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Abstract 43 

Network analysis provides new and important insights into the function of complex 44 

systems such as the brain by examining structural and functional networks constructed from 45 

diffusion Magnetic Resonance Imaging (dMRI), functional MRI (fMRI) and 46 

Electro/Magnetoencephalography (E/MEG) data. Although network models can shed light on 47 

cognition and pathology, questions remain regarding the importance of these findings, due in 48 

part to the reproducibility of the core measurements and subsequent modeling strategies. In order 49 

to ensure that results are reproducible, we need a better understanding of within- and between-50 

subject variability over long periods of time. Here, we analyze a longitudinal, 8 session, multi-51 

modal (dMRI, and simultaneous EEG-fMRI), and multiple task imaging data set. We first 52 

investigate the reproducibility of individual brain connections and network measures and find 53 

that across all modalities, within-subject reproducibility is higher than between-subject 54 

reproducibility, reaffirming the ability to detect individual differences in network structure in 55 

both structural and functional human brain networks. We see high variability in the 56 

reproducibility of pairwise connections between brain regions, but observe that in EEG-derived 57 

networks, during both rest and task, alpha-band connectivity is consistently more reproducible 58 

than networks derived from other frequency bands. Further, reproducible connections correspond 59 

to strong connections. Structural networks show a higher reliability in network statistics than 60 

functional networks, and certain measures such as synchronizability and eigenvector centrality 61 

are consistently less reliable than other network measures across all modalities.  Finally, we find 62 

that structural dMRI networks outperform functional networks in their ability to identify 63 

individuals using a fingerprinting analysis. Our results highlight that functional networks likely 64 

reflect state-dependent variability not present in structural networks, and that the analysis of 65 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 4, 2022. ; https://doi.org/10.1101/2022.05.03.490544doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.03.490544
http://creativecommons.org/licenses/by-nd/4.0/


3 
 

either structural or functional networks to study individual differences should depend on whether 66 

or not one wants to take into account state dependencies of the observed networks. 67 

 68 

Keywords:  69 
Brain Networks, Reproducibility, Fingerprinting, Multi-modal Imaging  70 
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1 Introduction  71 

The introduction of network theory to neuroscience has increased our understanding of 72 

the brain’s functional and structural organization. This powerful tool has given new insights into 73 

how higher order brain functions arise (Bassett and Sporns, 2017; Park and Friston, 2013) and 74 

how changes can lead to pathology (Fornito et al., 2015). However, questions have been raised 75 

regarding the reliability of brain network properties given the effects of noise in the signal, 76 

particularly in fMRI (Laumann et al., 2016; Power et al., 2018, 2012). Still, despite the presence 77 

of noise, brain networks have been found to exhibit consistent properties over time among 78 

individual network connections and in higher order properties, such as the clustering coefficient, 79 

characteristic path length, and assortativity, for structural connectivity as measured with dMRI 80 

(Bassett et al., 2011; Bonilha et al., 2015; Buchanan et al., 2014; Bürgel et al., 2006; Malykhin et 81 

al., 2008), fMRI (Amunts et al., 2000; Braun et al., 2012; Deuker et al., 2009; Du et al., 2015; 82 

Elliott et al., 2019; Gordon et al., 2017; Gratton et al., 2018; Laumann et al., 2015; Mangin et al., 83 

2004; Noble et al., 2017, 2019; Pannunzi et al., 2017; Rypma and D’Esposito, 1999; Shah et al., 84 

2016) and EEG/MEG (Deuker et al., 2009; Hardmeier et al., 2014; Kuntzelman and Miskovic, 85 

2017).  Unfortunately, most studies thus far have been limited to the analysis of a single imaging 86 

modality and/or few scanning sessions, raising questions about how reliable these properties are 87 

over longer times and across modalities. 88 

While it is clear that there is some level of reliability in network properties within an 89 

individual over time, it is also important to understand how the state of the brain (e.g., resting 90 

wakefulness versus active task situations (Fox et al., 2005)), and the neural methodology (e.g., 91 

fMRI versus EEG) contributes to this reliability across multiple days. The “resting” brain (e.g., 92 

default mode network) is a state that has been shown to be metabolically demanding (Raichle et 93 
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al., 2001) and associated not only with task performance (e.g., Tian et al., 2012) but also disease 94 

(e.g., Sorg et al., 2007), very much similar to task-related activity; however, the “resting” brain is 95 

fundamentally different from task-related activity, as engagement in a task requires precise 96 

recruitment of and coordination between regions of the brain (Fox et al., 2005).  Also, in a field 97 

with a variety of diverse methodologies (e.g., fMRI, EEG, MEG, PET, etc), neuroscience 98 

researchers draw conclusions from methods that are measuring fundamentally different neural 99 

properties. For example, fMRI is an indirect measurement of neural activity, as it measures 100 

oxygenation and neural activity is inferred. Whereas EEG, a “direct” measurement, is measured 101 

on the scalp and filtered by a variety of tissues and bone separating the scalp from the brain. In 102 

terms of reliability, experimental design and task demands have shown to contribute to reliability 103 

in fMRI (Bennett and Miller, 2013, 2010), and EEG suffers from a large variety of factors that 104 

could impact reliability as well (McEvoy et al., 2000). However, there is no study, to our 105 

knowledge, that has measured reliability of network structure derived from both fMRI and EEG 106 

data collected at the same time over many sessions.   107 

In addition to studying reliability within an individual over time, one can also ask about 108 

how network properties differ between individuals. Indeed, recent work has shown that brain 109 

networks can provide insight into the unique features associated with a person (Bansal et al., 110 

2018b, 2018a; Gordon et al., 2017; Seitzman et al., 2019). A giant leap toward the goal of 111 

understanding differences in brain networks was made with the finding that functional brain 112 

activity has unique features that can identify a person in a group, similar to a fingerprint (Finn et 113 

al., 2015). This fingerprinting property has also been found in structural connectomes (Powell et 114 

al., 2018; Yeh et al., 2016). Fingerprinting is important because it allows neuroimaging analyses 115 

to focus on the individual and not only on group-level differences (Finn et al., 2015).  116 
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 To further understand reliability in brain networks over time, across different states, and 117 

across modalities, we quantified within- and between-subject reliability in a rich longitudinal and 118 

multi-modal dataset consisting of dMRI and simultaneous EEG-fMRI recording during resting-119 

state and multiple tasks. Importantly, the data set studied here was part of a larger study 120 

examining naturalistic sleep variability in individuals (Thurman et al., 2018).  Here, we do not 121 

focus on the effects of variation in sleep pressure, but instead note that due to the study design, 122 

subjects varied in the amount of sleep pressure they experienced during each imaging session, 123 

presumably augmenting variability within- and between-subjects’ functional brain network over 124 

time. We examine both structural and functional brain networks in this data set to study 125 

reliability of individual connections and higher order network statistics. To create structural 126 

networks, dMRI imaging was used to perform tractography and network connections were 127 

defined as the density of streamlines between brain regions. fMRI networks were constructed 128 

using the Pearson-Product Correlation to quantify the magnitude of the statistical relationship in 129 

the BOLD signal between brain regions. For EEG, the time-series signal from each sensor was 130 

first separated into traditional frequency bands of d (1-3 Hz), q (4-7 Hz), a (8-13 Hz), b (14-30 131 

Hz) and g (30-60 Hz), and functional connectivity was calculated using the debiased-weighted 132 

Phase-Lag Index (dwPLI) which quantifies phase synchronization between sensors based on the 133 

consistency of the lag between the instantaneous phases of two sensors (Vinck et al., 2011).  134 

In the current work we evaluate: 1) which brain connections and network measures are 135 

most reliable within- and between-individuals; 2) how reliability varies across state and 136 

modality; and 3) how the different imaging modalities, dMRI, fMRI, and EEG, perform in a 137 

fingerprinting analysis to identify an individual.  138 

 139 
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2 Material and methods  140 

2.1 Participants 141 

 The University of California, Santa Barbara (UCSB) Human Subjects Committee (#16–142 

0154) and Army Research Laboratory Human Research Protections Office (#14–098) approved 143 

all procedures, and all participants provided informed written consent. Research was conducted 144 

in accordance with the declarations of Helsinki. The data presented in this manuscript represent a 145 

subset of data collected as part of a large-scale, longitudinal experimental that collected bi-146 

weekly structural and functional brain data.  A full description of the study can be found in 147 

(Thurman et al., 2018).  Here we analyze data from 27 healthy participants who were recruited 148 

by word of mouth and local advertisements. Note that by study design, participants were 149 

excluded from the multi-session segment of the study if they did not experience sleep variability.  150 

Data is accessible upon request as far as allowed by the security policy and guidelines 151 

established with the ethics committee of the US Army Research Laboratory Human Research 152 

Protection Program. 153 

 154 

2.2 Data Description  155 

Over the course of 16 weeks, subjects were asked to complete 8 recording sessions 156 

involving dMRI and simultaneous EEG-fMRI. For each session, simultaneous EEG-fMRI 157 

recording consisted of a 5-minute resting state and 10 tasks with varying levels of cognitive 158 

demand; specifically: 159 

Dot Probe Task (Dot) (Sipos et al., 2014); 160 

Dynamic Attention Task (DYN 1-4) with four repetitions of the same task (Yantis et al., 2002); 161 

Modular Math (MOD) (Mattarella-Micke et al., 2011); 162 
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Psychomotor Vigilance Task (PVT) (Loh et al., 2004), and; 163 

Visual Working Memory (VWM 1-3) with three repetitions of the same task (Luck and Vogel, 164 

1997). 165 

Table 1 shows the average number of subjects and sessions for each imaging modality. 166 

When analyzing the EEG-fMRI data, we analyzed only six sessions of data. This was done in 167 

order to make a trade-off between maximizing the number of subjects and number of sessions, 168 

since not all subjects participated in all 8 sessions. Detailed information on the number of 169 

subjects and sessions for functional data can be found in Tables 2 and 3. Lastly, for the 170 

fingerprinting analysis using dMRI data, we used 25 subjects, all of which had an equal number 171 

of sessions (8 sessions). For the fingerprinting analysis using fMRI data, 15 subjects were 172 

included with all 6 sessions of resting-state and task recordings, and for the EEG data, we used 173 

26 subjects with resting-state and all tasks over 6 sessions.  174 

Table 1. Average number of subjects and sessions per imaging modality 
Imaging Modality Subjects Sessions    

dMRI 25 8    
fMRI 23.1 6    
EEG 27 6    

      
Table 2. Number of subjects and sessions for each task per EEG and fMRI    

Task EEG Subjects fMRI Subjects Sessions   
Resting-State 27 26 6   

DOT 27 25 6   
DYN-1 27 27 6   
DYN-2 27 27 6   
DYN-3 27 26 6   
DYN-4 27 20 6   
MOD 27 17 6   
PVT 27 19 6   

VWM-1 27 27 6   
VWM-2 27 23 6   
VWM-3 27 17 6   
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Table 3.  Number of subjects and sessions for fingerprinting 

Fingerprinting Subjects Sessions Tasks Included   
dMRI 25 8 n/a   
fMRI 15 6 Yes   
EEG 27 6 Yes   

 175 

2.3 fMRI Acquisition and Preprocessing 176 

Functional neuroimaging data were acquired on a 3T Siemens Prisma MRI using an 177 

echo-planar imaging (EPI) sequence (3mm slice thickness, 64 coronal slices, field of view 178 

(FoV)=192 x 192 mm, repetition time (TR)=910 ms, echo time (TE)=32 ms, flip angle=52º, and 179 

voxel size: 3 x 3 x 3 mm). For repeated scans, a T1-weighted structural image was also acquired 180 

using a high-resolution magnetization prepared rapid acquisition gradient echo (MPRAGE) 181 

sequence (TR= 2500 ms, TE=2.22 ms, and FoV= 241 x 241 mm with a spatial resolution of .9 x 182 

.9 x .9 mm), for use in coregistration and normalization. 183 

fMRI BOLD images were preprocessed using Advanced Normalization Tools (ANTs) 184 

(Avants et al., 2009).  Physiological artifacts including respiration and cardiac cycle effects were 185 

corrected using the retrospective correction of physiological motion effects method, 186 

RETROICOR (Glover et al., 2000), implemented in MEAP v1.5 (Cieslak et al., 2018). Head 187 

motion was estimated using antsMotionCorr, and the motion correction was completed as 188 

follows: (1) An unbiased BOLD template was created within each session by averaging the 189 

motion-corrected BOLD time series from each run. (2) The BOLD templates were coregistered 190 

to the corresponding T1-weighted high resolution structural images, collected in each session. (3) 191 

Each session was spatially normalized to a custom study-specific multi-modal template which 192 

included T1-weighted, T2-weighted and GFA images from twenty-four quasi-randomly selected 193 

participants chosen to match the study population. (4) The template was then affine-transformed 194 
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to the coordinate space of the MNI152 Asymmetric template. (5) Finally, the fMRI volumes 195 

were transformed using the estimated head motion correction, BOLD template coregistration, 196 

BOLD-to-T1w coregistration and spatial normalization into MNI space using a single Hamming 197 

weighted sinc interpolation. After these transformations, the final step in the preprocessing was 198 

to extract time-series from fMRI scans for functional connectivity analyses. Two atlases were 199 

used to reduce the 3D volume data into 221 nodal time series data: (1) the cortical Schaefer 200 200 

atlas (Schaefer et al., 2018) which was derived from intrinsic functional connectivity in resting 201 

state fMRI and (2) 21 subcortical regions from the Harvard-Oxford atlas based on anatomical 202 

boundaries (Makris et al., 2006).  As the atlases are in MNI coordinate space, voxels within each 203 

labelled region of the atlases were simply averaged, and time series were extracted for the 204 

following connectivity analyses. 205 

To assess functional connectivity among ROIs, mean regional time-courses were 206 

extracted and standardized using the nilearn package (Abraham et al., 2014) in Python 2.7, and 207 

confound regression was then conducted. In particular, the time series for each region was 208 

detrended by regressing the time series on the mean as well as both linear and quadratic trends. 209 

There were a total of 16 confound regressors, which included: head motion, global signal, white 210 

matter, cerebrospinal fluid and derivatives, quadratics and squared derivatives. This functional 211 

connectivity preprocessing pipeline was selected based on conclusions from prior work that 212 

examined performance across multiple commonly used preprocessing pipelines for mitigating 213 

motion artifact in functional BOLD connectivity analyses (Ciric et al., 2017; Lydon-Staley et al., 214 

2018). 215 

To construct the fMRI networks, the signal from all voxels within a brain region were 216 

averaged, and the Pearson Product Correlation (R) between two brain regions was calculated as 217 
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𝑅 = 	 !"#(%,')
)*!*"

	,	 	 (1)	218 

where x and y represent the time-series data from two different regions and σ is the variance of 219 

the time series. To account for negative correlations, the absolute value of the correlations was 220 

used to construct weighted functional connectivity matrices.  221 

 222 

2.4 EEG Acquisition and Preprocessing 223 

Continuous EEG recordings were captured simultaneously with an fMRI-compatible 224 

EEG equipped with standard Ag/AgCI electrodes from 64 sites on the scalp oriented in a 10-20 225 

scheme system (Brain Products, Gilching, Germany). Initial fMRI pulse and 226 

ballistocardiographic artifact correction was completed in BrainAnalyzer 2 (Brain Products, 227 

Gilching, Germany) using classic subtraction and filtering approaches (Allen et al., 2000, 1998). 228 

These mid-level processed EEG measurements were then further processed using in-house 229 

software in MATLAB (Mathworks, Inc., Natick, MA, USA) and the EEGLAB toolbox (Delorme 230 

and Makeig, 2004; Mullen et al., 2013). Despite the subtraction and filtering approaches applied, 231 

residual artifact from the fMRI pulse persisted. To remove these lingering artifacts, we 232 

developed a new cleaning pipeline.  233 

Our cleaning pipeline included steps tailored to remove common EEG artifact (e.g., eye 234 

blinks, muscle-related activity) and then targeted the high frequency noise in the 16-19 Hz and 235 

34-38 Hz range. EEG data were bandpass filtered between 0.75 Hz and 50 Hz using a Finite 236 

Impulse Response (FIR) filter. Next, EEGLAB’s automated clean_rawdata function was used to 237 

determine channels that differed substantially from the estimated signal (derived from other 238 

channels) or had consistent flat-lining. Then, the EEG data were subjected to an Independent 239 
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Component Analysis (ICA) decomposition and the ADJUST algorithm (Mognon et al., 2011) 240 

was used to remove ICA components associated with stereotyped noise. Following ICA 241 

decomposition, bad channels were interpolated using spherical interpolation. As a final step in 242 

EEG preprocessing, the EEG data were subjected to Artifact Subspace Reconstruction (ASR) 243 

(Chang et al., 2020; Mullen et al., 2015), which we used to target the aforementioned residual 244 

high frequency noise from the fMRI artifact. This method, in combination with the ICA cleaning 245 

method allows for the targeting of both stationary and non-stationary persistent artifacts. To 246 

deploy ASR on the dataset, we first created a “clean” reference signal from each subject’s EEG 247 

data by: 1) concatenating EEG segments that were at least 1000ms long with amplitude below 248 

100µV, (2) and notch filtering (FIR) the EEG between 16-19 Hz and 34-38 Hz. Following the 249 

creation of the reference signal, ASR was then used to reconstruct the EEG that contained large 250 

fluctuations greater than 5 standard deviations beyond the reference signal (in 500ms chunks). 251 

Lastly, the data were re-referenced to a common average reference.  252 

To construct EEG networks, the signal from each sensor was separated into standard 253 

frequency bands corresponding to d (1-3Hz), q (4-7Hz), a (8-13Hz), b (15-30Hz) and g (30-254 

60Hz) with a Butterworth filter (8th order) followed by Hilbert transformation. Weighted 255 

functional connectivity adjacency matrices were constructed for each frequency band using the 256 

de-biased weighted phase-lag index (dwPLI) (Vinck et al., 2011). Each node in the adjacency 257 

matrix corresponds to a channel with the weight representing the strength (phase-lag) of the 258 

connection. Specifically, dwPLI is calculated as,  259 

𝑑𝑤𝑃𝐿𝐼 = 	
∑ ∑ ,(-#),(-$)$%&
'
&()

∑ ∑ |,(-#),/-$0|$%&
'
&()

	,  (2) 	260 
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where I(Xi) corresponds to the imaginary component of time series data (X) from channel i. 261 

Specifically, dwPLI is the sum of all pairwise products of the magnitudes of the imaginary 262 

components. In addition, dwPLI accounts for any bias due to the number of data points. 263 

 264 

2.5 dMRI Acquisition and Preprocessing 265 

Diffusion spectrum imaging (DSI) scans were acquired for each session. DSI scans 266 

sampled 258 directions using a Q5 half-shell acquisition scheme with a maximum b-value of 267 

5,000 and an isotropic voxel size of 2.4 mm. Minimal preprocessing was carried out on the DSI 268 

scans and was restricted to motion correction. Following a similar procedure to the fMRI motion 269 

correction, motion was first assessed and applied for all of the b0 volumes, and a template was 270 

created for each scan composed of the average of the b0 volumes. Next, the b0 volumes and 271 

vectors were transformed using the estimated head motion correction, b0 template coregistration, 272 

b0 template-to-T1w coregistration and spatial normalization into MNI space using a single 273 

Hamming weighted sinc interpolation. 274 

Fiber tracking was performed in DSI Studio (www.dsi-studio.labsolver.org) with an 275 

angular cutoff of 35°, step size of 1.0 mm, minimum length of 10 mm, spin density function 276 

smoothing of 0, and a maximum length of 250 mm. Deterministic fiber tracking was performed 277 

until 500,000 streamlines were reconstructed for each session. As with the fMRI volume data, 278 

streamline counts were estimated in 200 nodes using the same Schaefer 200 atlas (Schaefer et al., 279 

2018) and 21 subcortical regions part of the Harvard-Oxford atlas (Makris et al., 2006). 280 

Connectivity matrices were then normalized by dividing the number of streamlines (T) between 281 

region i and j, by the combined volumes (v) of region i and j, 282 

𝐴12 =
3&$
#&4#$

	.   (3) 283 
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2.6 Graph Theoretical Analysis  284 

We calculated nine commonly used and diverse graph metrics on each weighted dMRI, 285 

fMRI and EEG network. The graph metrics are: degree, clustering coefficient, characteristic path 286 

length, small-world propensity, global and local efficiency, synchronizability, spectral radius, 287 

and eigenvector centrality.  See supplemental for detailed description of each network measure. 288 

2.7 Degree  289 

The weighted node degree (ki) is defined as the sum of all connections of a node 290 

(Rubinov and Sporns, 2010),  291 

𝑘1 =	∑ 𝑊122	∈	7 ,  (4)	292 

where W is the weighted adjacency matrix of a network with N nodes. 293 

 294 

2.8 Clustering Coefficient  295 

The weighted clustering coefficient (C) for node i is the intensity of triangles in a 296 

network (Onnela et al., 2005) and is calculated as,  297 

 298 

𝐶1 =	
8

9&(9&:8)
∑ (𝑊12 	𝑊1;	𝑊2;)

8
<=2,; ,  (5) 	299 

where W is the weighted adjacency matrix and b is the number of edges for node i.  300 

 301 

2.9 Characteristic Path Length  302 

The characteristic path length (L) is the average shortest path length between all nodes 303 

(Rubinov and Sporns, 2010), 304 
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𝐿 = 	 8
7
	∑

∑ >&$
*

$∈',$%&

7:81∈7 	,   (6)	305 

where 𝑑!"# is the is the distance between nodes i and j. To calculate 𝑑!"# , we first take the inverse 306 

of the edge weights to transform the weight to a measure of length (i.e., to transform a strong 307 

connection strength to a short length).  We then determine the shortest path between nodes i and j 308 

(using the inverted weights), and 𝑑!"# is the sum of the inverse of the edge weights along this 309 

shortest path. 310 

 311 

2.10 Small-World Propensity  312 

Small-world propensity (φ) quantifies the extent to which a network displays small-313 

worldness, a network property that combines the presence of local clustering with a short path 314 

length, while factoring in variation in network density (Muldoon et al., 2016). Small-worldness 315 

is calculated as, 316 

𝜙 = 1 −	5?-
.4?/

.

@
,    (7) 317 

 318 

ΔA =	
A0122:A345
A0122:A6178

,     (8) 319 

 320 

ΔB =	
B345:B6178
B0122:B6178

	,   (9) 321 
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where Cobs is the observed clustering coefficient and Lobs is the observed characteristic path 322 

length of the network; Clatt, Llatt, Crand, and Lrand are clustering coefficient and characteristic path 323 

length from lattice and random networks with the same number of nodes and edge distribution.  324 

 325 

2.11 Global and Local Efficiency  326 

The efficiency of a node is the inverse of the path length (Rubinov and Sporns, 2010). 327 

Global efficiency (Eg) is the inverse shortest path length, 328 

𝐸C =	
8
7
	∑

∑ (>&$
*)9)$∈',$%&

7:8
	 ,1∈7 		 	 (10)	329 

where 𝑑!"# is the previously defined distance between node i and j.  330 

 331 

Local efficiency (El) is the global efficiency computed on the neighborhood of node i, 332 

𝐸D =	
8
7
	∑

∑ 	(E&$E&:[>$:
* (7&)]9)))/<$,:∈',$%&

H&(H&:8)
	 ,1∈7 		 	 (11) 333 

where wij and wih is strength of the connection between node i to j and h, respectively, and djh 334 

(Ni) is the length of the shortest path between nodes j and h that contains only neighbors of node 335 

i. 336 

 337 

2.12 Synchronizability  338 

Synchronizability is a measure of linear stability for a network of coupled dynamical 339 

systems (Motter et al., 2005),  340 

𝑆 = 	 I.
I7
	,		 	 (12)	341 
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where λ2 is the second smallest eigenvalue of the unnormalized Laplacian matrix (L) and λn is its 342 

largest eigenvalue. The Laplacian is calculated as,  343 

𝐿 = 𝐷 −𝑊,		 	 (13)	344 

 where D is the degree matrix of the weighted adjacency matrix, W. 345 

 346 

2.13 Spectral Radius  347 

The spectral radius measures the ease with which diffusion process can occur in a 348 

network. The spectral radius is calculated as, 349 

𝜌(𝑊) = max{|𝜆8|, … , |𝜆J|},   (14) 350 

where |λ| corresponds to the absolute value of the eigenvalues of a network. 351 

 352 

2.14 Eigenvector Centrality  353 

Eigenvector centrality (ECi) measures how influential a node is in a network, with a high 354 

value indicating a node is connected to other highly influential nodes (Newman, 2008). The 355 

eigenvector centrality of node i is given by the i-th entry in the dominant eigenvector, which is 356 

the vector v=[v1,…vN] that solves 357 

𝜆8𝑣 = 	𝑊𝑣3 ,		 	 (15)	358 

where 𝜆$ is the largest eigenvalue of the weighted adjacency matrix, W. 359 

 360 

2.15 Intra-class Correlation 361 

The intra-class correlation (ICC) is a measure used to quantify the test-retest reliability of 362 

a measure. We used the ICC to measure the consistency of individual connections across the 363 
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dMRI, fMRI and EEG networks and across the graph metrics for each network. To accomplish 364 

this, we calculated two variants of the ICC, the within (ICCw)- and between (ICCb)-subjects (Wei 365 

et al., 2004). ICCw and ICCb are, respectively, calculated as,  366 

 367 

𝐼𝐶𝐶E =
,(KLM:NLM)

O∗MLM4,∗KLM4(,O:,:O)NLM
	,			 	 (16)	368 

 369 

𝐼𝐶𝐶9 =
O(MLM:NLM)

O∗MLM4,∗KLM	(,O:,:O)NLM
	,    (17) 370 

 371 

where I is the number of subjects and J is the number of sessions, SMS, RMS and EMS represent 372 

the ANOVA measures of mean square error between sessions, subjects, and due to error, 373 

respectively. The reliability of a measurement is considered: 1) “poor” if the ICC values is less 374 

than 0.4; 2) “fair” for ICC values between 0.4 and 0.6; 3) “good” for ICC values between 0.6 and 375 

0.8; and 4) “excellent if ICC values exceed 0.8.  376 

 377 

2.16 Fingerprinting Analysis 378 

To perform a fingerprinting analysis, as in Finn et al., 2015, we quantified the degree of 379 

similarity between networks. This analysis was performed separately for each of the dMRI, 380 

fMRI and EEG modalities.  Connectivity matrices were converted for each individual and run 381 

into a vector using the values from the upper triangle of the matrix resulting in vectors of 1 x 382 

24,310 for dMRI and fMRI, and 1x 2,016 for EEG. Thus each vector, p, represents a single 383 

connectivity matrix for a given subject during a given session, and for functional matrices, in a 384 

given state (task/rest). 385 
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Next, separately within each modality, for each connectivity matrix (representing a 386 

subject, session, and state), we calculated the pairwise similarity between two vectors, p and q, 387 

using the Euclidian distance to create a dis-similarity matrix (D) where 388 

 389 

 390 

𝐷QR =	D∑(	𝑝 − 𝑞)@	,   (18) 391 

and each entry in Dpq, corresponds to the dis-similarity between the brain network p to q. 392 

However, since the Euclidian distance formally assesses dis-similarity and we were interested in 393 

evaluating similarity, we converted from a dis-similarity to a similarity (S) measure by  394 

 395 

𝑆QR =
ST%(U):	U=>

ST%(U)
	,   (19) 396 

where max(D) corresponds to the largest value in matrix D. This normalization ensures that the 397 

similarity matrix S ∈ [0 1].  398 

In order to perform a fingerprinting analysis, for each vector, p, we then looked for the 399 

entry Spq with the highest similarity value.  If for this entry, the vectors p and q were from the 400 

same individual (but could be from different sessions or states), then the fingerprinting analysis 401 

was classified to be successful at identifying the individual. 402 

 Fingerprinting performance for each imaging modality was assessed using two measures. 403 

The first measure quantifies the overall fingerprinting accuracy across subjects, and was 404 

calculated as the percentage of matrices which were successful in identifying an individual.  405 

While this measure is useful from a classification standpoint, we were also interested in the level 406 

of separation between matrices within versus between individuals.  Therefore, in the second 407 
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measure, we assessed the separability (T) of each modality. The separability of each matrix, Tp, 408 

was defined to be 409 

𝑇Q =	 min
E1V;1J:WX92Y!V

{𝑆QR} −	 max
9YVEYYJ:WX92Y!V

J𝑆QRK ,	  (20) 410 

where the first term is constrained to q from the same subject as p, and the second term is 411 

constrained to q from all subjects other than p. The resulting values of T ∈ [-1 1],  where a value 412 

of 1 indicates perfect similarity within a subject across sessions and no similarity to other 413 

subjects and, conversely, -1 indicates no similarity across runs within a subject. 414 

 415 

2.17 Statistical Tests 416 

Analysis of variance (ANOVA) was used to quantify the magnitude difference in ICC 417 

scores and the difference in the magnitude of the network similarity. Corresponding p-values 418 

were corrected for multiple comparison using Boneferroni correction. The Brain Connectivity 419 

Toolbox was used to calculate network measures (Rubinov and Sporns, 2010). All analyses were 420 

conducted in MATLAB 2017b.  421 

 422 

3 Results  423 

We analyzed the reproducibility of brain network properties derived from structural and 424 

functional brain imaging using the intra-class correlation (ICC). For the dMRI analysis, this 425 

involved analyzing brain networks from 25 subjects across 8 sessions for a total of 200 structural 426 

networks. For the fMRI and EEG analysis, a tradeoff between maximizing subjects and sessions 427 

was made across resting-state and tasks resulting in a range from 17-26 subjects, each with 6 428 

sessions (see Methods section for details).  429 

 430 
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3.1 Reliability of Individual Connections 431 

We first assessed the reliability of individual connections between brain regions or 432 

sensors. We calculated the ICC within a subject (ICCw) and between subjects (ICCb) for each 433 

connection across the three imaging modalities. As expected, we found that across imaging 434 

modalities, individual network connections are more reliable within- than between-subjects 435 

(Figure 1A and B). Across imaging modalities, individual edges exhibit high variability in their 436 

reliability scores, with ICCw values ranging from poor (< 0.4) to excellent (> 0.8) reliability 437 

(Figure 1A). By contrast, ICCb scores had consistently poor (< 0.2) reliability across all imaging 438 

modalities (Figure 1B). For dMRI, the mean ICCw was 0.21 ± 0.24 (SD) and the mean ICCb 439 

score was -1x10-4 ± 0.01 (SD). For resting-state fMRI the mean ICCw was 0.23 + 0.13(SD). 440 

Lastly, for the EEG the a-band had the highest mean ICCw (0.39 + 0.16(SD) compared to the 441 

other frequencies (d: 0.03 ± 0.05(SD); q: 0.09 ± 0.08(SD); b: 0.20 ± 0.12(SD);  g: 0.10 ± 442 

0.07(SD)). An ANOVA assessing differences across imaging modalities found significant 443 

differences in the ICCw (F6,85249 = 2241; pcorrected << 0.001).  One important feature is the long-444 

tail distribution in the dMRI ICCw indicating that a small number of connections have excellent 445 

(> 0.8) reliability.  We additionally looked to see if there was a relationship between connection 446 

strength and reliability (Figure 1C-E).  447 

 448 
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 449 

Figure 1. Reliability of individual connections. (A) Distribution of ICCw and (B) ICCb for dMRI 450 
and resting-state fMRI and EEG frequency bands. For each violin plot, the central dot indicates 451 
the median, and the line indicates the 25th to 75th percentiles. (C-E) Cumulative distribution 452 
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plots showing the proportion of connections and corresponding connection strength from the top 453 
10% (most reliable) and bottom 10% (least reliable) of ICCw scores for (C) dMRI; Resting-State 454 
(D) fMRI and (E) EEG-a. F-H) Average reliability of connection within and between cognitive 455 
systems for (F) dMRI and (G) resting-state fMRI. H) Differences in average ICCw scores across 456 
cognitive systems between dMRI minus the fMRI. (I) Connections with ICCw scores in top 10% 457 
for d , q, a, b and g frequency bands plotted on the scalp for resting-state EEG. Cognitive 458 
systems are defined as Cont: Control A/B/C, Default: Default Mode A/B/C, DorsAttn: Dorsal 459 
Attention A/B, Limbic, SalVentAtt: Salience/Ventral Attention A/B, SomMot: Somatomotor 460 
A/B, Subcortical, TempPar: Temporal Parietal, VisCent: Visual Central, VisPer: Visual 461 
Peripheral.  462 
 463 

We next assessed if for dMRI and resting-state fMRI there is an association between 464 

ICCw scores and cognitive systems. First, we mapped edgewise scores and then averaged over 465 

edges within each of the 17 cognitive systems from the Schaefer 200 layout combined with 21 466 

subcortical regions from Harvard-Oxford atlas. As a trend, connections within a cognitive system 467 

for dMRI and resting-state fMRI exhibited the strongest reliability as can be seen from the figure 468 

because of the high values along the diagonal (Figure 1F and G, respectively). However, a direct 469 

comparison between dMRI and fMRI showed distinct distribution of reliability across cognitive 470 

systems. dMRI reliability was stronger within the Frontal-Parietal Control system and between 471 

the Visual, Default Mode, and Temporal Parietal systems (red entries in Figure 1H), while in 472 

fMRI, stronger values were distributed between cognitive systems (blue entries in Figure 1H). 473 

For the EEG data we could not perform the same mapping to cognitive systems, so instead 474 

resting-state ICCw scores from the top 10% ICCw distribution are plotted onto the scalp (Figure 475 

1I).  476 

Given the different cognitive demands associated with task performance, one might 477 

expect reliability scores during task states to differ from those at rest.  However, when we 478 

examined task induced changes in reliability, we found that task associated ICCw and ICCb 479 

values for fMRI and EEG scores exhibited similar pattern to resting-state (Figures 2 and 3, 480 
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respectively). To test for changes, we assessed an ICC x Task ANOVA and found that the ICC x 481 

Task interaction was significant (F10,501389 = 1242, pcorrected << 0.001). For the EEG, we 482 

additionally added frequency as a variable in our ANOVA design and found that the ICC x Task 483 

x Frequency interaction was significant (F40, 201190 = 140, pcorrected << 0.001) with the a-band 484 

having the highest ICCw scores.  485 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 4, 2022. ; https://doi.org/10.1101/2022.05.03.490544doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.03.490544
http://creativecommons.org/licenses/by-nd/4.0/


25 
 

 486 

Figure 2. Reliability of individual connections within-subjects (ICCw) for fMRI and EEG 487 
frequency bands across tasks: DOT, PVT, MOD, VWM-1:3, and DYN-1:4. For each violin plot, 488 
the central dot indicates the median, and the line indicates the 25th to 75th percentiles. DOT: Dot 489 
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Probe Task; DYN: Dynamic Attention Task; MOD: Modular Math Task; PVT: Psychomotor 490 
Vigilance Task; VWM 1-3: Visual Working Memory. 491 
 492 
 493 
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 494 
Figure 3. Reliability of individual connections between-subjects (ICCb) for fMRI and EEG 495 
frequency bands across tasks: DOT, PVT, MOD, VWM-1:3, and DYN-1:4. For each violin plot, 496 
the central dot indicates the median, and the line indicates the 25th to 75th percentiles. DOT: Dot 497 
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Probe Task; DYN: Dynamic Attention Task; MOD: Modular Math Task; PVT: Psychomotor 498 
Vigilance Task; VWM 1-3: Visual Working Memory. 499 
 500 

 501 

Similarly, we assessed if for task fMRI there is an association between ICCw scores and 502 

cognitive systems. We mapped edgewise scores to the 17 cognitive systems in the same manner 503 

as for the resting-state and plotted the difference between the ICCw values during task and 504 

resting-state in Figure 4. We generally observed higher reliability during task states, and found 505 

that for tasks with repeated sessions, the ICCw progressively increased from resting-state as the 506 

sessions progressed (Figure 4 VWM and DYN tasks). For task EEG data, ICCw scores from the 507 

top 10% of the ICCw distribution were plotted onto the scalp and we did not notice any overt 508 

reconfiguration in scalp distribution from resting-state to task (Figure 5). 509 

 510 

 511 

 512 

 513 
 514 
 515 
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 516 
 517 

 518 
Figure 4. fMRI changes in reliability from resting-state for each task: DOT, PVT, MOD, VWM-519 
1:3, and DYN-1:4. Connections are mapped unto 17 cognitive systems from Schaefer cortical 520 
and Harvard-Oxford subcortical atlas. DOT: Dot Probe Task; DYN: Dynamic Attention Task; 521 
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MOD: Modular Math Task; PVT: Psychomotor Vigilance Task; VWM 1-3: Visual Working 522 
Memory. 523 
 524 
 525 

 526 
 527 
Figure 5. Scalp distribution across tasks for top 10% of ICCw scores. For Resting-State and each 528 
task: DOT, PVT, MOD, VWM-1:3, and DYN-1:4, (10 in total), connections with ICCw scores in 529 
top 10% for d , q, a, b and g frequency bands are plotted on the scalp. DOT: Dot Probe Task; 530 

Re
sti
ng
-S
ta
te

M
OD

PV
T

VW
M
-1

DY
N-
1

VW
M
-2

VW
M
-3

DY
N-
4

DY
N-
3

DY
N-
2

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 4, 2022. ; https://doi.org/10.1101/2022.05.03.490544doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.03.490544
http://creativecommons.org/licenses/by-nd/4.0/


31 
 

DYN: Dynamic Attention Task; MOD: Modular Math Task; PVT: Psychomotor Vigilance Task; 531 
VWM 1-3: Visual Working Memory. 532 
 533 

3.2 Reliability of Network Measures 534 

We next assessed the reliability of higher order network properties. For each brain 535 

network, nine measures were calculated along with their corresponding ICCw and ICCb scores. 536 

We found significant differences between modalities in ICCw (F6,66 = 45; p-corrected << 0.001). 537 

As shown in Figure 6 A, across all imaging modalities and network properties, the dMRI 538 

exhibited the highest ICCw scores (0.71 ± 0.06 (SD)) . By comparison, resting-state fMRI 539 

exhibited relatively poor reproducibility (0.35 ± 0.12 (SD)), and EEG’s reproducibility was 540 

frequency dependent with the α-band having the highest ICCw scores (0.43 ± 0.09 (SD)). ICCb 541 

scores across all modalities were close to zero (Figure 6B).  542 

 543 

 544 

 545 

Figure 6. Graph Measures for dMRI and Resting-State fMRI and EEG for (A) ICCw and (B) 546 
ICCb values.  547 
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We next assessed if performing a task alters the reliability of network measures (Figure 549 

7). For fMRI, we evaluated the Task x Network Measure x ICC ANOVA design and found 550 

significant interactions between Task x ICC (F8,80 = 99, pcorrected << 0.001) and Network Measure 551 

x ICC (F10,80 = 9.88, pcorrected << 0.001) (Figure 7A). For the EEG, we evaluated the Task x 552 

Frequency x Network Measure x ICC ANOVA design, and we found a significant interaction 553 

between Task x Frequency (F 32,792 = 5.35, pcorrected < 0.001) and Frequency x Network Measure 554 

(F40,792 = 6.33, pcorrected < 0.001) (Figure 7A). From Figure 7 it is apparent that the a-band is the 555 

most consistent across resting- and task-state, while the β-band shows an increase in ICCw in the 556 

task-states. It is also worth noting that Synchronizability and Eigenvector Centrality exhibited 557 

weaker ICCw scores relative to the other metrics across resting- and task-states for both fMRI 558 

and EEG. 559 

 560 

 Figure 7. ICC values for network measures across task and resting-state. (A) ICCw and (B) ICCb 561 
values across tasks for fMRI and EEG frequency bands.  562 
 563 

3.3 Fingerprinting Analysis 564 
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Our analysis so far has confirmed that dMRI networks are more reliable within a subject 565 

than fMRI and EEG networks. We therefore, expect that dMRI networks will have a higher 566 

probability of being able to identify an individual from a group, similar to a fingerprint (Finn et 567 

al., 2015). For functional networks, we would similarly expect the same of a-band EEG 568 

networks, given their relatively higher reliability scores. In order to fingerprint an individual, 569 

brain networks from the individual should be more similar to each other across runs relative to 570 

networks obtained from other individuals. To formally assess the similarity between brain 571 

networks, we measured similarity using the Euclidian distance (Methods). Our results indicate 572 

that fingerprinting was not uniform across all derived networks (F6,168 = 3402, pcorrected << 0.001). 573 

As expected, structural dMRI networks had the highest accuracy, but for functional networks, 574 

fMRI networks performed better than a-band EEG derived networks, and in fact, within EEG 575 

networks, b-band networks had the highest fingerprinting accuracy (Figure 8A).  576 

 577 

 578 

Figure 8. Fingerprinting performance across imaging modalities. (A) Proportion of networks 579 
that were correctly matched to the corresponding individual for dMRI, fMRI, and EEG derived 580 
brain networks. (B) Separability of each network in being matched to corresponding individual. 581 
For each violin plot, the central dot indicates the median, and the line indicates the 25th to 75th 582 
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percentiles.  583 
 584 

However, this analysis does not tell us about the separability across the networks derived 585 

from the different imaging modalities. Here we define separability as the difference in similarity 586 

between the minimum within-subject value for a network to the maximum between subject 587 

similarity for that network (Methods). Therefore, positive separability values indicate that a 588 

particular network for an individual is always more similar to other networks from that 589 

individual and negative values indicate the opposite. Separability values across imaging 590 

modalities were found to be significantly different (F6,10093 = 8618; pcorrected << 0.001). In 591 

addition, despite dMRI and fMRI having similar accuracy in fingerprinting, dMRI networks 592 

were more separable than fMRI and EEG (dMRI: 0.14 ± 0.04 (SD); fMRI: -0.26 ± 0.27 (SD); d , 593 

q, a, b and g: < -0.85 (mean)) (Figure 8B). 594 

 595 

4 Discussion  596 

In the current work, we analyzed the reproducibility of multimodal and multi-task 597 

structural and functional brain networks in a unique longitudinal and multi-modal data set with 598 

simultaneous EEG-fMRI recordings. In our analysis, each subject contained brain networks 599 

derived from dMRI, fMRI and EEG data, allowing us to assess how reliability differed in brain 600 

networks derived from different modalities and across task states. 601 

 602 

4.1 Edgewise Reliability Differences Between dMRI, fMRI, and EEG 603 

We first assessed the reliability of individual connections in the structural and functional 604 

brain networks and found stronger within- than between-subject reliability across all imaging 605 

modalities, in line with previous results (Birn et al., 2013; Noble et al., 2019, 2017; O’Connor et 606 
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al., 2017; Pannunzi et al., 2017; Shehzad et al., 2009). The most reliable connections were also 607 

the ones that tended to be the strongest, corroborating previous findings in fMRI networks 608 

(Noble et al., 2017; Pannunzi et al., 2017). In addition, these connections when mapped on to 609 

cognitive systems, exhibited distinct patterning. As a trend, for dMRI and resting-state fMRI, 610 

connections within a cognitive system exhibited the strongest reliability, consistent with previous 611 

studies in functional networks (Birn et al., 2013; Noble et al., 2017; O’Connor et al., 2017; 612 

Shehzad et al., 2009). However, a direct comparison between dMRI and resting-state fMRI 613 

showed distinct distribution of reliability across cognitive systems. dMRI reliability was 614 

strongest within the Frontal-Parietal Control system and between the Visual to Default Mode and 615 

Temporal Parietal system, while in resting-state fMRI stronger values were distributed between 616 

cognitive systems. 617 

 When assessing task mediated changes, we found an increase in reliability across most 618 

tasks relative to resting-state in fMRI networks. In addition, we observed an increase in this 619 

reliability across multiple sessions of a given task, potentially indicative of an effect of learning 620 

the task. This finding compliments results from a previous study that found adding task-state 621 

fMRI networks improves predictive outcomes relative to resting-states fMRI (Gao et al., 2019).  622 

For EEG, the a- and β-bands had the highest reliability scores for both resting- and task-623 

states, confirming previous results (Kuntzelman and Miskovic, 2017). The strong reliability for 624 

the a- and β-band could be due to the fact that these frequencies are consistently activity, while 625 

the other frequency bands tend to have transient activity. In a similar manner to fMRI, EEG 626 

reliability increased during a task, but this increase was primarily in the a- and β-bands. In 627 

addition, we found no major changes when we mapped connections on the scalp from resting-628 

state to task-state. This could be due to the low spatial resolution of EEG (Nunez et al., 1997).  629 
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 630 

4.2 Reliability of Graph Theoretical Measures  631 

When examining the reliability of higher order network properties, we found that 632 

network properties had overall stronger reliability scores than individual connections in line with 633 

previous findings of Braun et al., 2012. This might lead one to ask how the prevalence of low 634 

reliability scores across most connections could produce fair to excellent reliability in higher 635 

order network properties? This result could be due to the fact that edges with higher reliability 636 

scores are associated with the stronger connections. Our graph theoretical properties are 637 

dependent on connection strength, and the stronger the connection, the more variance it accounts 638 

for in the higher order network values. Thus, despite most connections having poor reliability, 639 

the few strong connections with good to excellent reproducibility have a disproportionately 640 

higher impact on the reliability of a network measure. The notable exception is that in fMRI and 641 

EEG, synchronizability and eigenvector centrality had lower reliability scores than the other 642 

network properties. One possible reason for this is that these measures, particularly eigenvector 643 

centrality, are very sensitive to the state of the subject (Lohmann et al., 2010). These results 644 

indicate these measures might be more sensitive to detecting meaningful differences between 645 

individuals in studies where one is attempting to link functional brain connectivity to task 646 

performance or behavior.  647 

We also found task associated differences in reliability for the fMRI and EEG. However 648 

for the EEG, the strongest increases in reliability were in the a- and b-bands. However, in 649 

contrast to Deuker et al., 2009 we did not find a corresponding increase in ICCw scores in the d 650 

and q bands with task.  651 

 652 
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 653 

4.3 Fingerprinting 654 

We found that dMRI and fMRI outperformed EEG derived networks in fingerprinting. 655 

However, the separability was not equal across these networks, with dMRI outperforming all 656 

functional networks. This is likely due to the fact that, unlike functional connectivity, structural 657 

connectivity is not state dependent. 658 

It has been found that brain activity measured with fMRI is stable over time (Braga and 659 

Buckner, 2017; Gratton et al., 2018; Horien et al., 2019; Laumann et al., 2015) and in fMRI, 660 

within-subject variance can be reduced with high quality data with long scan times (~15 minutes) 661 

and multiple sessions (Birn et al., 2013; Laumann et al., 2015; Noble et al., 2017; Pannunzi et al., 662 

2017). It has been argued that large amounts of data are needed in order to differentiate between 663 

true and artifact induced variance (Gordon et al., 2017; Power et al., 2012)  and previous studies 664 

have found that reliability increases with more data (Anderson et al., 2011; Birn et al., 2013; 665 

Laumann et al., 2015; Noble et al., 2017; Shou et al., 2013). This high quality data is important 666 

because Horien et al., 2019 found that motion characteristics can be unique to an individual and 667 

can fingerprint a subject at a level greater than chance. In our data, individual scan times were 668 

limited to approximately 5 minutes, but data was collected over multiple sessions for a relatively 669 

large number of subjects, suggesting that we might expect more reliable results. However, our 670 

observation of the relatively weak accuracy and separability of EEG (a more direct measure of 671 

neuronal activity than fMRI) in fingerprinting an individual raises questions as to whether the 672 

increase in fingerprinting performance in fMRI on long time scans is based on neuronal activity. 673 

Also, respiration induced artifacts in fMRI exhibit the same stability over time (Power et al., 674 

2019), which could also lead to increased reliability measurements.  675 
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Our direct comparison of fingerprinting between structural and functional networks 676 

indicates that structural networks more sensitive. In addition, these results indicate that the 677 

patterning in structural connectivity is far more unique to an individual than those in 678 

corresponding functional networks. These results suggest that structural networks might have 679 

more discriminative power than functional networks.  680 

Unique brain connectivity features have previously been proposed to play a role in 681 

differences underlying behavior and cognition (Kanai and Rees, 2011). Specifically, difference 682 

in behavioral performance in motor and decision associated tasks are correlated with fractional 683 

anisotropy of the corpus callosum (Johansen-Berg et al., 2007; Westerhausen et al., 2006), optic 684 

radiation (Tuch et al., 2005) and grey matter density (Van Gaal et al., 2011). Cortical thickness 685 

within the superior parietal lobes has been found to be correlated with the rate of switching in a 686 

perception based task (Kanai et al., 2010). In addition structural features unique to an individual 687 

lead to characteristic brain functional activity in modeling analysis and task performance (Bansal 688 

et al., 2019, 2018a). 689 

 690 

4.4 On Reliability, Confounding Variables, and Utility 691 

Is a connection with poor reliability good or bad? To answer this, we need to be mindful 692 

of the goal at hand. First and foremost, we need to make sure that reliability values are not due to 693 

noise in the signal. On the other hand, if we are confident that low reliability is a genuine part of 694 

the signal, then that is also a very informative finding. The seminal work of Poldrack et al., 2015 695 

found that functional connectivity exhibits a high level of variability within the same person over 696 

the course of a year. Along these lines, Noble et al., 2017 found that functional connections with 697 

strong reliability are not very informative when it pertains to predicting behavior. However, we 698 
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need to be mindful that this is an effect limited to functional connectivity. Therefore, structural 699 

connections and/or higher-order network metrics might exhibit a stronger association between 700 

reliability and behavior. Also, finding highly reproducible brain connections and/or measures 701 

might be very important if we are looking for deviations from expected values that could be used 702 

as biomarkers for disease identification/progression. Alternatively, connections and/or measures 703 

with low reliability might be useful for studying individual differences and making correlations 704 

between structure and performance/behavior. 705 

But, even beyond reliability and noise, our functional results could, along with previous 706 

literature, reflect the natural day-to-day changes in our brain. Neuroplastic changes in the brain 707 

are the hallmark of learning and memory (Lamprecht and LeDoux, 2004), and these changes or 708 

natural fluctuations and modifications in the neural code (Fairhall et al., 2001), reflecting 709 

learning and memory could be reflected in functional connectivity. Indeed, there are many 710 

examples of rapid neuroplastic changes in the brain that results in functional connectivity 711 

changes (e.g., Nierhaus et al., 2019), but see Perich et al., 2018 as an alternative theory. 712 

Moreover, in this particular dataset, individuals were recruited to capture substantial variability 713 

in sleep without experimental manipulation. While there is a substantial literature on brain 714 

related decrements due to sleep deprivation (Boonstra et al., 2007; Hudson et al., 2020) little is 715 

known about naturalistic fluctuations in sleep (Moturu et al., 2011; Thurman et al., 2018). These 716 

individuals, instead could be more “plastic” (or “stationary”) than other individuals. Future 717 

studies may disentangle these alternatives from a reliability explanation of our results. 718 

fMRI-based analysis has been around for over two decades, but its clinical use has been 719 

limited, raising questions about its usefulness as a diagnostic tool. In addition, given that the 720 

effectiveness of any diagnostic tool is only as useful as it can be applied to an individual, then in 721 
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this regard, structural networks should take a more prominent role in medicine. Regardless, one 722 

must consider how measures of reliability relate to the modality being studied, the state of the 723 

brain, and the question at hand in order to meaningfully ask questions about how brain networks 724 

change with disease or how individual differences in structure relate to performance and 725 

behavior. 726 
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