maps, resulting in a t-value response per voxel in each 324 

ROI for all 12 conditions in each subject. The average responses for four conditions were then 325 

calculated from these ROI responses: dynamic animate, dynamic inanimate, static animate, and 326 

static inanimate. The animacy preference in each ROI was calculated as the difference between 327 

the animate and inanimate conditions, separately for the static and dynamic stimulus formats. One-328 
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sample and paired t-tests were conducted to determine respectively: 1) if the animacy preference 329 

in each ROI and each format was significantly different from 0, and 2) if the animacy preference 330 

was significantly different across stimulus formats within each ROI. All t-tests were corrected for 331 

multiple comparisons with False Discovery Rate correction (Benjamini and Hochberg, 1995) 332 

across ROIs. 333 

Multivariate pattern analysis (MVPA) 334 

We performed multivariate pattern analyses to investigate whether object category 335 

information was present in the fMRI responses to the dynamic and static stimuli. We extracted t-336 

values in each voxel for every condition in each run using a GLM analysis. To perform pairwise 337 

object category decoding, we used a linear support vector machine classifier (SVM; Chang and 338 

Lin, 2011) with feature selection. The SVM was trained using leave-one-out cross validation on 339 

data that was normalized with z-scoring to avoid magnitude differences between conditions. Using 340 

t-tests, we calculated the top 100 most informative voxels per ROI (Mitchell et al., 2004) to equate 341 

the number of voxels analyzed per ROI and facilitate comparisons between them. This feature 342 

selection was performed separately for each iteration of training. Results did not qualitatively 343 

change when the analysis was performed without feature selection. 344 

 We trained and tested the linear SVM in two conditions: 1) within-classification, in which 345 

the SVM was trained and tested on the same stimulus format, and 2) cross-classification, in which 346 

SVM was trained in one stimulus format and tested on the other format. The classification was 347 

performed on all unique pairs of object categories to obtain classification accuracy matrices. The 348 

off-diagonal values of the matrices were averaged to produce two within-format and two cross-349 

format average object category decoding accuracies per subject. The two cross-format values were 350 

then averaged to obtain one cross-classification accuracy. One-sample and paired t-tests were 351 
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conducted to determine respectively: 1) if the decoding accuracy in each ROI and each format was 352 

significantly different from chance (0.5), and 2) if the decoding accuracy was significantly 353 

different across stimulus formats within each ROI. All p-values listed from t-tests and ANOVAs 354 

were corrected for multiple comparisons with False Discovery Rate correction across ROIs 355 

(Benjamini and Hochberg, 1995). For ANOVAs, effect sizes were calculated with generalized eta 356 

squared (𝜂𝐺
2 ), for the one sample and paired t-tests, Cohen’s d was used.  357 

Multidimensional scaling of fMRI responses 358 

To visualize how stimulus format and object category impact the responses in our regions 359 

of interest, we quantified the similarities between the patterns of fMRI responses to the 12 360 

conditions in each ROI by calculating all pairwise Euclidean distances. The individual subject 361 

Euclidean distances per ROI were averaged across subjects to create group Euclidean distances, 362 

which will be referred to as the fMRI-Euclidean matrix. We then visualized these similarities by 363 

applying classical multidimensional scaling (Shepard, 1980) on the fMRI-Euclidean matrix and 364 

plotting the first two dimensions for each ROI. 365 

We measured the reliability of the fMRI-Euclidean matrix by performing a permutation 366 

analysis wherein the individual subject matrices were split into two groups, averaged to create two 367 

group matrices, and then correlated to get a measure of the split-half reliability. Correlations for 368 

every possible combination of subjects in the two groups were measured and averaged to produce 369 

a final reliability score. The reliabilities of the dynamic and static fMRI-Euclidean matrices were 370 

evaluated separately. 371 

 372 

 373 

 374 
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Object similarity behavioral experiment 375 

 353 participants (32% female among the 85% who responded to the demographic survey) 376 

were recruited on Amazon Mechanical Turk to perform an object similarity task on the dynamic 377 

or static stimuli. All participants were located in the United States. 378 

 For each trial, participants were presented with three stimuli on a grey screen and were 379 

instructed to select the ‘odd-one-out’ stimulus (the stimulus that was most distinct among the three) 380 

by clicking on it. Dynamic and static stimuli were tested separately. Participants performed blocks 381 

of 15 trials to complete the task and were permitted to perform more than one block. To ensure 382 

data quality, trials with RTs smaller than 0.6 s and 1.2 s and larger than 10 s or 20 s were removed 383 

for the image and video tasks, respectively. These cutoffs were decided based on the distributions 384 

of RTs. If 5 or more trials in a block were eliminated, the entire block (or HIT in mTurk 385 

terminology) was removed. The eliminated blocks were resubmitted to mTurk to ensure that we 386 

had at least 2 repetitions for each unique triplet allowing for 68 trials for each pair of stimuli.  387 

 To build a dissimilarity matrix based on the odd-one-out image and video tasks, a response 388 

matrix of the pairwise dissimilarity judgments was constructed for each task by treating each triplet 389 

as three object pairs and assigning 1’s to dissimilar pairs (i.e. the two pairs that included the 390 

selected odd object) and a 0 to the similar pair (i.e. the pair that did not include the selected odd 391 

object). We also constructed a count matrix to determine how many times each pair was shown 392 

together in a triplet. By dividing the response matrix by the count matrix, we obtained a 393 

dissimilarity matrix with values ranging from 0-1 with higher values denoting higher dissimilarity. 394 

To produce a category level behavioral dissimilarity matrix, we took the off-diagonal upper 395 

triangle of the 36 x 36 matrix and averaged the item distances that belonged to the same category, 396 

resulting in a 6 x 6 matrix, which will be referred to as the behavioral-dissimilarity matrix. The 397 
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diagonal was nonzero due to nonzero distances between exemplars within each category. Only the 398 

off-diagonal of this matrix was used in further analyses.  399 

To gauge the stability of the behavioral-dissimilarity matrix, we performed a split-half 400 

reliability analysis. Because each subject only saw a small set of all possible triplets, instead of 401 

splitting the data by subject, we split based on repeats of stimulus pairs (3 pairs per triplet) into 402 

two groups. The binary similarity values for all pairs were correlated across the two groups to 403 

produce a measure of reliability of the similarity judgments.  404 

 405 

Multi-dimensional scaling and hierarchical clustering of object similarity responses 406 

 We visualized the structure of the object similarity judgments from the odd-one-out tasks 407 

at the category level using classical multidimensional scaling on the behavioral-dissimilarity 408 

matrices of the dynamic and static stimuli separately (Shepard, 1980). The two behavioral-409 

dissimilarity matrices were also correlated to quantify their degree of similarity. To investigate the 410 

structure of the object similarity judgments at the exemplar level, we used a hierarchical or 411 

agglomerative clustering algorithm available in the Python package scipy (Virtanen et al., 2020) 412 

on the dynamic and static behavioral-dissimilarity matrices separately. For visualization purposes, 413 

images of the individual exemplars, which were adapted from the static stimuli used in the 414 

experiment, were included under the resultant dendrograms for both static and dynamic conditions 415 

(note that dynamic stimuli are not recognizable in static frames). 416 

 417 

Brain-behavior correlation 418 

To determine the relationship between the multivariate information for the six categories 419 

in each region of interest (fMRI-Euclidean matrix) with behavioral assessments of the category 420 
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similarity (behavioral-dissimilarity matrix), we correlated the two measures. For each subject, the 421 

off-diagonal of the fMRI-Euclidean matrix was correlated with the off-diagonal behavioral-422 

dissimilarity matrix using Pearson’s linear correlation coefficient, separately for the dynamic and 423 

static experiments. The correlations were then averaged across subjects. The noise ceiling of these 424 

correlations was then calculated for each ROI as the square root of the product of the reliabilities 425 

of the fMRI-Euclidean matrix and the behavioral-dissimilarity matrix. As the reliability of the 426 

behavioral-dissimilarity matrix was calculated with only one split, the standard error of the noise 427 

ceiling was calculated based on the mean and standard deviation of the reliability scores generated 428 

on each permutation of the fMRI-Euclidean reliability analysis.  429 

 430 

Brain-optic flow correlation 431 

To ensure that optic flow information from the six object categories was not predictive of 432 

the multivariate fMRI responses in any of the regions of interest, we performed a control analysis. 433 

We first calculated the Euclidean distances between the dynamic stimulus information of each 434 

category by vectorizing the 4-dimensional stimuli (x-coordinates, y-coordinates, x- and y-435 

magnitudes of optic flow, and time) and averaging the distances between stimuli of the same 436 

category, creating the optic flow-Euclidean matrix. We then correlated the optic flow-Euclidean 437 

matrix with the dynamic fMRI-Euclidean matrix of each ROI for each subject. The correlations 438 

were averaged across subjects to generate group mean correlations and one-sampled t-tests were 439 

used to determine whether any positive correlations were significantly above zero.  440 

 441 

 442 

 443 
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Results 444 

Effect of stimulus format on univariate animacy preference 445 

We first looked at the mean amplitude of responses to the two superordinate object 446 

categories (animate/inanimate) in the two stimulus formats (static/dynamic). We extracted 447 

individual subjects’ t-values from the GLM analysis and averaged the response for the three 448 

animate and the three inanimate categories within each image format to get 4 values per subject. 449 

Figure 2 shows the pooled results of this analysis across subjects. A two-way ANOVA with 450 

stimulus format and animacy as factors showed a significant main effect of stimulus format in all 451 

ROIs (fs > 7.26, ps ≤ 0.02, 𝜂𝐺
2s > 0.02) with higher response amplitude in the dynamic compared 452 

to the static condition. A main effect of animacy was also found in LO, pFS, EBA, LOT-biomotion, 453 

and left SMG (fs > 7.68, ps < 0.03, 𝜂𝐺
2s > 0.02), but not in V1, infIPS, or right SMG (fs < 3.38, ps 454 

> 0.12, 𝜂𝐺
2s < 0.009). For the four ventrotemporal cortical areas, average responses were 455 

significantly higher for the animate object categories, while in left SMG the average response was 456 

higher for the inanimate object categories. The pattern of responses in SMG was not solely driven 457 

by the tool category as removing tools from the inanimate objects did not qualitatively change the 458 

results (data not shown). 459 

 460 
Figure 2. Univariate fMRI 461 
responses to dynamic and static 462 
stimuli averaged within animate 463 
and inanimate categories for each 464 
region of interest. Results do not 465 
qualitatively differ when 466 
removing the human and tool 467 
categories from the analysis. 468 
Error bars represent standard 469 
errors. 470 

 471 
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 472 
Figure 3. Univariate fMRI response preference for animate compared to inanimate object categories in 473 
dynamic and static stimuli for each region of interest. *ps < 0.05. Error bars represent standard errors. 474 

 475 

To better visualize and investigate the interaction between stimulus format and animacy, 476 

we subtracted inanimate responses from animate responses to produce a measure of animacy 477 

preference within each stimulus format (Figure 3). Unpaired t-tests evaluating animacy preference 478 

against 0 revealed that there was no animacy preference in V1, inferior IPS, and the right SMG 479 

area in either stimulus format (dynamic: ts < 1.56, ps > 0.21, Cohen’s ds < 0.42, static: ts < 0.76, 480 

ps > 0.55, Cohen’s ds < 0.20). In contrast, for both stimulus formats, LO, pFS, and EBA showed 481 

a preference for animate categories (dynamic: ts > 3.15, ps < 0.02, Cohen’s ds > 0.84, static: ts > 482 

5.05, ps < 0.0002, Cohen’s ds > 1.35) while left SMG preferred inanimate categories (dynamic: 483 

t(14) = 5.59, p = 0.0005, Cohen’s d = 1.49). LOT-biomotion had significant preference for animate 484 

categories in the static (t(14) = 3.97, p = 0.003, Cohen’s d = 1.06) but not in the dynamic condition 485 

(t(14) = 1.14, p = 0.31, Cohen’s d = 0.31). All regions showed a preference in the same direction 486 

for dynamic and static conditions.  487 

pFS and left SMG further showed a significant difference in the magnitude of their animacy 488 

preference across formats. pFS, a ventral region known to be involved in object recognition, 489 
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showed a stronger preference for animate object stimuli in the static compared to the dynamic 490 

condition (paired t-test: t(14) = 3.07, p = 0.03, Cohen’s d = 0.79), while left SMG, a parietal region 491 

thought to be involved in tool processing and action observation had a stronger preference for 492 

inanimate object stimuli in the dynamic compared to the static condition (paired t-test: t(14) = 493 

3.73, p = 0.02, Cohen’s d = 0.96). These significant interactions between stimulus format and 494 

animacy preference suggest that the category preference responses in pFS and left SMG are 495 

modulated by the format through which the category information is provided. The most ventral 496 

region, pFS, is more sensitive to static form presentations of animate objects and the most dorsal 497 

lateral region, left SMG, is more sensitive to dynamic motion information about inanimate objects.  498 

 499 

Effect of stimulus format on multivariate object category representations 500 

We next examined the multivariate patterns of each of our regions of interest to further 501 

explore how object category information is represented in the brain when sourced from dynamic 502 

movements and static images. We first sought to test if each of our regions contained information 503 

about the 6 object categories within each stimulus format. To do this, we calculated average 504 

pairwise classification accuracy for the 6 object categories for the static and dynamic conditions 505 

using a linear SVM classifier (Chang and Lin, 2011). Figure 4a shows the pooled results of this 506 

analysis across subjects. Unpaired t-tests revealed that the object categories were decoded 507 

significantly above chance in both dynamic and static formats in all regions but V1 (dynamic: ts > 508 

7.04, ps < 0.00001, Cohen’s ds > 1.82; static: ts > 2.73, ps < 0.02, Cohen’s ds > 0.71). In V1, 509 

significant decoding was only found in the static stimulus condition (static: t(14) = 8.31, p = 510 

0.00001, Cohen’s d = 2.15; dynamic: t(14) = 2.05, p = 0.06, Cohen’s d = 0.53). In all regions but 511 

infIPS, there were significant differences between the decoding accuracies across stimulus format 512 
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(infIPS: t(14) = 0.59, p = 0.57, Cohen’s d = 0.15). In V1, LO, pFS, and EBA decoding accuracies 513 

were higher in the static condition than the dynamic (ts > 2.32, ps < 0.001, Cohen’s ds > 0.60), 514 

while in LOT-biomotion and bilateral SMG, decoding accuracies were higher in the dynamic 515 

condition (ts > 3.24, ps < 0.008, Cohen’s ds > 0.84).  516 

To ensure that the significant decoding of object category from dynamic information was 517 

due to differences in the responses to object categories and not contingent upon optic flow 518 

information differences that were confounded with category in our stimulus set, we performed a 519 

control analysis in which we correlated the dynamic stimulus information with the multivariate 520 

fMRI responses (see Methods). No significant positive correlations were observed for any of the 521 

regions of interest (ts < 2.8, ps > 0.06). 522 

We next used a cross-classification method to determine if abstract responses to object 523 

categories irrespective of stimulus format exist in our ROIs. The SVM classifier was trained in 524 

one stimulus format and then tested in the other format. Decoding accuracies when training on 525 

static and testing on dynamic and training on dynamic and testing on static were averaged to 526 

produce the light grey bars shown in Figure 4b. We also calculated the within-classification 527 

accuracy for training and testing within stimulus format (dark grey bars in Figure 4b; average of 528 

the two bars in Figure 4a). Significant cross-classification was observed in all regions of interest 529 

(ts > 5.31, ps < 0.0001, Cohen’s ds > 1.37), and was significantly lower than within-classification 530 

in all ROIs (ts > 5.24, ps < 0.0001, Cohen’s ds > 1.35). This suggests that the information about 531 

object categories in the multivariate pattern responses to the dynamic and static stimuli was 532 

sufficiently similar to allow for significant decoding in one stimulus format after being trained on 533 

the other.  534 

 535 
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Figure 4. Object category SVM decoding accuracies in each ROI. a) Average SVM decoding accuracies 536 
when training and testing within the dynamic (pink) and static (teal) conditions. Asterisks within the bars 537 
represent significance in t-tests against chance. All average decoding accuracies were significantly above 538 
chance except for the dynamic condition in V1. Asterisks above bars represent paired t-tests across 539 
format. In all regions but infIPS, accuracies were significantly higher for one of the formats—LO, pFS, 540 
and EBA had significantly higher accuracy in the static condition while LOT-biomotion and bilateral 541 
SMG had significantly higher accuracy in the dynamic condition. b) The within stimulus format decoding 542 
accuracies, depicted in dark grey bars, were produced by averaging the dynamic and static decoding 543 
accuracies in A. The cross-format decoding accuracies are shown in light grey bars. Cross classification 544 
was significantly above chance in all regions of interest. Within classification was significantly higher 545 
than cross classification in all regions of interest. Error bars represent standard errors. Asterisk notation: * 546 
p < 0.05, ** p < 0.001, *** p < 0.0001. 547 
 548 

To further visualize the similarity between the fMRI responses to the object categories in 549 

the dynamic and static conditions, we calculated the pairwise Euclidean distances between the 550 

patterns of responses to the 6 object categories and the two stimulus formats in each ROI. We 551 

then performed a multidimensional scaling analysis on the resultant dissimilarity matrix and 552 

visualized the first two dimensions in each of the regions of interest (Figure 5). In all regions, 553 

there was a clear separation between the responses to the dynamic (shown in purple and pink) 554 

and static stimuli (shown in green and teal). In addition, the ventro-temporal regions and inferior 555 

parietal cortex showed a separation amongst the individual object categories. The nearly parallel 556 

lines connecting the dynamic and static conditions of the same category indicate that categories 557 

with responses that were similar to each other in one condition were also similar to each other in 558 
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the other condition and is in line with the results of the cross-classification analysis performed 559 

earlier. In bilateral supramarginal areas, this object category separation was evident for the 560 

dynamic stimulus responses, but the static stimulus responses remained clustered together.  In 561 

V1, while there was a separation between dynamic and static, the arrangement of categories does 562 

not appear to be consistent across conditions. 563 

Figure 5. Multidimensional scaling visualization of fMRI response similarity between the object categories 564 
presented in the dynamic and static formats. MDS was performed on the similarity matrix obtained from 565 
the Euclidean distances of response patterns for the 12 conditions in each ROI. Dotted lines connect 566 
dynamic and static presentations of the same object category. The dynamic condition is signified by purple 567 
and the static condition is signified by green. Within each condition, the darker hues represent the animate 568 
categories while the lighter hues represent the inanimate categories. The 6 object categories are symbolized 569 
as with the following icons: human (person from side profile), mammal (cat), reptile (snake), tool (hammer 570 

 571 

Odd-one-out behavioral experiment 572 

To investigate how the responses of each ROI to the 6 object categories in each format 573 

relates to the behavioral measure of similarity we performed two behavioral experiments on 574 

Amazon Mechanical Turk in which we showed participants three objects (either in static condition 575 

or in dynamic condition) and asked them to judge the similarity between the three objects and pick 576 

the odd-one-out. We calculated two dissimilarity matrices based on the responses, one for the static 577 

stimuli and one for the dynamic stimuli (see Methods). We then averaged the individual object 578 
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distances from each category to obtain dissimilarity scores between the 6 object categories for the 579 

two stimulus formats (Figure 6a). The reliability of these similarity judgments was evaluated for 580 

each stimulus format separately (see Methods). Participants rated both stimulus formats with 581 

highly stable similarity judgments (r = 0.98 for both dynamic and static stimuli). We used 582 

multidimensional scaling on the pairwise dissimilarities of each stimulus format to visualize the 583 

distance between object categories in the first two dimensions (Figure 6b).  584 

The dynamic and static similarity judgments had highly similar structure, showing a clear 585 

separation between animate and inanimate categories in the first dimension. The animate (human, 586 

mammal, and reptile) and inanimate (tool, pendulum/swing, and ball) categories were also 587 

separated from each other along the second dimension in both tasks. Overall, the dissimilarities 588 

from the dynamic and static tasks were highly correlated (r = 0.98, p = 2.80e-10), however, there 589 

also appeared to be slight qualitative differences in the arrangement of the inanimate object 590 

categories along the second dimension.  591 

Figure 6. Odd-one-out similarity judgements of dynamic and static stimuli at the category level. The 592 
matrices depict pairwise dissimilarity scores between object categories in dynamic (a) and static (c) 593 
stimulus formats. The circle plots represent the object categories project into the first two dimensions from 594 
multidimensional scaling on their dissimilarities in the dynamic (b) and static (d) stimuli.  595 
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To further explore the similarity structure of the dynamic and static stimuli at the exemplar 596 

level, a hierarchical clustering algorithm was used on the odd-one-out similarity judgments (Figure 597 

7). Similar to the MDS of odd-one-out judgements at the category level, a gross distinction 598 

between animate and inanimate objects was observed for both the static and dynamic conditions. 599 

Moreover, as in the MDS, the three object categories within the animate and inanimate 600 

superordinate categories are largely distinguished in both formats. However, the clustering 601 

algorithm also revealed several interesting differences in the similarity judgments of the same 602 

objects when presented in either static image or dynamic optic flow format. For example, the 603 

dynamic baboon stimulus, a clip of a baboon sitting and feeding, was grouped with the human 604 

stimuli, while the static baboon stimulus was grouped with the mammal stimuli. Similarly, the 605 

dynamic presentation of the two pendulum stimuli were grouped with the swings, presumably due 606 

to their shared movement patterns, while their static presentations were grouped with the balls, 607 

likely due to their shared global form. These deviations of specific exemplars from their category 608 

clusters illustrate important differences in the category information provided by dynamic and static 609 

visual cues and shed light on some of the heuristics that are used to guide similarity judgments in 610 

the absence of either form or motion information. When luminance-defined edges are not 611 

available, robust category information can be derived from dynamic motion-isolated inputs. 612 

 613 

 614 

 615 

 616 

 617 

 618 

 619 
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 620 

 621 
Figure 7. Hierarchical clustering of odd-one-out similarity judgments of the dynamic and static stimuli at 622 
the exemplar level. Edited versions of the static stimuli were used to visualize the similarity structure of 623 
both the dynamic (top) and static (bottom) stimuli as category of the dynamic stimuli cannot be gleaned 624 
from individual frames. The scale and position of the objects are not representative of the stimuli during 625 
presentation. Stimulus borders were colored to distinguish the six object categories. The human stimulus 626 
examples were modified into two-tone images for this figure to deidentify the individuals in the stimuli. 627 

 628 
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To investigate how the object category fMRI responses to each format relate to behavioral 629 

judgements of similarity, we correlated the dissimilarity scores from the dynamic and static 630 

behavioral experiments (dynamic and static reliability: 0.985) to those obtained from the Euclidean 631 

distances between the multivariate response patterns in each region of interest (rs: dynamic > 0.03; 632 

static > 0.02, apart from right SMG, see below). As shown in Figure 8, most ventral and lateral 633 

temporal regions—LO, pFS, EBA, LOT-biomotion—showed significant correlations with the 634 

object similarity judgments for both the dynamic and static stimuli (dynamic: ps < 0.01; static: ps 635 

< 0.05). The responses in infIPS were not correlated to object similarity judgments for either the 636 

dynamic or static stimuli (dynamic: p = 0.12, static: p = 0.59). The activity in left SMG was 637 

significantly correlated with the similarity judgments for the dynamic stimuli (p = 0.001), but not 638 

for the static stimuli (p = 0.59). Similarly, the activity in V1 was significantly correlated with 639 

similarity judgments for the static stimuli (p = 0.02), but not for the dynamic stimuli (p = 0.14). 640 

The only significant difference between the correlations of the behavioral similarity judgments and 641 

the fMRI responses to the two conditions was found in the left SMG area, in which the correlation 642 

was significantly higher with similarity judgments of the dynamic stimuli compared to the static 643 

stimuli (t(14) = 3.32, p = 0.04, Cohen’s d = 0.86). In the right SMG area, the r value was -0.0083 644 

for the static condition, signifying a reliability of zero. As this suggests that the responses to the 645 

static stimuli in this region were unreliable, the correlation between the multivariate fMRI 646 

responses in the right SMG to the static stimuli with behavioral assessments of their similarity will 647 

not be interpreted.  648 

 649 

 650 

 651 
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Figure 8. Correlation of Euclidean distance between multivariate fMRI responses and behavioral 652 
dissimilarity matrices for a) dynamic and b) static stimuli. * ps < 0.05. Error bars represent standard errors. 653 
Shaded regions represent the average noise ceiling (dotted line) and the standard error of noise (shaded 654 
region) for each ROI. 655 

 656 

Discussion 657 

Motion is an important visual cue that can provide category-relevant information in the 658 

absence of luminance-defined edges and form. Here, we introduce a novel approach to 659 

systematically separate form and motion signals and study the contribution of the motion signal to 660 

object category processing in isolation. To our knowledge, our study is the first to use this approach 661 

to compare the neural processing of form and motion signals from several animate and inanimate 662 

object categories. We sought to determine whether category-relevant information from the two 663 

sources is shared across the visual system by comparing dynamic and static category processing 664 

in regions of interest across visual occipito-temporal and parietal cortices. The two highly 665 

dissimilar information sources produced distinct but overlapping representations of animate and 666 

inanimate object categories, with a shift in processing primarily static information in more ventral 667 

regions to primarily dynamic information in more dorsal regions of cortex.  668 

 669 
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Categorizing Objects with Motion Information 670 

An object identification task was used to determine whether our method for simulating the 671 

extracted motion information in dynamic flow fields could produce stimuli in which objects were 672 

recognizable. Our findings illustrate that, not only do people categorize motion-defined animate 673 

objects with high accuracy (Pinto, 2006; Pinto, 1994; Pavlova et al., 2001), this high performance 674 

also holds for three inanimate object categories: tools, swinging objects, and balls. These results 675 

extend previous research by showing that a wide range of objects spanning animate and inanimate 676 

categories can be recognized from just motion information. Our odd-one-out judgment task further 677 

demonstrated that the similarity judgments for the dynamic and static stimuli were highly 678 

correlated. This consistency suggests that people infer the similarity of objects from the two 679 

sources of information in a similar way.  680 

When discussing the perception of objects from motion, it is important to distinguish 681 

between two types of information that can be gleaned from motion cues: 1) structure from motion, 682 

a percept of a form arising from the global integration of coherent local motion vectors, and 2) 683 

types of actions that are diagnostic of a particular object category such as walking, swinging, tool 684 

use, bouncing, etc. Though it was not within the scope of this study to systematically distinguish 685 

these two sources, the exemplar level clustering of our odd-one-out data qualitatively suggests that 686 

both factors may play an important role in subjects’ judgements of object similarity. For example, 687 

images of pendulums and bouncing balls maybe judged to be similar since they both contain a 688 

round shape, but distinct in dynamic form because they move differently.  689 

 690 

 691 

 692 
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Format-dependent processing of object categories 693 

Comparison of the object category information across the two stimulus formats revealed 694 

differences in many of our regions of interest. Our findings suggest that stimulus format matters 695 

for: 1) processing of animate and inanimate objects—indicated by the regions of interest with 696 

significant interactions between stimulus format and univariate animacy preference (i.e., pFS and 697 

left SMG)—and 2) discriminating object categories within format—indicated by regions with 698 

significant differences in the multivariate classification accuracy of the responses to dynamic and 699 

static stimuli (i.e., all regions but infIPS). Broadly speaking, we found that the most ventral and 700 

posterior regions we examined (LO, EBA, and pFS) showed higher classification in the static 701 

condition, while most dorsal and anterior regions (LOT-biomotion and bilateral SMG) had 702 

stronger classification in the dynamic condition. Interestingly, infIPS used both sources of 703 

information without dominance of one source over the other. Importantly, all regions of interest 704 

but V1 showed robust responses to, and significant decoding accuracies of, all categories presented 705 

in both static image and dynamic motion formats. Thus, differential multivariate processing of 706 

object category based on stimulus format in these regions is a matter of degree. These results align 707 

with predictions from the model presented by Giese and Poggio (2003), in which form and motion 708 

signals are processed by distinct neural populations that largely overlap in topographic regions 709 

across ventral and dorsal cortex. 710 

 711 

Animate and Inanimate Category Processing 712 

Relative to static images, investigation of topographic organization of object category 713 

processing driven by motion information has been largely neglected. However, an important 714 

exception can be found in the work of Beauchamp and colleagues (2003), in which they compared 715 
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univariate fMRI responses between 1) full form videos and static images of humans and tools and 716 

2) full form videos and point-light displays of humans and tools. Beauchamp et al. (2003) argued 717 

for two processing pathways—form and motion. Lateral temporal regions (STS and MTG), 718 

respond to their preferred category, humans and tools, respectively, in both PLDs and videos, 719 

suggesting category preference from motion without requiring form. Meanwhile, ventral temporal 720 

cortex (lateral and medial fusiform), needed form information for category preference responses. 721 

Our results are in agreement with these findings and demonstrate that the topography of animacy 722 

preference is not dependent on or exclusive to the human and tool categories—it also expands to 723 

other animate objects such as mammals and reptiles, and other inanimate objects such as 724 

pendulums/swings, and balls. These results suggest that large-scale animacy preference maps 725 

(Konkle & Caramazza, 2013, Sha et al., 2015) found with static objects in the brain might also be 726 

present for motion defined stimuli. Future studies with a larger stimulus set and sufficient power 727 

to perform whole-brain analyses will be crucial for expanding our findings beyond functionally 728 

defined regions of interest in VOTC and parietal cortex.  729 

 730 

Distinct but Overlapping Representations of Object Category for Dynamic and Static 731 

Stimuli 732 

Using linear SVM classifiers, we decoded object category with high accuracy in all regions 733 

tested. In all regions but V1 and the right supramarginal area, both information sources drove 734 

object representations that were sufficiently distinguishable from each other to allow for high 735 

classification performance. Extracting form and motion information from the same objects and 736 

presenting them separately also allowed us to investigate the extent to which the representations 737 

are overlapping across stimulus formats. We used a cross-classification approach to identify 738 
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regions that have format independent responses. A similar analysis has been used previously to 739 

study fMRI responses to human actions in full form videos and images (Hafri et al., 2017). Our 740 

results are largely in qualitative agreement with those of Hafri and colleagues, with the exception 741 

that we found significantly more widespread cross-classification, possibly because our static 742 

stimuli were source matched to our dynamic stimuli. Cross-decoding in all regions (apart from V1) 743 

suggests that the object category representations driven by static and dynamic information were 744 

sufficiently distinct to allow for significant within format classification, but also sufficiently 745 

overlapping that their shared information could lead to significant cross-classification. These 746 

results suggest the existence of abstract object category responses that pool information about 747 

object category across various cues in the visual input. 748 

 749 

Relationship between brain and behavior 750 

Multivariate responses to both the dynamic and static conditions in LO, pFS, EBA, and 751 

LOT-biomotion—the ventral and lateral regions—were correlated with the object similarity 752 

judgments of the dynamic and static stimuli, respectively, with no differences across condition. 753 

This implies that the fMRI responses in these regions follow the structure of the stimulus similarity 754 

characterized by our odd-one-out experiment. The only region to show a difference in correlation 755 

across the stimulus conditions was the left supramarginal area, which showed higher correlations 756 

for the fMRI responses to the dynamic relative to the static stimuli. By contrast, the right 757 

supramarginal area showed no significant correlation to behavioral judgments of either condition, 758 

which indicates a lateralization of inanimate category processing to the left supramarginal area. 759 

This left lateralization has been shown previously in research on tool processing (Beauchamp et 760 

al., 2003). Importantly, not all regions that showed significant animacy preference or object 761 
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category decoding had responses that were significantly correlated with the similarity structure of 762 

the behavioral judgments. In V1 and infIPS, the fMRI responses to both conditions were unrelated 763 

to the similarity judgments of both stimulus types, suggesting that these regions were extracting 764 

features irrelevant to similarity judgments on the objects. 765 

 766 

Conclusion 767 

In sum, our study demonstrates that in regions across occipito-temporal and parietal 768 

cortices, category responses driven by isolated motion signals parallel category responses to static 769 

form signals in a number of interesting ways. Regions that are traditionally considered part of the 770 

visual object recognition pathway that processes static information, such as the pFS, LO, and EBA, 771 

also extract robust object category information from isolated motion signals relevant to behavioral 772 

judgments of object similarity. Furthermore, cross-classification of object categories in all regions 773 

suggests that object-category information from static and dynamic signals overlap. Lastly, 774 

preferential processing of certain kinds of objects, such as animate or inanimate objects, is 775 

sensitive in some regions, i.e., the pFS and left SMG, to the format of visual information. Using 776 

the stimulus generation approach we have introduced, future studies can expand beyond the six 777 

object categories tested here and introduce parametric manipulations of dimensions that are likely 778 

to play an important role in differential processing of motion-derived object categories. Candidate 779 

dimensions include the type of action or movements that the objects are performing as well as the 780 

orientation from which the movements are viewed. Such studies will be important for furthering 781 

our understanding of how various visual cues to object-category are processed and integrated 782 

together to form rich and robust object representations in the human brain.    783 
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