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Abstract 12 

The fission yeast Schizosaccharomyces pombe is a popular eukaryal model organism for cell division and 13 
cell cycle studies. With this extensive knowledge of its cell and molecular biology, S. pombe also holds 14 
promise for use in metabolism research and industrial applications. However, unlike the baker’s yeast 15 
Saccharomyces cerevisiae, a major workhorse in these areas, cell physiology and metabolism of S. pombe 16 
remain less explored. One way to advance understanding of organism-specific metabolism is construction 17 
of computational models and their use for hypothesis testing. To this end, we leverage existing knowledge 18 
of S. cerevisiae to generate a manually-curated high-quality reconstruction of S. pombe’s metabolic 19 
network, including a proteome-constrained version of the model. Using these models, we gain insights 20 
into the energy demands for growth, as well as ribosome kinetics in S. pombe. Furthermore, we predict 21 
proteome composition and identify growth-limiting constraints that determine optimal metabolic 22 
strategies under different glucose availability regimes, and reproduce experimentally determined 23 
metabolic profiles. Notably, we find similarities in metabolic and proteome predictions of S. pombe with 24 
S. cerevisiae, which indicate that similar cellular resource constraints operate to dictate metabolic 25 
organization. With these use cases, we show, on the one hand, how these models provide an efficient 26 
means to transfer metabolic knowledge from a well-studied to a lesser-studied organism, and on the 27 
other, how they can successfully be used to explore the metabolic behaviour and the role of resource 28 
allocation in driving different strategies in fission yeast.  29 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 4, 2022. ; https://doi.org/10.1101/2022.05.04.490403doi: bioRxiv preprint 

mailto:p.grigaitis@vu.nl
mailto:j.van.heerden@vu.nl
https://doi.org/10.1101/2022.05.04.490403
http://creativecommons.org/licenses/by/4.0/


2 
 

Introduction 30 
The fission yeast Schizosaccharomyces pombe is a popular eukaryal model organism for cell division and 31 
cell cycle studies. With this extensive knowledge of its cell and molecular biology, S. pombe also holds 32 
promise for use in metabolism research and industrial applications. However, unlike the baker’s yeast 33 
Saccharomyces cerevisiae, a major workhorse in these areas, cell physiology and metabolism of S. pombe 34 
remain much less explored. While these two yeasts share some similarities, distinct differences in e.g. cell 35 
cycle regulation (Forsburg and Nurse, 1991), mode of cell division (Hoffman et al., 2015), glucose transport 36 
(Hofer and Nassar, 1987) and utilizable carbon sources (de Jong-Gubbels et al., 1996) makes S. pombe a 37 
highly complementary model for studies into eukaryotic metabolism. A deeper understanding of S. pombe 38 
metabolism, therefore, offers opportunities to expand our knowledge of the larger eukaryal metabolic 39 
landscape. In this regard, computational approaches can provide a useful means to leverage the extensive 40 
metabolic knowledge from S. cerevisiae to explore S. pombe metabolism. 41 

Computational approaches have become increasingly important to unravel and understand metabolism 42 
in diverse species, ranging from bacteria to humans. Arguably the most successful approaches in both 43 
applied and fundamental research are based on Genome-scale metabolic models (GEMs) (Fang et al., 44 
2020).  A GEM is a computable knowledge-base which is essentially a compendium of all reactions of an 45 
organism: its metabolic potential, based on the genome sequence. GEMs have successfully been applied 46 
in diverse settings, including the metabolic engineering of microorganisms (McAnulty et al., 2012; Mishra 47 
et al., 2018), studies of human diseases or disease causing pathogens (Beste et al., 2007; Branco dos 48 
Santos et al., 2017), drug development (Kim et al., 2011), and the investigation of interactions within 49 
microbial communities (Dukovski et al., 2021). Furthermore, by providing a general framework based on 50 
the genome sequence of an organism, GEMs allow for efficient transfer of metabolic knowledge between 51 
organisms.  52 

GEMs of S. pombe have previously been constructed. However, several issues, including incompatibility 53 
with current Systems Biology Markup Language (SBML) standards (Pitkänen et al., 2014; Sohn et al., 2012), 54 
a lack of gene-protein-reaction (GPR)-associations, or automated reconstruction without additional 55 
curation (Lu et al., 2021; Pitkänen et al., 2014), significantly limited their utility. Furthermore, recent 56 
extensions of the GEM framework to include regulation and resource allocation dynamics now enable the 57 
exploration of complex metabolic behaviours such as the Crabtree-effect (analogous to the Warburg-58 
effect seen in human cells) that cannot be explained with conventional GEMs. 59 

Thus in this study, we exploited the extensive metabolic knowledge and modelling toolset available for S. 60 
cerevisiae to generate an updated computational toolbox for S. pombe, consisting of a genome-scale 61 
metabolic model, pomGEM, and a resource allocation model, pcPombe. We manually curated and 62 
calibrated both models using published experimental data. We used the pcPombe model to identify 63 
proteome constraints that dictate the growth and metabolic strategy of S. pombe in glucose-limited 64 
chemostat cultures. We find that behaviour appears to be governed by constraints similar to those 65 
operating in S. cerevisiae. These models provide essential tools to further expand knowledge of S. pombe’s 66 
metabolism, specifically, and eukaryotic metabolism in general.  67 

Results 68 

Reconstruction of the S. pombe metabolic network 69 
We first aimed to create a manually-curated, high-quality reconstruction of the S. pombe metabolic 70 
network. Therefore, we coupled automated reconstruction tools (using Saccharomyces cerevisiae 71 
metabolic reconstruction Yeast8.3.3 (Lu et al., 2019) as a template) with thorough manual curation 72 
(Methods) in order to construct the pomGEM, a manually-curated GEM of S. pombe (Figure 1a) that meets 73 
current standards for annotation and reusability. Manual curation of newly-reconstructed GEMs is critical 74 
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for accurate prediction of metabolic phenotypes. For example, during the curation we removed the 75 
reactions of glyoxylate cycle, a pathway that is active in S. cerevisiae but absent in S. pombe (de Jong-76 
Gubbels et al., 1996), and the reason why S. pombe cannot utilize two-carbon compounds for growth. In 77 
addition, we replaced the biomass objective function (BOF) of the Yeast8.3.3 model with the BOF, used in 78 
the SpoMBEL1693 model (Sohn et al., 2012), which is based on experimental measurements of S. pombe 79 
(Figure 1b).  80 

 

 

Figure 1. Reconstruction of the pomGEM, the genome-scale metabolic model of S. pombe a. The 
workflow of the reconstruction. b. The composition of S. pombe biomass, defined in the pomGEM. c. 
Estimation of the GAM value. Glucose uptake flux was fixed to 1.0 𝑚𝑚𝑜𝑙 𝑔𝐷𝑊−1 ℎ−1 and the maximal 
specific growth rate 𝜇 was predicted with varying GAM value. Growth yield on glucose 𝑌𝑋 𝑆⁄  was 

computed based on the predicted specific growth rate. The target yield on glucose (𝑌𝑋 𝑆⁄ =

0.432𝑔 𝑏𝑖𝑜𝑚𝑎𝑠𝑠 (𝑔 𝑔𝑙𝑢𝑐𝑜𝑠𝑒)−1) was computed as an average of experimentally determined 𝑌𝑋 𝑆⁄  

from glucose-limited cultures with 𝐷 > 0.1ℎ−1 (de Jong-Gubbels et al., 1996; de Queiroz et al., 1993; 
Uribelarrea et al., 1997, 1993). d-e. Benchmarking of the pomGEM model: d. Prediction of growth on 
single carbon sources (experimental data from (Choi et al., 2010) and our measurements, see 
Supplementary Table 1 for details); e. Prediction of the lethality of single gene KOs (experimental data 
from (Kim et al., 2010)). Abbreviations: BOF, biomass objective function; GAM, growth-associated 
maintenance; KO, knock-out. 

 81 
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Next, we looked at the energetic parameters. First, we confirmed that the P/O ratio (ATP produced per 82 
oxygen atom reduced) in the model is 1.28, consistent with experimental measurements (de Queiroz et 83 
al., 1993). In terms of ATP maintenance parameters, we kept the non-growth-associated ATP maintenance 84 
(NGAM) demand at 0.7 𝑚𝑚𝑜𝑙 𝑔𝐷𝑊−1 ℎ−1 from the Yeast8.3.3, in agreement with experimentally 85 
determined values for S. pombe (0.66 - 0.83 𝑚𝑚𝑜𝑙 𝑔𝐷𝑊−1 ℎ−1) (de Queiroz et al., 1993). Furthermore, 86 
we estimated the growth-associated ATP maintenance (GAM) value (Figure 1c). We used published 87 
experimental measurements of growth yield on glucose (𝑌𝑋 𝑆⁄ ) in fully-respiratory glucose-limited cultures 88 

of S. pombe and varied the GAM value to achieve the target yield 𝑌𝑋 𝑆⁄ =89 

0.432 𝑔 𝑏𝑖𝑜𝑚𝑎𝑠𝑠 (𝑔 𝑔𝑙𝑢𝑐𝑜𝑠𝑒)−1. The target 𝑌𝑋 𝑆⁄  corresponded to 𝐺𝐴𝑀 = 58.3 𝑚𝑚𝑜𝑙 𝑔𝐷𝑊−1, 90 

comparable with 55.3 𝑚𝑚𝑜𝑙 𝑔𝐷𝑊−1 in the Yeast8.3.3. The pomGEM model showed very good 91 
agreement for the predicted flux values in central carbon metabolism with measured fluxes in glucose-92 
limited chemostat cultures at 𝐷 = 0.1ℎ−1 (Klein et al., 2013) (Supplementary Figure 1) . 93 

We benchmarked the pomGEM model by predicting growth on a panel of 21 single carbon sources (Figure 94 
1d, Supplementary Table 1) and lethality of single-gene knock-outs (KOs, Figure 1e, Supplementary Table 95 
2). Predictions of growth on single carbon sources were correct for all carbon sources except one, ribose: 96 
(Choi et al., 2010) reported growth on ribose but pomGEM predicted no growth (false negative). It should 97 
be noted that the growth medium used for testing in (Choi et al., 2010) is not clearly defined, as such it 98 
cannot be unambiguously concluded that this strain can grow on D-ribose as sole carbon source. Of the 99 
predicted phenotypes, 69.9% of single-gene KOs were true predictions (match between model and 100 
experimental data) for the entire dataset, while false positives (viable only in silico) and false negatives 101 
(viable only in vivo) were 22.0% and 8.1% of the dataset, respectively. We, however, were not able to test 102 
the single-gene KOs on previously published reconstructions due to inherent technical issues with these 103 
models. 104 

We also performed a check on the reaction essentiality to compare the prediction accuracy with the 105 
SpoMBEL1693 model, where essentiality as assessed in terms of reactions rather than genes. We 106 
determined the essentiality (Methods) of 2017 model reactions with gene-protein-reaction (GPRs) 107 
associations, and mapped the GPRs with the individual genes in the dataset of gene KOs (Supplementary 108 
Table 3). pomGEM showed a true prediction rate of 74.7%, a good improvement (13.5%)  on the true 109 
prediction rate achieved by SpoMBEL1693 reconstruction (61.2%, (Sohn et al., 2012)). 110 

 111 

Development of the proteome-constrained model of S. pombe 112 
FBA-based models are powerful tools to investigate the potential of metabolic networks, but the ground 113 
assumptions of the method limit the prediction of metabolic phenotypes. As a rule, FBA predictions will 114 
identify the metabolic strategy that leads to the highest biomass yield on the limiting nutrient. For 115 
instance, under glucose-limited conditions, a GEM of S. cerevisiae will always predict a high-yield ATP 116 
production strategy, complete respiration of glucose to CO2 and water, therefore. In reality, cells will 117 
switch to fermentation, a lower ATP-yield strategy, beyond a critical concentration of glucose. Thus, 118 
metabolic phenotypes which do not correspond to the highest-yield strategy cannot be predicted with 119 
FBA, unless additional constraints are added that reflect physiological constraints (de Groot et al., 2020).  120 

An important constraint relates to the allocation of limited cellular resources. If metabolic reaction-121 
associated protein costs are accounted for, different condition-dependent modes of growth, e.g. the 122 
switch between respiration and fermentation (Chen and Nielsen, 2019) can be reproduced. GEMs 123 
therefore can be improved by introducing the concept of resource allocation: optimal partitioning of the 124 
limited resources among the metabolic processes, based on the costs of energy and biosynthetic 125 
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resources (e.g. amino acids) needed for implementing each metabolic pathway. Over the last 15 years, 126 
different extensions of GEMs were proposed in order to predict optimal resource allocation in different 127 
microorganisms (De Becker et al., 2022). Recently, we introduced a proteome-constrained (pc-) model of 128 
S. cerevisiae (pcYeast) (Elsemman et al., 2022) that can accurately predict low and high biomass yield 129 
strategies under different growth conditions. In a similar spirit, we constructed pcPombe, a proteome-130 
constrained model of S. pombe, on the basis of the pomGEM model (Figure 2a).  131 

The pcPombe model (model explained in detail in Supplementary Notes) captures the interplay of 132 
metabolism and cellular resource allocation by (i) coupling metabolic processes with respective protein 133 
demand, and (ii) coupling protein abundance with compartment-specific proteome capacity constraints. 134 
We thus first extended the metabolic model by introducing fine-grained descriptions of protein turnover 135 
(reactions protein synthesis, folding, degradation, and dilution by growth). Then, we compiled data from 136 
literature and/or specialized biological databases (Methods, Supplementary Notes) to parametrize the 137 
pcPombe model (e.g. 𝑘𝑐𝑎𝑡 values, Supplementary Figure 2) and establish compartment-specific proteome 138 
constraints with pcYeast as template (Elsemman et al., 2022). We then further calibrated the pcPombe 139 
model with available experimental data, as explained below. 140 

 

Figure 2. Calibration of the proteome-constrained model of S. pombe, pcPombe. a. The representation 
of different layers of the pcPombe model: the metabolic model (pomGEM) is complemented with a 
fine-grained description of protein turnover (reactions of protein translation, folding, degradation, and 
dilution by growth) and a set of compartment-specific proteome constraints (corresponding to 
proteome capacity of plasma membrane, mitochondria, and cytosol). b. Representation of the glucose 
transport in S. cerevisiae and S. pombe, and the estimates of ATP maintenance costs for both organisms. 

c. Calibration of the peptide elongation rate. The “inactive” fraction of ribosomes 𝛷𝑅
0 was estimated 

from the experimental data (black dashed line, linear fit of the experimental points), and growth on 
varying levels of glucose was simulated with different ribosome 𝑘𝑐𝑎𝑡 values. Abbreviations: Glc, glucose. 

 141 
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Calibrating ATP maintenance and protein translation costs in pcPombe 142 
A substantial amount (~40% in S. cerevisiae (Lahtvee et al., 2017)) of ATP maintenance costs can be 143 
explained by protein turnover processes. As these processes are now modelled explicitly in the pcPombe 144 
model, we used the measurements of biomass yield on glucose (Figure 1c), to determine the GAM value 145 
for the pcPombe model (Figure 2b). We first explicitly split the ATP maintenance into two components, 146 
cytosolic and mitochondrial ATP maintenance (GAM and mitoGAM, respectively). We base this decision 147 
on the fact that mitochondria are special organelles: they have a circular genome that stores a small 148 
number of protein-coding genes, and translate them, using a distinct mitochondrial pool of ribosomes. In 149 
the model, the exact number of mitochondria per cell is not specified, therefore a practical way to express 150 
the maintenance costs is mmol ATP per gram of mitochondrial protein.  151 

Although protein turnover cost is a major determinant of GAM, other processes, which are often not 152 
explicitly modelled, can significantly influence this value. For example, in S. cerevisiae, glucose enters the 153 
cell via facilitated diffusion, while di- or oligosaccharides (maltose, maltotriose, raffinose, etc.) are 154 
imported into the cell through sugar:H+ symport, leading to additional energetic costs of using these 155 
sugars for growth (Weusthuis et al., 1993). However, in S. pombe, glucose transporters are also sugar:H+ 156 
symporters, with a stoichiometry of 1:0.4 for glucose and protons, respectively (Hofer and Nassar, 1987). 157 
The actual energetic costs here come from the fact that the protons, imported with the sugar, have to be 158 
pumped out of the cell by the plasma membrane H+-ATPases to maintain the proton balance in the cell. If 159 
this energetic cost of glucose transport is not accounted for, the growth rate will be significantly 160 
overestimated, especially during respiratory growth when the mitochondrion is used, and this is a 161 
consequence of two factors. First, by neglecting consumption of ATP by the H+-ATPase, more ATP will be 162 
available for growth; in the model, correctly predicting the growth yield will then require a much higher 163 
GAM value. Second, increased cytosolic proton availability in the model will drive increased mitochondrial 164 
ATP synthase activity, leading to a higher ATP yield, and hence a higher estimated GAM value. We 165 
therefore added an additional constraint to the pcPombe model that couples glucose import to H+-export 166 
through plasma membrane H+-ATPases (see discussion of this modelling step in Supplementary Notes 167 
1.4), thereby preventing incorrect use of these protons. With this additional constraint, we then estimated 168 
the ATP maintenance value.  169 

While the GAM values for the metabolic models of S. cerevisiae and S. pombe were very similar, 170 
modification of the glucose transport mechanism resulted in a significant difference in the GAM values of 171 
the respective proteome-constrained models. In the end, we determined values of 6 𝑚𝑚𝑜𝑙 𝑔𝐷𝑊−1 and 172 
6 𝑚𝑚𝑜𝑙 (𝑔 𝑚𝑖𝑡𝑜𝑐ℎ𝑜𝑛𝑑𝑟𝑖𝑎𝑙 𝑝𝑟𝑜𝑡𝑒𝑖𝑛)−1 for GAM and mitoGAM, respectively (Figure 2b). The estimated 173 
GAM value for pcPombe is thus considerably smaller than the one for pcYeast (24 𝑚𝑚𝑜𝑙 𝑔𝐷𝑊−1) once 174 
the additional energetic costs of glucose transport is accounted for, (Figure 2b). For mitoGAM, the same 175 
value (6 𝑚𝑚𝑜𝑙 (𝑔 𝑚𝑖𝑡𝑜𝑐ℎ𝑜𝑛𝑑𝑟𝑖𝑎𝑙 𝑝𝑟𝑜𝑡𝑒𝑖𝑛)−1) was used in both pcYeast and pcPombe.  176 

Next we assessed the peptide elongation rate of the cytosolic ribosomes and the fraction of proteome, 177 
occupied by “inactive” ribosomes 𝛷𝑅,0 (following (Metzl-Raz et al., 2017)), other key parameters, as 178 
shown for the pcYeast model (Elsemman et al., 2022) (Figure 2c). We used quantitative proteomics data 179 
from turbidostat experiments in EMM2 media (2% glucose), supplemented with different single nitrogen 180 
sources (Kleijn et al., 2022). First, we computed the fraction of “inactive” ribosomes 𝛷𝑅,0 ≈181 

0.05 𝑔 (𝑔 𝑝𝑟𝑜𝑡𝑒𝑖𝑛)−1 from the linear regression of the experimental data points (Figure 2c, black dashed 182 
line). Notably, the fraction of the “inactive” ribosomes is around 40% lower in S. pombe than in S. 183 
cerevisiae (𝛷𝑅,0 ≈ 0.08) (Metzl-Raz et al., 2017). Following that, we estimated the peptide elongation rate 184 
in S. pombe, a parameter never reported in the literature (to the best of our knowledge). We thus ran a 185 
set of model simulations, where we varied the peptide elongation rate 𝑘𝑐𝑎𝑡,𝑟𝑖𝑏𝑜 around the initial value 186 

of 𝑘𝑐𝑎𝑡,𝑟𝑖𝑏𝑜 = 10.5 𝑎𝑎 𝑠−1 from S. cerevisiae (Metzl-Raz et al., 2017) (Figure 2c). We concluded that the 187 
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value of 10.5 𝑎𝑎 𝑠−1 showed the best agreement with the experimental data. This suggests that although 188 
S. cerevisiae and S. pombe diverted in their evolutionary tracks relatively long time ago, their ribosomes 189 
seem to have remained highly functionally conserved. 190 

 191 

Identifying growth-limiting proteome constraints in glucose-limited chemostats 192 
The key feature of the pcPombe model is the ability to predict multiple facets of microbial physiology: flux 193 
distributions, proteome composition, and, most importantly, compartment-specific proteome constraints 194 
that actively limit the maximal growth rate. Therefore, as a use case example, we used the pcPombe model 195 
to identify the active constraints that drive the physiology of S. pombe growing in glucose-limited 196 
chemostats at increasing dilution rate (Figure 3). 197 

We mimicked different extracellular glucose concentrations in the model by varying the saturation factor 198 
of the glucose transporters (Supplementary Notes) and used binary search (Elsemman et al., 2022) to find 199 
the maximal specific growth rate and corresponding flux distribution for every value of the saturation 200 
factor (Figure 3a). The predicted fluxes, based on external metabolites, were also used to compute the 201 
physiological parameters (yield on glucose and the respiratory quotient) of cell cultures (Figure 3b, 3c). 202 

Based on the active compartment-specific proteome constraints (Figure 3d), we partition the simulation 203 
(along the predicted specific growth rate) into three parts (shading in all the panels of Figure 3): first, at 204 
very slow growth, the only active (i.e. the constraint expression equals 1 in Figure 3d) proteome constraint 205 
is carbon uptake (carbon transporter capacity). Carbon transporter capacity remains the only active 206 
proteome constraint before the onset of ethanol formation (critical growth rate 𝜇𝑐𝑟𝑖𝑡 = 0.16 ℎ−1), when 207 
a second active proteome constraint is encountered, the mitochondrial proteome capacity (see below).  208 

As growth rate continues to increase, the active constraints change (blue shaded region in Figure 3), and 209 
so does the predicted metabolic behavior. At very fast growth rates, instead of mitochondrial proteome 210 
capacity, the unspecified protein (UP) fraction (a proxy for the cytosolic proteome capacity), starts to limit 211 
growth (UP mass fraction in the proteome reaches the minimal value we estimated on the basis of 212 
proteomics data (Kleijn et al., 2022)). As a result, any increase in growth has to be accompanied by trading 213 
in mitochondrial proteins for cytosolic ones (Figure 3d, panel “Mito. capacity“). Both the minimal UP 214 
fraction and the maximal mitochondrial proteome capacity (Supplementary Notes) are estimated 215 
parameters, due to lack of supporting experimental data. We, however, believe that the sequence of 216 
active proteome constraints (thus also the fitted parameter values) is supported by literature data, coming 217 
from both S. cerevisiae and S. pombe.  218 

First, we addressed the mitochondrial capacity being the constraint behind the onset of ethanol 219 
formation. We tested our claims by increasing the minimal UP fraction to the level that sets the maximal 220 
growth rate to 𝜇𝑚𝑎𝑥

∗ = 0.16 ℎ−1  (= 𝜇𝑐𝑟𝑖𝑡) when the glucose transporters are fully saturated and 221 
mitochondrial capacity constraint was relaxed. The flux predictions we acquired were considerably 222 
different from the experimental data and therefore we discarded such scenario. Next, we considered the 223 
active constraint (UP minimum) for growth in in glucose excess. Malina and colleagues (Malina et al., 224 
2021) determined that both S. cerevisiae and S. pombe allocate a very similar fraction (and in both cases 225 
small, <5%) of the proteome to TCA cycle and oxidative phosphorylation proteins. This suggests that the 226 
same constraints limit growth in glucose excess, and we have previously shown that this constraint is the 227 
cytosolic proteome capacity (Elsemman et al., 2022). Therefore, the active constraints at slower growth 228 
(onset of ethanol formation) must be of a different nature, and knowledge of S. cerevisiae again pointed 229 
to mitochondrial proteome capacity as the constraint limiting growth at that phase. Our speculation 230 
resulted in a good flux prediction, thus we argue that it is the active constraint under this growth regime.   231 
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Figure 3. Fluxes, physiological parameters and active proteome constraints in glucose-limited growth 
of S. pombe. a. Main predicted fluxes from glucose-limited chemostats. b-c. Physiological parameters 
of the growth in glucose-limited chemostats: b. Respiratory quotient, the ratio between the specific 
fluxes of carbon dioxide and oxygen; c. Growth yield on glucose, the ratio between growth rate and 
glucose uptake. Experimental data (points) in panels a-c from (de Jong-Gubbels et al., 1996). d. Active 
proteome constraints, predicted by the pcPombe model. Shading of different growth regimes in panels 
a-d corresponds to active proteome constraints, plotted in panel d. 

 232 

When the predicted growth rate approaches the maximal predicted growth rate, growth is no longer 233 
limited by carbon transporter capacity, and thus, only one constraint (minimal UP mass fraction) remains 234 
active. In this state, excretion of additional overflow products (e.g. pyruvate) is predicted, consistent with 235 
the behavior of S. cerevisiae at glucose excess conditions. It should be noted that the predicted maximal 236 
growth rate in the minimal EMM2 medium (𝜇𝑚𝑎𝑥 = 0.29 ℎ−1) is dependent on the minimal UP fraction 237 
in the proteome, a parameter we fit. However, we argue that our estimate is reasonable, since pcPombe 238 
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correctly predicts the maximal growth rate on the rich YES medium with the same parameter values 239 
(𝜇𝑚𝑎𝑥 = 0.34 ℎ−1) (Durão et al., 2021). To summarize, here we used the pcPombe model together with 240 
the existing knowledge on S. cerevisiae to verify the identity of proteome constraints, which actively limit 241 
growth in a condition-dependent manner. 242 

 243 

Maximal growth rate of S. pombe is defined by limited proteome access 244 
We observed that the maximal experimentally determined growth rate of S. pombe in a minimal medium 245 
(𝜇𝑚𝑎𝑥 = 0.30 ℎ−1) is substantially lower than the maximal growth rate of S. cerevisiae CEN.PK strain 246 
(Verduyn medium (Verduyn et al., 1992) with glucose as carbon source, 𝜇𝑚𝑎𝑥 = 0.40 ℎ−1 (Elsemman et 247 
al., 2022)). We speculate that the lower maximal growth rate is an outcome of lower protein density in S. 248 
pombe biomass, and S. cerevisiae has a “higher budget” to accommodate proteins, needed for faster 249 
growth. S. pombe exhibits a constant protein density of 0.43 𝑔 (𝑔𝐷𝑊)−1 (de Jong-Gubbels et al., 1996), 250 
while in S. cerevisiae, the respective value is growth rate-dependent and is reported to be 0.505 251 
𝑔 (𝑔𝐷𝑊)−1 at 𝜇 = 0.375 ℎ−1  (Canelas et al., 2011). Although different in absolute amounts, similar 252 
proteome partitioning at the maximal growth rate suggests that the maximal growth is limited by similar 253 
constraints. 254 

The design of the pc-models allows for the inspection of proteome allocation in a fine-grained manner: 255 
for every enzyme that supports growth by a catalysing a metabolic flux, a corresponding minimal protein 256 
demand can be computed for the (hypothetical) case that all proteins work at their maximal rate: 𝑣 =257 
[𝑒𝑖] × 𝑘𝑐𝑎𝑡,𝑖. At slow growth, with low metabolic fluxes, the minimal protein demand will be low. Typically, 258 
under these conditions cells express metabolic proteins at higher levels compared to the minimal 259 
predicted protein demand (Elsemman et al., 2022; O’Brien et al., 2016). Yet, the difference decreases with 260 
increasing growth rate for S. cerevisiae (Elsemman et al., 2022), with a major exception of ribosomal 261 
proteins (because ribosomal parameters are fitted explicitly, Figure 2c). To illustrate the predicted 262 
proteome partitioning, we looked into the predictions of pcPombe at the maximal predicted growth rate, 263 
and compared the minimal predicted protein demand with experimental data (Malina et al., 2021) (Figure 264 
4). 265 

We used a manually-curated proteome annotation set (Supplementary Table 3) to map proteins to 266 
different functional groups or pathways. To avoid comparing >30 pathways with small proteome fractions, 267 
we grouped pathways into a handful of coarse-grained clusters (Figure 4), with an exception of glycolysis, 268 
which as directly compared as a single pathway instead of being lumped with the rest of the catabolic 269 
(pentose phosphate pathway, TCA cycle, and oxidative phosphorylation) proteins. For additional insights, 270 
we also considered the proteome composition of S. cerevisiae and compare this to that of S. pombe. For 271 
both model predicted and experimentally determined proteome fractions, most of these coarse-grained 272 
clusters occupy comparable sized proteome fractions in both organisms. Also the deviations between 273 
predicted minimal protein demand and experimental protein fraction have similar patterns in both 274 
organisms. When looking at predictions a significant deviation from experimental data is seen in the 275 
proteome fraction involved in the metabolism of carbohydrates. The experimentally determined fraction 276 
of glycolytic enzymes is 2-fold higher than the predicted minimal demand.  277 

This result is not completely surprising, since we observed a similar result (ca. 2-fold) in previously 278 
published proteome data of S. cerevisiae cultures at the maximal growth rate in minimal medium (batch 279 
cultures with excess glucose) (Elsemman et al., 2022). It appears therefore that both these yeasts have an 280 
overcapacity of glycolytic enzymes that is not needed to support the maximal growth rate; why this is the 281 
case, is currently not understood. Overall, we observed that the proteome partitioning at maximal growth 282 
is similar between S. pombe and S. cerevisiae. This supports the inference that the maximal growth under 283 
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nutrient excess is limited by a similar constraint in both organisms. Following the predictions of proteome-284 
constrained models, we suggest that this constraint is total proteome capacity. 285 

 

Figure 4. Proteome composition of S. pombe and S. cerevisiae at maximal growth rate. Experimentally 
measured proteome composition (left bars) and predicted minimal protein level (right bars) 
represented as proteome mass fractions, in 𝑔 (𝑔 𝑝𝑟𝑜𝑡𝑒𝑖𝑛)−1 . Experimental data for both S. pombe 
and S. cerevisiae were taken from (Malina et al., 2021), and model predictions for S. cerevisiae taken 
from (Elsemman et al., 2022). Experimentally determined proteome composition in the Figure 
corresponds to the average of measurements reported in (Malina et al., 2021).  

 286 

Discussion 287 

In this study, we used metabolic modelling and data from the well-studied budding yeast, S. cerevisiae, to 288 
gain insights into the metabolism and physiology of the distantly related fission yeast, S. pombe. As a 289 
result, we presented a computational toolbox to investigate fission yeast metabolism at genome scale. 290 
Two types of models, in our view, are required to cover this need: a genome-scale metabolic model 291 
(metabolic potential) and a proteome-constrained (pc-) model (resource allocation).  292 

Here we first developed a manually-curated and calibrated GEM, pomGEM, based on a metabolic model 293 
of budding yeast S. cerevisiae (Lu et al., 2019) (Figure 1). As an outcome of the model calibration, in this 294 
manuscript we provide for the first time a comprehensive and data-supported estimate of growth-295 
associated maintenance (GAM) costs of S. pombe (Figure 1c). An earlier proposed GAM value of 296 
17.37 𝑚𝑚𝑜𝑙 𝑔𝐷𝑊−1 (Sohn et al., 2012) corresponds to an unrealistically high yield of biomass on glucose 297 
in aerobic settings, while our proposed value (58.3 𝑚𝑚𝑜𝑙 𝑔𝐷𝑊−1) corresponds well with existing 298 
experimental data. Moreover, the GAM value we estimated is very close to that reported for S. cerevisiae 299 
(55.3 𝑚𝑚𝑜𝑙 𝑔𝐷𝑊−1) (Famili et al., 2003), further supporting our estimate over previous estimates (Sohn 300 
et al., 2012). 301 

We benchmarked the pomGEM model by first predicting growth on single carbon sources (with only one 302 
false-negative, Figure 1d), lethal single-gene KOs (Figure 1e), and single-reaction KOs (Supplementary 303 
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Table 3). For the latter, the fraction of true predictions was approximately 74%, a good improvement on 304 
the previously reported model (61.2%) (Sohn et al., 2012). However, in the same study, the authors of the 305 
SpoMBEL1693 model reported an increase in the true prediction rate up to 82.7%, after significant manual 306 
curation. Here, the authors “reconciled” the false predictions which arise from, e.g. duplicate reactions 307 
present in other compartments, or dead-end pathways to achieve the higher true prediction rate. 308 
However, such ad hoc approach requires supporting experimental data to resolve every false prediction 309 
reliably. Nonetheless, following the evolution of true prediction rates of the S. cerevisiae models – in terms 310 
of genes – (90.3% in Yeast8 vs 83.6% in Yeast4 (Dobson et al., 2010)), or the latest GEM of E. coli (>90%, 311 
(Monk et al., 2017), it is anticipated that with more experimental data, future iterations of pomGEM will 312 
similarly lead to further improvements in the true prediction rate. 313 

Then, on the basis of pomGEM, and with pcYeast as template (Elsemman et al., 2022), we reconstructed 314 
(Figure 2a) and calibrated (Figure 2b, 2c) a proteome-constrained metabolic model of S. pombe, pcPombe. 315 
We first identified a major ATP maintenance component: plasma membrane H+-ATPase activity, required 316 
to export protons that are imported through glucose:H+ symport (Figure 2b). We also estimated the 317 
peptide elongation rate of cytosolic ribosomes, and found this to be similar to the rate reported for S. 318 
cerevisiae (Figure 2c). 319 

We used the pcPombe model to simulate the physiology of S. pombe in glucose-limited chemostats at 320 
different dilution rates (Figure 3) and identified proteome constraints that actively limit growth. Despite 321 
a large evolutionary distance, constraints similar to those recently described for S. cerevisiae (Elsemman 322 
et al., 2022) were shown to dictate growth behaviours, with a mitochondrial proteome capacity limitation 323 
ultimately driving a switch from respiration to fermentation. Finally, we looked at the predicted minimal 324 
proteome demand at the maximal growth rate of S. pombe in minimal medium, and compared it to 325 
experimental measurements (Figure 4). For many coarse-grained proteome clusters, minimal predicted 326 
demands were comparable, and the prediction outcome was similar to that of S. cerevisiae at maximal 327 
growth rate in minimal medium. Such agreement suggests that the growth in nutrient excess is limited by 328 
similar constraints in both organisms, in this case, total proteome capacity constraint. A notable exception 329 
in predicted minimal demand vs. experimental data was seen for glycolysis, where an experimentally 330 
determined proteome fraction was 2--fold higher than the minimal predicted demand. This result 331 
suggests a large over-capacity of glycolytic enzymes, also found for S. cerevisiae (Elsemman et al., 2022). 332 
However, the reason for this over-capacity remains to be resolved. 333 

Quantitative differences in proteome composition, especially at individual protein level, between the 334 
model and experimental measurements (likewise large or small), can be influenced by several factors. 335 
First, we consider the minimal protein demand in the model. This assumption ignores any preparatory 336 
protein expression, and the predicted protein abundance is highly dependent on the 𝑘𝑐𝑎𝑡 values. The 337 
effects of other kinetic factors are also not accounted for, e.g. suboptimal saturation of enzymes and 338 
feedback effects (positive and negative alike) in the biochemical pathways. Therefore, protein 339 
“underutilization” (or “reserve capacity”) is a frequently-observed prediction of resource allocation 340 
models (Elsemman et al., 2022; O’Brien et al., 2016). Second, GEMs consider only proteins with direct 341 
metabolic function (plus those directly related to protein turnover, in the pcPombe model). Thus, some 342 
proteins will be unaccounted for when mapping them to annotated pathways. Improved GPR annotations 343 
in future version(s) of pomGEM would reduce such “lost” mappings.  344 

Throughout the manuscript, we considered very few applications of the computational toolbox, and only 345 
a handful of data sources. This is because the predictive power of current pomGEM and pcPombe models 346 
is severely hampered by a lack of consistent, high-quality experimental datasets in order to calibrate and 347 
validate the models. The hope is that our current effort to provide a computational tool to study S. 348 
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pombe’s metabolism will stimulate an iterative cycle of hypothesis generation, experimental testing and 349 
model refinement. For S. cerevisiae, its genome-scale model is already in its 8th iteration, with efforts 350 
beginning almost two decades ago (Famili et al., 2003). Throughout the years, essential modelling 351 
parameters, such as the GAM value (Famili et al., 2003), growth rate-dependent biomass composition 352 
(Canelas et al., 2011), ribosome peptide elongation rate (Metzl-Raz et al., 2017), and a large panel of 353 
kinetic parameters (used in e.g. (Lu et al., 2019; Nilsson and Nielsen, 2016)), were determined. Thus, by 354 
aggregating a vast amount of existing literature data, and acquiring new experimental datasets 355 
(physiological data and proteomics), a proteome-constrained model of S. cerevisiae (pcYeast) was created 356 
and could be successfully tested in a number of scenarios ((Elsemman et al., 2022), Grigaitis et al., 357 
unpublished).  358 

Existing experimental datasets of S. pombe, unfortunately, are not as comprehensive. Although many of 359 
the datasets are of high-quality, they consider only one aspect of cell growth, for instance, exometabolite 360 
fluxes (de Jong-Gubbels et al., 1996), or proteome composition (Kleijn et al., 2022). For modelling 361 
purposes, systemic experiments which cover several layers of information at once (e.g. sampling from the 362 
same cultures to quantify bulk biomass composition, exometabolite fluxes, and proteome composition), 363 
as well as testing current predictions on active proteome constraints by e.g. titrating expression of non-364 
functional proteins targeted to specific cell compartments (e.g. cytoplasm, cell membrane etc.), as has 365 
been done for E. coli (Scott et al., (Scott et al., 2010)), or by testing optimal protein allocation with 366 
evolution experiments (as performed in e.g. Lactococcus lactis (Chen et al., 2021)) will be extremely useful. 367 
Performing such experiments and subsequent model refinements will have great influence on the 368 
predictive power of the pomGEM and pcPombe models and will pave the way towards deeper 369 
understanding of metabolism and resource allocation of fission yeast Schizosaccharomyces pombe. 370 

Lastly, recent studies suggested S. pombe could find novel applications in biotechnology, including 371 
winemaking (Benito et al., 2016) and flavour formation during food fermentations (Du et al., 2021), but 372 
also as a possible cell factory (Madhavan et al., 2021). S. pombe’s ability to grow in environments with low 373 
water activity, high alcohol content, very low pH and a wide range of temperatures (Loira et al., 2018) 374 
make it an attractive, and perhaps underutilized, biotechnological tool. However, identifying metabolic 375 
engineering targets and predicting outcomes is a major challenge without a robust computational 376 
framework. The two models we present here, therefore, are powerful tools that can be used to efficiently 377 
explore, in silico, S. pombe’s metabolic potential, to identify metabolic engineering targets, to design and 378 
optimize medium for different applications, and to study metabolic and physiological determinants of 379 
growth behaviour under different growth conditions. 380 

 381 

Methods 382 

Determination of growth on different carbon sources 383 
Schizosaccharomyces pombe strain CBS1042 (Westerdijk Fungal Biodiversity Institute, The Netherlands) 384 
was used to determine growth capacity on different individual carbon sources. Glycerol stocks were pre-385 
pared from cells grown to saturation in YPD medium and stored at -80˚C. All cultures were performed at 386 
30˚C using EMM2 (Hagan et al., 2016) as a base medium. All carbon source concentrations are expressed 387 
as carbon mol (C-mM), and were added to a final concentration of 600 C-mM (e.g. 100 mM glucose, 50 388 
mM sucrose, 200 mM pyruvate etc.). Growth experiments were carried out using a SpectraMax Plus 384 389 
microplate reader (Molecular Devices, Silicon Valley, California). A standardized procedure was used for 390 
revival and inoculation of cultures. Briefly, glycerol stocks were revived by 100 times diluted inoculation 391 
into EMM2 with 600 C-mM glucose. After approximately 7 hrs, overnight cultures were again diluted and 392 
inoculated into EMM2 + glucose to a final OD600nm of 0.02. The next day, fresh media containing the carbon 393 
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sources to be tested (Table S1) were inoculated to a final OD600nm of 0.01. After 6 hrs, cultures were again 394 
diluted (final OD600nm of 0.01) using the same medium and transferred to 96-well microtitre plates. Per 395 
carbon source, 10 technical replicates were included (300 µl per well), along with 5 negative controls 396 
(growth medium with carbon source, no cells). Temperature was set to 30˚C and double orbital shaking 397 
at 600 rpm was used. OD values were recorded at 5-minute intervals at 600 nm for approximately 80 hrs.   398 
 399 

Reconstruction of the metabolic network of Schizosaccharomyces pombe 400 
The metabolic network of S. pombe was reconstructed with CBMPy MetaDraft (Olivier et al., 2020), using 401 
the reference proteome sequence from PomBase (Lock et al., 2019) and Yeast8.3.3 (Lu et al., 2019) as the 402 
template model. Model simulations, as well as manual refinement and gap-filling were performed in 403 
CBMPy 0.8.2 (Olivier et al., 2021) under Python 3.9 environment with IBM ILOG CPLEX 20.10 as the linear 404 
program (LP) solver. 405 

 406 

Mapping essential reactions to gene lethality 407 
Essential reactions in the model were determined by computing the predicted growth rate with a single 408 
reaction being blocked (lower and upper flux bounds set to 0.0) for all reactions in the model. If blocked 409 
flux through a reaction resulted in a predicted growth rate 90% or lower of the maximal (wild-type) growth 410 
rate, we considered such reaction essential; otherwise, the mutant is considered viable. Only reactions 411 
with existing gene-protein-reaction (GPR) associations were considered and compared with experimental 412 
data.  For GPRs containing an “OR” clause, the experimentally determined essentiality has to match for 413 
all listed genes (or combinations of) to be assigned either “viable” or “essential”. For GPRs containing an 414 
“AND” clause, reaction is assigned “essential” if at least one of the genes is experimentally determined to 415 
be essential; “viable” is assigned the same way as for “OR” clauses. Conflicting results or missing 416 
essentiality experiments were labelled “ambiguous” and not considered further.  417 

 418 

Reconstruction and simulations of the proteome-constrained model 419 
The detailed description of reconstruction of the proteome-constrained model of S. pombe is provided in 420 
the Supplementary Notes. We used the reference proteome of S. pombe from UniProt (The UniProt 421 
Consortium et al., 2021). Proteomes and kinetic data (enzyme turnover values) were collected from the 422 
BRENDA database (Chang et al., 2021). 5’-UTR sequences and proteome annotations (composition of 423 
macromolecular complexes, Gene Ontology terms etc.) were collected from PomBase (Lock et al., 2019). 424 
The pcPombe model was simulated using CBMPy 0.8.2 (Olivier et al., 2021) under Python 3.9 environment 425 
with IBM ILOG CPLEX 20.10 and SoPlex 4.0 (Gleixner et al., 2018) as the low- and high-precision LP solver, 426 
respectively. 427 
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