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Abstract

Protein interactions form a complex dynamic system that shapes cell pheno-
type and function; in this regard, network analysis is a powerful tool for studying
the dynamics of cellular processes. Graph-based models are limited, however, in
that these models consider only pairwise relationships. Higher-order interactions
are well-characterized in biology, including protein complex formation and feed-
back or feedforward loops. These higher-order relationships are better represented
by a hypergraph as a generalized network model. Here, we present an approach to
analyzing dynamic gene expression data using a hypergraph model and quantify
network heterogeneity via Forman-Ricci curvature. We observe, on a global level,
increased network curvature in pluripotent stem cells and cancer cells. Further, we
use local curvature to conduct pathway analysis in a melanoma dataset, finding in-
creased curvature in several oncogenic pathways and decreased curvature in tumor
suppressor pathways. We compare this approach to a graph-based model and a
differential gene expression approach.
Keywords: cellular dynamics, protein-protein interaction, higher-order interac-
tion, hypergraph, simplicial complex, network geometry, cellular differentiation,
cancer

1 Introduction
Cells are complex biological systems formed of thousands of interacting components,
namely proteins and chemical molecules [1, 2]. The dynamic regulation of gene ex-
pression into specific protein levels and the numerous molecular interactions resulting
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among these proteins (i.e. the interactome) shape the phenotype of a cell, which man-
ifests as a distinct cell type with specific functions. To study the factors that influence
cellular phenotype, transcriptomic profiles can be experimentally measured via high-
dimensional gene expression assays such as single-cell RNA-sequencing (scRNA-seq),
allowing researchers to ask incisive biological questions of how cellular dynamics re-
late to physiological and pathological processes [3, 4]. For example, differential gene
expression can help to identify driver genes or tumor suppressors in cancer [5]. Fur-
ther, gene expression measurements can indicate activation or inactivation of molecular
pathways that influence differentiation and cell type, as in stem cell differentiation or
tumorigenesis. Modeling these cellular dynamics could ultimately inform therapeutic
strategies (wound-healing, targeted cancer therapy, etc.) by predicting genes or path-
ways to target and manipulate the cell phenotype.

Classic differential gene expression typically considers genes independently, over-
looking the relationships between genes or proteins within the cell [6, 7, 8]. In this
regard, protein-protein interaction (PPI) network modeling provides an approach to
investigate how the pattern of interactions between proteins contribute to cellular dy-
namics [9]. Protein interactions are determined by a number of experimental methods,
including yeast-two-hybrid and co-precipitation protocols, and are compiled in curated
databases such as KEGG and Reactome and integrative databases such as Pathway-
Commons and STRINGdb, ultimately providing researchers with comprehensive pro-
tein interaction datasets to construct PPI network models [10, 11, 12, 13, 14, 15]. By
formalizing the system of protein interactions as a network, one can begin to model
how the pattern of interactions influence cellular phenotype and function, to then elu-
cidate molecular mechanisms of healthy physiology and disease [15, 16, 17]. For ex-
ample, one can examine the presence of redundancy in the network which may protect
from failure in the case of individual component failure (i.e. gene mutation), or posi-
tive feedback loops which might lead to unstable behavior such as uncontrolled growth
observed in cancers [18, 19, 20, 21].

Most current analyses of PPI networks, however, are limited in that the standard
graph model considers only pairwise interactions (i.e. edges between two proteins at
most) and not higher-order interactions [9, 22]. In biology, multiple proteins often
work together with shared function; in fact, cells naturally exhibit protein complexes
composed of several associated proteins [1, 23, 24] (Fig. 1A). Additionally, molecular
pathways in cells can include signaling cascades involving multi-protein interactions,
feedback or feedforward loops as well as cross-talk and overlap between pathways, but
pairwise interactions in the graph model alone would only represent small segments of
any given pathway of interest [11, 18, 19, 25, 26]. For these reasons, a generalized net-
work model is necessary to effectively model higher-order relationships in biological
networks.

This higher-order organization observed in protein interactions is best modeled as
a hypergraph, a generalized network representation which considers higher-order re-
lationships among multiple elements [27, 28, 29]. A hypergraph extends the standard
graph model by considering relationships with any number of elements, generalizing
the strictly pairwise edges of a graph. In the context of protein interactions, a “hyper-
edge” in a hypergraph model might contain any number of proteins to represent a single
higher-order interaction. Further, there is a need not only to apply such higher-order
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models but, critically, to develop approaches which can use these models along with
measured data (i.e. gene expression) to assess network dynamics and provide biologi-
cal insight into cellular function and phenotype, with especial emphasis on identifying
disease mechanisms and therapeutic targets.

In understanding dynamics, two primary concepts are equilibrium and heterogene-
ity [30, 31]. When a cancer expresses a certain pathway that drives growth and survival,
how stable is this pathway to perturbation (i.e. targeted therapy)? This question is crit-
ical in understanding cancer drug response and how drug resistance arises [32, 33]. A
heterogeneous interaction network with redundant, parallel communication might al-
low for the cancer to divert to alternative pathways to circumvent therapeutic targets
[34, 35]. Heterogeneity of interaction dynamics is also fundamental in the process of
cellular differentiation. Pluripotent cells, with the capacity to differentiate into several
lineages, eventually reach points of bifurcation and commitment to express a unique set
of proteins and molecular pathways that give the cell a specific functional phenotype
[36, 37]. Understanding how these dynamics unfold is relevant to developing opti-
mal therapeutic strategy, for example how to treat a cancer effectively by targeting its
instability while also preventing drug resistance from developing [32, 33].

Recent studies have explored weighted PPI network models that incorporate gene-
expression measurements as estimates of protein levels to calculate stochastic rates of
interaction, allowing quantitative examination of how PPI network dynamics vary with
gene expression in different biological settings [38, 39, 40]. Statistical properties that
measure heterogeneity in a system, such as entropy and Ricci curvature, directly relate
to the dynamic property of robustness, or stability under perturbation [39, 41]. These
measures have been demonstrated to quantitatively indicate cellular pluripotency, or
“stem-ness” of a cell, as well as cancer status and the increased robustness observed in
cancer [31, 39, 42, 43]. While these previous studies utilized pairwise graph models,
higher-order network models such as the hypergraph described above have yet to be
explored. Importantly, a higher-order network model can be readily examined in terms
of similar statistical properties to quantify heterogeneity and dynamic robustness [44].

In this study, we develop a hypergraph model of the protein interaction network
based on a 2-dimensional simplicial complex, in which we extend the graph model
to include 2-dimensional “faces” among subsets of vertices with shared edges (Fig.
1B,C) [44, 45, 46]. By considering a higher-dimensional network structure, we aim
to account for higher-order interactions in the PPI network, including feedforward and
feedback loops. We then construct a weighted network model by overlaying stochas-
tic weights based on gene expression measurements of various scRNA-seq datasets in
the context of cellular differentiation and cancer. We subsequently assess global and
local heterogeneity of the weighted network, namely through Forman-Ricci curvature
[47, 48, 49, 50]. Further, we utilize local curvature measurements in the hypergraph
model to perform pathway enrichment analysis, comparing to the graph model and a
classic differential expression approach assuming gene independence. Our results indi-
cate this approach provides a biologically meaningful measure of higher-order network
heterogeneity descriptive of “stem-ness” and cancer state (globally) as well as pathway
functionality (locally) in the context of cancer.
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Figure 1: Hypergraph model of higher-order protein interactions. A: Illustration of two
types of protein interactions: pairwise interaction between 2 proteins, and higher-order
interaction between >2 proteins. B: Hypergraph model of higher-order interactions
(shaded bubbles) among multiple proteins (black vertices).

2 Results
Using the STRINGdb PPI database, we constructed a network model of the human
interactome as a set of vertices representing unique proteins in the human proteome and
a set of edges representing experimentally-determined interactions between pairs of
proteins, initially resulting in a 1D graph model of the PPI network topology [14]. We
then defined a higher-order PPI network model as a hypergraph based on the concept of
a 2-dimensional simplicial complex [44, 46]. Using the vertices and edges of the simple
graph as a starting skeleton, we built the network “up” by defining faces within the
network to represent higher-order interactions between multiple proteins. Specifically,
faces were identified as triplets of vertices with shared edges oriented in directions of
feedback or feedforward connectivity. This 2D network model can be viewed as highly
similar to the standard 1D graph model, with the same pairwise information from the
graph embedded in the edges but additionally considering higher-order relationships as
2D faces (see Methods for further detail on network construction).

2.1 Topology of hypergraph PPI network model is distinct from
graph model and exhibits higher-order organization

In examining a network model, it is reasonable to first assess the topology of the net-
work. Topology refers to the structure of connectivity in a network; in protein-protein
interaction (PPI) networks this relates to the pattern of interactions among proteins in a
cell. Accordingly, we sought to examine topological properties of the two PPI network
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models to understand the fundamental topology that is represented by each model. We
also considered an Erdős-Rényi random network of the same size to compare what
would be observed in a randomly organized network [51]. Table 1 summarizes various
topological parameters of the proposed 2D network model and the standard 1D graph
model. The numbers of vertices |V | and edges |E| were identical in both the 1D and
2D models, due to the fact that these are defined the same in the 2D simplicial complex
as in the graph. With the 2D model, the consideration of number of faces |F | pro-
duces a difference in the topological invariant Euler characteristic χ = |V |− |E|+ |F |,
indicating the two models have distinct fundamental invariant properties when consid-
ered abstractly as topological spaces. Significantly fewer 2D faces were identified in
the randomly organized ER network, suggesting the PPI network exhibits increased
higher-order structure compared to a random network.

Topological Measure 1D PPI 2D PPI 1D ER 2D ER
Vertices (proteins) 11 888 11 888 11 888 11 888

Edges (interactions) 315 130 315 130 315 130 315 130
Faces (triplets) 0 10 451 604 0 24 948

Euler Characteristic (χ) –303 242 10 148 362 –393 242 –278 294

Table 1: Topological characteristics of 1D and 2D PPI network models. 1D and 2D
network models were compared in the STRINGdb PPI network (PPI) and a random
Erdős-Rényi (ER) network with the same number of vertices and edges.

We then examined degree distributions in the PPI network models. Degree of con-
nectivity was defined by a few measures: edge degree ke was determined as the number
of edges incident to a vertex; similarly, in the 2D model, face degree k f was defined as
the number of faces incident to a given vertex. Degree distributions were approximated
using histogram binning. For each k, degree distribution P(k) was fit with a power law,
P(k) ' akb, using a linear fit on log-log transformed data, logP(k) ' loga+b ∗ logk,
equivalent to the signature of a power law fit on the untransformed distribution. We
report the slope coefficient b corresponding to the exponent of the power law and r2 of
the linear fit. Both the edge-degree distribution, which was identical in the two mod-
els, along with the face-degree distribution of the 2D model revealed rough power-law
behavior, which appears linear on log-log scales (Fig. 2A,B). The power law or “scale-
free” property indicates a degree distribution with a high proportion of low-degree ver-
tices and relatively few high-degree vertices [52, 53]. This property has been described
in the edge degree of PPI graph models, and the scale-free property of higher-order
interactions has been previously reported with regard to protein complex organization,
but has yet to be explored in the context of a higher-order PPI network model [54].
Here, we also observe this property in the face-degree distribution, suggesting PPI net-
works organize higher-order interactions in a scale-free manner as well.
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Figure 2: Degree distributions in PPI network. A: Log-log plot of edge-degree distri-
bution with linear fit of power law signature. The edge-degree distribution is identical
for the 1D graph and 2D simplicial complex. B: Log-log plot of face-degree distribu-
tion with linear fit of power law signature. Faces are only present in the 2D simplicial
complex model.

2.2 Forman-Ricci curvature measures heterogeneity in weighted
interaction network model

Gene expression data was overlaid onto the static PPI network topology to construct
a weighted network model of stochastic protein interaction. Vertex, edge and face
weights were defined using gene expression values as estimates of protein levels and
principles of chemical interaction kinetics, namely the mass action law, to define inter-
action probabilities [55, 56, 57, 58]. Geometric weights were assigned to vertices,
edges, and faces based on expression level, interaction probability and a distance-
like resistance transformation (see Supplementary Methods 1 for network weighting
scheme).

We then measured statistical and geometric network properties in order to assess
PPI network dynamics in cells and conditions of varying gene expression (see Sup-
plementary Methods 1 for details of datasets). With the weighted PPI network model,
Forman-Ricci curvature was computed as a geometric measure of local non-uniformity
in the network, allowing geometric characterization of the gene expression profile in
terms of interaction network heterogeneity [42]. We also use the interaction proba-
bilities to compute network entropy, a statistical measure of randomness and another
measure of heterogeneity in the network [38].

2.3 Global measures of higher-order network curvature distinguish
pluripotent states in differentiating stem cells

We first examine a scRNA-seq dataset of stem cell differentiation, where gene expres-
sion was measured in cells of varying degree of differentiation including pluripotent
stem cells, multipotent progenitors, and differentiated cells committed to certain lin-
eages [59]. In the weighted PPI networks, we examined global averages of Forman-
Ricci curvature as well as network entropy in the 1D graph model and 2D hyper-
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graph model. First, we observe a previously reported trend in global network entropy,
wherein stem cells exhibit higher entropy that decreases with differentiation [31]; in
addition, we observe a similar trend in global average Forman-Ricci curvature but in
the opposite direction, wherein stem cells exhibited highly negative curvature which
tended to become less negative along differentiation (Fig. 3A). In both the 1D and
2D PPI models, global average curvature was largely negative suggesting these PPI
networks exhibit a generally divergent structure.

In terms of correlation between entropy and curvature, we observed global average
Forman-Ricci curvature in both models were strongly correlated with global entropy in
the negative direction (1D curvature-entropy: R2= -0.984; 2D curvature-entropy: R2=
-0.966); between the 1D and 2D model, global average Forman-Ricci curvature were
highly correlated (1D curvature-2D curvature: R2= 0.980), although 2D curvature was
generally shifted towards more positive values (Fig. 3B). Notably, our previous work
examining curvature in the 1D graph model also found a strong correlation of Forman-
Ricci curvature and entropy, but in the positive direction [42]; however, the weights of
the weighted network model were previously defined using the interaction probability
directly, and in this study we select a new definition of geometric weights based on
the inverse of interaction probability (i.e. lower probability interactions are “longer”
edges, high probability interactions are “closer”). These inverted weights are likely the
reason for the discrepancy in direction, although in either case curvature and entropy
were strongly correlated.

We also examined a related time-course experiment from the same stem cell dataset,
where gene expression was measured as induced stem cell differentiation proceeded
over time points up to 96 hours [59]. In the weighted PPI networks, global average
Forman-Ricci curvature was again observed to be highly correlated in both the 1D
graph and 2D hypergraph models, again with a positive shift in the 2D model (Fig.
3C). Over the time-course, curvature initially increased in magnitude (in the negative
direction) up to the 24 hour time-point, and then decreased in magnitude (became more
positive) at later time points. This suggests perhaps that PPI network curvature may
transiently become more negative as differentiation begins but later less negative as the
cell commits to a lineage.

2.4 Global measures of higher-order network curvature are in-
creased in several cancer types

We examined Forman-Ricci curvature in a scRNA-seq dataset of melanoma patients
including cancer cells and matching normal cells from the same patients [60]. After
constructing a weighted PPI network for each cell using both the 1D graph and 2D
hypergraph models, we observe on average more negative curvature globally in can-
cer cells relative to normal cells, which was observed across all cells in both models
(Wilcoxon rank-sum test – all tumor cells vs normal cells: p < 0.001 in both models;
Fig. 4A) and also within several individual patients (10/12) in the 1D model and all
patients (12/12) in the 2D model (Fig. 4B). Again in the 2D model, curvature was gen-
erally shifted towards more positive values compared to the 1D model. The separation
of cancer and normal cells suggests the magnitude of negative PPI network curvature
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Figure 3: Global PPI network geometry in stem cell differentiation. A: Violin plots
of PPI network global average graph entropy (SR) and Forman-Ricci curvature in the
1D graph model (1D F-Ric) and 2D simplicial complex model (2D F-Ric) across 6
increasingly differentiated cell types. B: Correlation plots of SR, 1D F-Ric and 2D F-
Ric, colored by cell type. C: Violin plots of SR, 1D F-Ric, 2D F-Ric across time points
after induced stem cell differentiation. Dotted lines are means at each time point.

is increased in cancer cells and could be used as a basis for classifying cancer and
normal cells, for example. This distinction in network curvature globally is similar
to what was observed in stem cells above, suggesting cancer cells may exhibit “stem-
like” characteristics contributing to the unchecked growth and lack of differentiation
observed in many cancers including melanoma. The 2D curvature appeared to show
more consistent separation of the cancer and normal cells than 1D curvature or graph
entropy (Supplementary Fig. S1), suggesting the 2D hypergraph model may be more
informative than the 1D graph model when considering global PPI network curvature
as a proxy for “stem-ness” in cancer.

We next examined a scRNA-seq dataset of colorectal cancer cells and matching
normal cells derived from patients [61]. Examining global average Forman-Ricci cur-
vature of the weighted PPI network models, a significant effect of tumor status and
cell type on curvature were detected in both models (two-way ANOVA – 1D graph:
tumor-status p < 0.001, cell-type p < 0.01, interaction p < 0.001; 2D hypergraph:
tumor-status p < 0.001, cell-type p < 0.001, interaction p < 0.05). We again observed
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Figure 4: Global PPI network geometry in cancer. A: Violin plots of PPI network
global average Forman-Ricci curvature in the 1D graph model (1D F-Ric) and 2D
simplicial complex model (2D F-Ric) of all normal (blue) or tumor (red) cells from
melanoma patients. B: Box plots of 1D F-Ric and 2D F-Ric separated by individual
patients. C: Box plots of 1D F-Ric and 2D F-Ric in epithelial (epi) and non-epithelial
(non-epi) cells of normal (blue) and tumor (red) samples from colorectal cancer pa-
tients. D: Box plots of 1D F-Ric and 2D F-Ric across time points after induction of
EWSR1-FLI1 oncogene in A576 cells. Dotted lines are means at each time point. ***
indicates p < 0.001.

more strongly negative curvature in cancer cells compared to normal cells, as well as
in epithelial cells (from which cancers arise) compared to non-epithelial stromal cells
in tumors (Wilcoxon rank-sum test – normal-epithelial vs tumor-epithelial p < 0.001,
tumor-epithelial vs tumor-nonepithelial p < 0.001 in both models, all other compar-
isons n.s.; Fig. 4C). These findings suggest the increase in negative curvature observed
in cancer cells may be specific to the cancer cells themselves and is absent in the non-
cancerous stromal cells present in tumors.

The third cancer dataset analyzed consisted of a time-course experiment in which a
Ewing sarcoma cell line was induced to express EWSR1-FLI1, a tumor-driving fusion
oncogene unique to Ewing sarcoma; single cells were collected at time points after
induction to measure gene expression [62]. Upon induction of the fusion gene, global
average Forman-Ricci curvature was observed to initially decrease by day 2, followed
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by a transient increase until later time points when curvature is significantly more neg-
ative from day 0 (Fig. 4D). This trend was observed in both PPI network models. The
increasingly negative curvature over time may indicate the interaction network overall
becomes more divergent and thus more cancerous or “stem-like” upon expression of
the EWSR1-FLI1 oncogene.

Overall, these findings demonstrate global average Forman-Ricci curvature can in-
dicate trends of cellular pluripotency and cancer state in gene-expression-weighted PPI
networks. While the 1D and 2D network models both exhibit this effect, we contend
the 2D model is advantageous for its consideration of higher-order interactions not rep-
resented in the graph model and is more sensitive to biologically meaningful changes
in PPI network geometry. However, these global average values are merely summary
statistics for the network as a whole, which can be useful for sample-level inference
but, importantly, local geometric properties contain more information for richer analy-
sis of how individual proteins and molecular pathways contribute to the observed cell
phenotype.

2.5 Local PPI network curvature indicates pathway functionality
in cancer

We examined local curvature values in the weighted PPI networks of the melanoma
dataset [60]. In order to examine changes in curvature of individual proteins, we focus
on a contraction of Forman-Ricci curvature defined on vertices (Eq. 4). Vertices of
the network with significantly changing curvature between the normal and cancer cells
were identified. A classical differential expression approach was also used to iden-
tify up- or down-regulated genes based solely on expression, assuming gene indepen-
dence. The 1D and 2D network models identified 1461/11630 (12.7%) and 1728/11630
(14.9%) genes, respectively, with significantly changing curvature in either the positive
or negative direction, whereas differential expression identified only 276/11630 (2.4%)
genes. We examined the number of significant genes from each method and overlap
between methods and observed a high degree of overlap between the network curva-
ture approach in the two PPI network models (Fig. 5). Of the differentially expressed
genes, over half (160/276, 58.0%) of identified genes were also identified by one of
the two network curvature methods, with 96 genes being determined significant by all
three methods.

We then applied a pathway analysis approach to explore molecular pathways with
significantly increasing or decreasing curvature by considering genes with significantly
changing vertex curvature in the 2D PPI network between normal and tumor cells. Ap-
plying Reactome pathway overrepresentation analysis on these genes [12], we found
110 pathways enriched in genes with significantly increasing curvature, along with
193 pathways with significantly decreasing curvature genes; we summarize the top 10
pathways with up or down shifts in curvature in Tables 2 and 3, respectively, with com-
plete pathway results in Supplementary Tables 1 and 2. Because of overlapping gene
sets, some pathways were redundant, such as the APC/C degradation pathway which
appeared 4 times in the top 10 decreased curvature pathways. Interestingly, several
of the increased curvature pathways have been previously implicated with pro-tumor
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DE

FR_2D

116

FR_1D

Figure 5: Significant gene overlaps in network curvature and differential expression.
Venn diagram of the number of statistically significant genes identified by PPI net-
work Forman-Ricci curvature in the 1D graph model (FR 1D) and 2D complex model
(FR 2D) along with classic differential gene expression (DE).

involvement in melanoma, such as L1-CAM pathways and extracellular matrix orga-
nization which are involved in tumor invasiveness commonly observed in melanoma
[63]. On the other end of the spectrum, several decreased curvature pathways have
been implicated with tumor-suppressor involvement in melanoma and, such as PAK
degradation, where PAK is a known driver of drug resistance in melanoma, and several
other tumor-suppressive pathways including p53 and DNA damage response pathways
(which were also significantly enriched but not shown in top 10, see Supplementary
Table 2) [64, 65]. Because of the relationship of curvature and robustness, these find-
ings suggest oncogenic pathways with increasing curvature also increase in robust-
ness in the cancer cells, while tumor suppressive pathways correspondingly decrease
in robustness, thereby contributing to the cancer phenotype. Therefore, estimating ro-
bustness through PPI network curvature may be useful to indicate gene and pathway
functionality in cellular processes such as cancer development.

3 Discussion
Because cells are inherently dynamic systems formed of molecular interactions, effec-
tive models of the interaction dynamics within cells can reveal how the “interactome”
varies in cells of differing phenotypes, including pathological (i.e. cancer) and healthy
physiological states. In this study, we modeled interactome dynamics by incorporating
gene expression information into a weighted protein-protein interaction (PPI) network
and measured network heterogeneity by Forman-Ricci curvature. Heterogeneity in in-
teraction dynamics can lend to increased robustness [43]. For example, a given cancer
cell may be difficult to treat if multiple, diverse growth-stimulating pathways drive the
cancer’s growth; alternatively, a cancer that depends on a single oncogenic pathway
may be easy to treat with targeted therapy.
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Pathway Name #gene FDR ∆Ric2D

Regulation of HSF1-mediated heat shock re-
sponse

22 1.36e-4 +51.70

Interaction between L1 and Ankyrins 12 1.36e-4 +47.27
Post-translational protein phosphorylation 20 3.52e-4 +125.63
Attenuation phase 13 3.52e-4 +63.82
Processing of DNA double-strand break ends 18 3.52e-4 +169.67
Cellular response to heat stress 22 3.59e-4 +51.69
L1CAM interactions 21 6.13e-4 +56.87
Elastic fibre formation 12 6.28e-4 +42.76
G2/M DNA damage checkpoint 16 6.28e-4 +183.55
Extracellular matrix organization 37 7.67e-4 +58.11

Table 2: Increased PPI Curvature Pathways in Melanoma. Using vertex curvature of the
2D PPI network model, genes with significantly increasing curvature values compared
between normal and tumor cells were fed into Reactome Pathway Analysis. Top 10
enriched pathways are summarized by pathway name, number of significant genes,
false-determination rate (FDR), and average shift in curvature (∆Ric2D).

Critically, the most common model of PPI networks, the graph, is arguably lim-
ited insofar that a graph only considers pairwise relationships between two proteins
at most. Protein interactions are not strictly pairwise and can involve multiple pro-
teins that coordinate in interactions and molecular processes. We sought to develop
a model of higher-order structure in the interactome to address the limitation of the
graph model to pairwise information. Here, we introduced a hypergraph model of the
PPI network based on a 2-dimensional (2D) simplicial complex that represents feed-
forward and feedback structures in the network as 2D triangular faces. Importantly,
we limited our examination to triangles, which correspond to feedback or feedforward
loops involving three proteins, but the approach outlined can easily be extended to rep-
resent higher-order interactions of more proteins as polygonal faces with more sides
(quadrangles, etc.).

We first examined topological properties of this 2D model and drew comparisons
between the standard 1-dimensional (1D) graph model, as the two models represent
much of the same protein interaction information but are fundamentally distinct. We
contend the standard graph model of PPI networks is essentially a “skeleton” of pair-
wise interactions in the interactome and that by considering higher-order relationships
in the structure of the network, we approach a more comprehensive model of the sys-
tem of diverse protein interactions within cells. The 2D faces of our model then serve
as important representations of higher-order relationships among interacting proteins
that contribute to molecular pathways and dynamic cellular processes.

Next, we applied the higher-order network model to analyze publicly available
gene expression (RNA-sequencing) datasets in the context of cellular differentiation
and cancer experiments. We constructed a weighted interaction network model, as-
signing geometric weights reflecting stochastic interaction rates to each of the vertices,
edges, and faces in the case of the 2D simplicial complex model. We then measured
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Pathway Name #gene FDR ∆Ric2D

APC/C:Cdc20 mediated degradation of Se-
curin

34 7.65e-
13

-
340.13

The role of GTSE1 in G2/M progression after
G2 checkpoint

36 2.58e-
12

-
284.47

APC/C:Cdh1 mediated degradation of Cdc20
and other APC/C:Cdh1 targeted proteins in late
mitosis/early G1

34 2.58e-
12

-
340.13

NIK–> noncanonical NF-kB signaling 31 2.58e-
12

-
293.12

APC/C:Cdc20 mediated degradation of mitotic
proteins

34 2.98e-
12

-
340.13

Regulation of activated PAK-2p34 by protea-
some mediated degradation

28 2.98e-
12

-
305.36

Activation of APC/C and APC/C:Cdc20 medi-
ated degradation of mitotic proteins

34 2.98e-
12

-
340.13

FBXL7 down-regulates AURKA during mi-
totic entry and in early mitosis

29 2.98e-
12

-
304.05

SCF-beta-TrCP mediated degradation of Emi1 29 2.98e-
12

-
304.05

Regulation of ornithine decarboxylase (ODC) 28 2.98e-
12

-
305.36

Table 3: Decreased PPI Curvature Pathways in Melanoma. Using vertex curvature
of the 2D PPI network model, genes with significantly decreasing curvature values
compared between normal and tumor cells were fed into Reactome Pathway Analysis.
Top 10 enriched pathways are summarized by pathway name, number of significant
genes, false-determination rate (FDR), and average shift in curvature (∆Ric2D).

geometric properties of the weighted network, namely Forman-Ricci curvature, as a
means to quantify heterogeneity in the network. This heterogeneity can serve as a
measure of network dynamics, i.e. robustness, to describe the stability or fragility
of the network on a global (sample-level) and local (protein- or pathway-level) scale.
Importantly, the 2D network model is suitable for geometric analysis by incorporat-
ing higher-dimensional information, which is in line with the complete definition of
Forman-Ricci curvature [44, 47].

We examined Forman-Ricci curvature of the 2D weighted PPI network on a global
scale and compared with results of the 1D graph model, finding network curvature
in both models was highly correlated and negative on average, although with a shift
towards less negative curvature overall in the 2D model. The global average curvature
in either model distinguished undifferentiated stem cells from differentiated cell types,
as well as cancer cells from normal cells; curvature in the 2D model, however, appeared
to provide a more consistent separation, suggesting the higher-order model may be a
more accurate representation of the PPI network.

To further demonstrate the biological relevance of the proposed higher-order model
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and network geometric approach, we applied pathway analysis using local curvature to
identify proteins with changes in curvature between patient-matched cancer and nor-
mal cells. Despite the overall shift towards negative curvature in cancer, we found that
proteins with increased curvature appeared to enrich for several pro-cancer pathways,
along with decreased curvature in tumor-suppressive pathways, suggesting a relation-
ship of the measured local curvature with the robustness of these pathways which may
be related to their functionality in the cancer cells. We conclude this model provides a
feasible approach to analyzing how higher-order relationships in the interactome influ-
ence cellular phenotype and function, especially in terms of quantifying stability and
fragility in the network which may be a valuable tool to identify potential therapeutic
strategies in cancer, for example.

Future directions of this research include further exploration of higher-order models
of PPI networks and applying the model to investigate biological questions about how
the interactome governs cellular phenotype and behavior. The geometric framework
that we apply to analyze PPI networks allows for application of additional geometric
tools, such as geometric flows (i.e. discrete Ricci flow) that can be used for change de-
tection and prediction of network dynamics [49, 66, 67]. Fortunately, many of the same
statistical and geometric network properties measured in graphs can be considered in
generalized network models through extensions of definitions including entropy and
Forman-Ricci curvature [44, 68, 69, 70]. Our characterization of the proposed model,
while intended to be thorough, is by no means an exhaustive analysis and is meant
to illustrate a higher-order PPI network model and a network geometric approach to
studying interaction dynamics.

4 Methods

4.1 Higher-order protein interaction network model
A graph G = (V,E) was defined as the sets of vertices V and edges E corresponding
to proteins and pairwise interactions, respectively. Interactions were defined based on
the STRINGdb PPI database, including an experimental confidence score cutoff. To
represent higher-order relationships involving more than 2 proteins, we defined a hy-
pergraph based on the concept of a 2-dimensional simplicial complex, where simplicial
complex indicates that all faces are 2-simplices, or triangles. Similar to the definition
of the graph, we defined a 2-dimensional complex C as a set of vertices V , edges E
and faces F , notated as C = (V,E,F). Faces were identified as all triplets of vertices
with edges among all vertices arranged in feedforward (+) or feedback (–) orientation
(Fig. 6). The higher-dimensional structure therein serves to represent higher-order re-
lationships among interacting proteins while still incorporating pairwise interactions
from the (1-dimensional) graph (see Supplementary Methods 1 for additional details
on network construction).
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Figure 6: Directed network face orientation. Face orientation with respect to a given
edge is determined by the direction of the corresponding edges in the face. In the same
direction is positive (+) oriented, or feedforward; in the opposite direction is negative
(–) oriented, or feedback.

4.2 Weighted protein interaction network model
We consider the PPI network as an underlying structure and incorporate measured data
about the system (i.e. gene expression) to construct a weighted network model. In the
PPI network, gene expression information (i.e. RNA sequencing) provides an estimate
of protein levels corresponding to the vertices of the interaction network [55]. This
weighted PPI network is then an effective model of cellular dynamics, allowing as-
sessment of how protein levels and interaction rates vary over a time-course or across
differing cell types. We selected a stochastic weighting scheme which relates pro-
tein levels to interaction probability by the mass-action principle (see Supplementary
Methods 1 for weighting scheme). Network weights were defined for each sample (i.e.
single-cell) of gene expression data, allowing measurement of local and global network
properties for each sample.

4.3 Discretization of Ricci curvature
Ricci curvature, a geometric measure of deviation from “flatness”, can be used to quan-
tify local non-uniformity. We compute network Ricci curvature as a means to quantify
heterogeneity in the weighted PPI network model. Importantly, network models are
inherently discrete, therefore a discretization of Ricci curvature is required to con-
sider this geometric property in a network model. A few discrete definitions exist
for Ricci curvature on networks [50, 71, 72]; here we focus on Forman-Ricci curva-
ture because of its unique amenability to extension to the higher-dimensional network
model [44, 47]. Forman-Ricci curvature is derived through a combinatorial approach
which applies to the general class of CW-complexes including graphs and simplicial
complexes. In this sense, a graph is considered a complex of vertices (0-cells) and
edges (1-cells) glued together at their boundaries, i.e. their vertices. This notion can
be extended to hypergraphs through the 2-dimensional simplicial complex model, by
considering also faces (2-cells) glued together at boundary edges and vertices. Then,
Forman’s approach derives a combinatorial formula for discrete Ricci curvature which
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depends only on the weights of the edge, adjacent vertices and faces, and parallel edges.
In brief, the derivation of Forman-Ricci curvature is based on a combinatorial ana-

log of Bochner-Weitzenböck decomposition of the Riemannian Laplacian operator:

�p = Bp +Fp. (1)

Essentially, the Hodge Laplacian �p can be decomposed into a “rough” Laplacian
Bp and a curvature term Fp capturing how the two Laplacians differ. Because the
Laplacian relates to diffusion on a manifold, curvature on a weighted PPI network can
then quantify how diffusion (i.e. information flow through protein interactions) differs
from expected in an un-curved (flat) network.

Forman’s approach yields the following explicit formula for discrete Ricci curva-
ture on a weighted complex with edges e, vertices v and faces f :

F(e) = w(e)

[
∑
f>e

w(e)
w( f )

+ ∑
v<e

w(v)
w(e)

−∑
ei||e

∣∣∣∣∣ ∑
f>e,ei

√
w(e)w(ei)

w( f )
− ∑

v<e,ei

w(v)√
w(e)w(ei)

∣∣∣∣∣
] (2)

where f > e implies f is a face of e and v < e implies v is a vertex of e, and ei||e implies
ei is a parallel edge of e meaning it shares a face or a vertex but not both.

The proposed 2-dimensional complex model of PPI networks can be analyzed geo-
metrically by properly defining face weights (see Supplementary Methods 1 for weight-
ing scheme) and applying formulae which account for the 2D faces. Because Forman-
Ricci curvature is defined for complexes of any dimension, the definition Eq. 2 is read-
ily applicable to the proposed model. In fact, the original derivation of Forman-Ricci
curvature directly considers 2-dimensional faces; applications on 1-dimensional graphs
consider a simplified definition that disregards all face-related terms [47, 48, 50]:

F(e) = w(e)

[
∑
v<e

w(v)
w(e)

−∑
ei||e

∑
v<e,ei

w(v)√
w(e)w(ei)

]
. (3)

While Forman-Ricci curvature is defined on edges, it can be contracted to a vertex
curvature F(v) and then a global average of curvature FGA can be computed using the
stationary distribution π of the network, where πi designates the equilibrium probabil-
ity of a Markov random walk at each vertex:

F(v) =
1

deg(v) ∑
ev∼v

F(ev) FGA =
n

∑
i=1

πiF(vi). (4)
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