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Abstract

Comparing single-stranded nucleic acids (ssNAs) secondary structures is fundamental when inves-1

tigating their function and evolution and predicting the effect of mutations on the ssNAs structures.2

Many comparison metrics exist, although they are either too elaborate or not enough sensitive to3

distinguish close ssNAs structures.4

In this context, we developed AptaMat, a simple and sensitive algorithm for ssNAs secondary struc-5

tures comparison based on matrices representing the ssNAs secondary structures and a metric built6

upon the Manhattan distance in the plane. We applied AptaMat to several examples and compared7

the results to those obtained by the most frequently used metrics, namely the Hamming distance and8

the RNAdistance, and by a recently developed image-based approach. We showed that AptaMat is9

able to discriminate between similar sequences, outperforming all the other here considered metrics.10

Introduction

Single-stranded nucleic acids (ssNAs) are interesting molecules from both a biological and a biotech-11

nological point of view. On one side, RNA is fundamental for protein synthesis and it has cellu-12

lar structural, functional and regulatory roles. On the other side, both RNA and single -stranded13

DNA, in the form of aptamers, can be exploited as therapeutic or diagnostic tools or as biosensors14

[Kulabhusan et al., 2020]. Aptamers are, indeed, short single-stranded oligonucleotides able to bind15

a large variety of molecular targets with high specificity and dissociation constants in the nano- to16

picomolar range by adopting specific conformations [Li et al., 2020, Nimjee et al., 2017].17

SsNAs function highly depends on their secondary (i.e. their base pairing pattern) and tertiary18

(i.e. their 3D organization) structures [Li et al., 2020, Mustoe et al., 2014, Nimjee et al., 2017], thus19

the computational prediction of these two levels of organization can help to understand ssNAs20

roles and interactions with other molecules. The prediction of the ssNAs secondary structures of-21

ten precedes and guides the 3D modeling step and many tools have been developed at this scope22

([Zuker., 2003, Gruber et al., 2008b, Sato et al., 2009]). The resulting output is usually a graphical23

representation of the predicted secondary structure (Figure 1c) and/or its dot-bracket notation (Fig-24

ure 1b), which consists in a string of the same length as the sequence based on an alphabet of 325

characters: {".","(",")"}. The symbol "." indicates that the nucleotide in the corresponding position is26

unpaired, while "(" and ")" correspond to the opening and closing positions of a base pair, respec-27

tively.28

The comparison of ssNAs secondary structures is a task as important as the prediction of the sec-29

ondary structure itself. Comparing ssNAs structures can help to study the function and evolution of30

ssNAs, but also to design nucleotide sequences that fold into a given secondary structure and to pre-31

dict mutations that can cause a conformational rearrangement. Therefore, different algorithms have32

been developed at this scope (see [Gruber et al., 2008a] for a review). Briefly, these can be classified in33

algorithms i) based on the minimum free energy [Washietl et al., 2005], ii) based on single structure34
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(a) GAGACCAUCCAAGAGAUUCUU (b) .((..(((....).))..)).

(c) (d)

Figure 1: Example of representations of the secondary structure of sequence (a): dot-bracket notation (b), graphical repre-
sentation realized with VARNA([Darty et al., 2009]) (c), and full tree representation (d).

[Shapiro et al., 1988, Moulton et al., 2000, Fontana et al., 1993, Flamm et al., 2001] and iii) consider-35

ing the whole folding space [Hofacker et al., 1994, Bonhoeffer et al., 1993, Giegerich et al., 2004]. Among36

them, the most frequently applied are those working on single structures, such as the Hamming dis-37

tance [Hamming., 1950] and the RNAdistance algorithm implemented in the ViennaRNA package38

[Hofacker et al., 2003]. The Hamming distance allows to compare two strings of the same length by39

counting the number of positions with different symbols. It is one of the simplest metrics used in the40

context of ssNAs, and it is usually calculated by counting the number of positions with different nu-41

cleotides (Equation 2). It can be adapted to strings in the dot-bracket notation, which is more suitable42

for secondary structures comparison. Conversely, RNAdistance is based on the comparison of ssNAs43

secondary structures represented as ordered rooted trees (Figure1d), deduced from the dot-bracket44

notation [Shapiro et al., 1988].45

(a)
Reference

0.10
4

0.30
0.67

Hamming distance
RNAdistance
DoPloCompare
AptaMat

.(((............))). .(((..........)..)). .(((.......).....)). .(((..)..........)).

(d)

0.10
4

1.00
2.00

(c)(b)

0.10
4

0.56
1.17

Figure 2: Reference (a) and alternative (b, c, and d) structures for ssNA 1. The Hamming, RNAdistance, DoPloCompare,
and AptaMat distances are computed using structure (a) as reference.

However, these two metrics sometimes fail in finding differences between secondary structures as46

showed in the example of Figure 2 adapted from [Ivry et al., 2009], where both the Hamming distance47

and RNAdistance cannot capture the differences between structures (b), (c) or (d) and the reference48

structure (a). Indeed, the Hamming distance only considers the total number of matching positions,49

without taking into account the correlations between the opening and closing positions, which are50

characteristic for the structure. On the other hand, RNAdistance works with a tree representation51

that, even at full resolution (i.e. without any loss of information with regard to the dot-bracket52

notation), might lead to an equivalent cost in the tree editing operations for structures that seem53

to have a different degree of proximity to the reference one. This is illustrated in Figure 2, and the54

details about the computation of RNAdistance can be found in Figure S1 of Supplementary Material.55

Interesting approaches for comparing ssNAs secondary structures based on image processing,56

such as DoPloCompare [Ivry et al., 2009], have been developed. These approaches consist in repre-57
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senting the secondary structures of the two compared ssNAs as dotplots and then processing them58

as images in order to measure the distance between the two structures. The use of dotplots allows59

to take into account the base pairs relative positions and it provides a finer description of the ssNA60

structure than RNAdistance [Ivry et al., 2009]. However, this approach can be laborious and some-61

times it fails in finding the expected trend when comparing multiple structures to a reference one,62

as we will show later. Indeed, although the image processing approach is a novelty in the field, the63

proposed metrics use a combination of geometrical distance and histogram correlations that might64

hinder the nature of the proximity between the compared structures. Moreover, DoPloCompare65

seems to be not symmetric, which is an important requirement for many applications.66

Although there exist several other approaches to compare secondary structures, to our knowl-67

edge, none of them satisfy the desired properties: i) simple in terms of results interpretation; ii) easy68

to implement and to manipulate; iii) exploitable for the comparison of pairs of structures, but also of69

multiple structures to a reference one, and, most of all, iv) sensitive, in order to properly differentiate70

particularly close structures. Therefore, we developed a new algorithm, called AptaMat, which solves71

the issues of both the single structure-based and the image-based approaches. Briefly, AptaMat takes72

as input the secondary structure of two ssNAs (SA and SB) of same length L in the dot-bracket nota-73

tion and creates for each of them a matrix of size L×L, comparable to a dotplot with 1 and 0 instead74

of dots and blank cells, respectively. Indeed, the (i, j)th entry of the matrix is either equal to 1 if the75

nucleotide in position i is paired with the nucleotide in position j or 0 if the nucleotides in positions76

i and j are not paired. For each base pair of each structure, we find the closest base pair on the77

other structure using the Manhattan distance between points in the plane. The distances between all78

the closest pairs are summed up and normalized by the total number of cells containing 1 in both79

matrices, in order to find the final AptaMat distance (Figures S2 and S3, Supplementary Material).80

We applied our approach to i) 5 examples taken from the work by [Ivry et al., 2009] in order to81

make a direct comparison with the Hamming distance, RNAdistance and DoPloCompare and ii) to 582

structures of aptamers taken from the Protein Data Bank [Berman et al., 2000]. In addition, we ad hoc83

created an example capable of showing the advantages of our method as compared to both RNAdis-84

tance and the Hamming distance at the same time. The obtained results show that AptaMat is able85

to properly compare ssNAs secondary structures and to well discriminate among different struc-86

tures. The python code implementing AptaMat is available on GitHub at https://github.com/GEC-87

git/AptaMat.git.88

Methods

AptaMat algorithm

The AptaMat algorithm has been developed for the comparison and quantification of the differences89

between structures of pairs of ssNAs of the same length (L), with the main aim of investigating the90

effect of mutations on the ssNAs structure. The algorithm takes as input the two structures written91

in the dot-bracket notation, with one structure considered as reference. Starting from each input92

dot-bracket string a square matrix of L×L in size is created, where each matrix cell (i, j) corresponds93

to the position i of a nucleotide of the sequence relative to another position j of the same sequence.94

Therefore, each cell (i, j) contains either 1, if the nucleotide in position i is involved in a base pair95

with the nucleotide in position j, or 0 if not. The resulting matrices can be assimilated to dotplots,96

with 1 instead of a dot and 0 instead of blank cells. Although very simple, this representation allows97

to take into account the relative position of the base pairs in the ssNA sequence, thus retaining a98

more complete structural information as compared to the dot-bracket notation.99

For the clarity of the algorithm description, we will call matrix A = (aij ) the one containing the100

information regarding the reference structure and matrix B = (bij ) the one storing the information of101

the structure we want to compare to the reference one. We want to define a distance between these102

matrices that reflects the proximity between cells containing 1 in both of them, i.e. those indicating103

a base pair. For this purpose, each matrix is embedded in the plane in the following way: each104

(i, j)th entry that is equal to 1 is assimilated to the point with coordinates (j,L − i + 1). Hence, to a105

matrix representing a secondary structure we associate a set of points in the plane with coordinates106
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in {1, . . . ,L}2. Moreover, since both matrices are symmetrical, we consider only the entries below the107

diagonal. More precisely, let PA := {(j,L − i + 1) ∈ N
2 : aij = 1, 1 ≤ j < i ≤ L} be the set of points108

corresponding with structure SA. The set PB is defined analogously. A natural way to measure the109

distance between the base pairs in the compared structures is to measure the distance between sets PA110

and PB. At this scope, any distance between compact sets of points in R
2 could be appropriate for the111

method (e.g. Haussdorf distance [Huttenlocher et al., 1993]). At the moment, AptaMAT algorithm112

implements a metric based on the Manhattan distance, which was chosen for its simplicity, as it is113

expressed as the sum of the absolute differences between the coordinates of the compared points114

[Krause., 1988]. However, other distances can be easily implemented.115

In AptaMat, for each point P in PA we find the Manhattan distance to its nearest neighbor in116

PB, and vice versa. In order to handle all the differences between the structures, it is important to117

consider the distance in both directions (Figures S2 and S3, Supplementary Material). Indeed, both118

structures do not have necessarily the same number of base pairs. As a consequence, the distances in119

the two directions might not be the same and, more importantly, some base pairs might be excluded120

from the comparison. Therefore, considering only the distances in one direction might be source of121

mistake. Then, the shortest distances between PA and PB sets are summed up. Finally, the obtained122

distance is normalized by the total number of base pairs in structures SA and SB. This is necessary123

because some distances might emerge twice in the calculation. Together with solving this issue,124

this sort of normalization gives a more important weight to base pairs in common between the two125

compared structures. The AptaMat distance, denoted by DAM is, therefore, defined as126

DAM (SA,SB) :=

∑
P ∈PA

dMan (P ,PB) +
∑

P ∈PB
dMan (P ,PA)

#PA + #PB
, (1)

where, for any given point P = (x,y) ∈ R2 and any finite subset C ⊂ R
2, we denote by #C the cardinal127

of C, and by dMan(P ,C) the Manhattan distance from P to its nearest neighbor in C.128

We can easily check that DAM is symmetric, and it is equal to 0 only when both structures are129

identical. In the light of this, the more the AptaMat distance is close to 0 the more the two compared130

structures are similar, independently on their length.131

Test set preparation

In order to confront AptaMat to the Hamming distance and RNAdistance in comparing ssNA sec-132

ondary structures, we built a test set of 10 ssNA with known structures: 5 taken from the work by133

Ivry et al. [Ivry et al., 2009] and 5 taken from the PDB database (Table S1). The selected ssNA have134

different lengths (20 to 127 nucleotides) and different secondary structures, containing stems, hair-135

pin/stem loops, bulges, internal loops and junctions. For each sequence, the reference secondary136

structure in the dot-bracket notation was either taken from [Ivry et al., 2009] or extrapolated using137

x3dna-dssr [Lu et al., 2003] and then used as the reference structure. In addition, for each sequence,138

2 or more alternative structures where used to perform the comparison. The alternative structures139

for the examples taken from [Ivry et al., 2009] were obtained from the same article, while for those140

taken from the PDB database we used 6 different ssNA secondary structure prediction tools, namely141

Mfold [Zuker., 2003], LinearFold [Huang et al., 2019], CentroidFold [Hamada et al., 2009], RNAfold142

[Gruber et al., 2008a], RNAstructure [Reuter et al., 2010] and MC-Fold [Parisien et al., 2008] to ob-143

tain at least two different secondary structures for each ssNA. This was achieved when the predic-144

tion tools were not able to correctly predict the secondary structure of the processed sequences. In145

addition, we ad hoc designed an additional example to clearly show the advantages of AptaMAT over146

the two selected metrics of comparison. At this scope, we designed critical secondary structures able147

to highlight the limits of the other metrics and the strengths of AptaMat.148

Comparison methods

We compared AptaMat to two of the most used methods of ssNAs secondary structures compar-

ison: the Hamming distance ([Hamming., 1950]) and RNAdistance from the ViennaRNA package

4
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(a)
Reference

0.15
8

0.44

Hamming distance
RNAdistance
AptaMat

.(((((..(.(((...))))...(((.....))).))))) .(((((((..(((...)))..))(((.....))).))))) .(((((......(....)......((.....))..))))) (((.......)))......(((((((.....))).)))).

0.40
32

9.95

(c)(b) (d)

0.20
16

0.70

Figure 3: SsNA 7 shows the ability of AptaMat in comparing ssNAs secondary structures. The three metrics (Hamming
distance, RNAdistance and AptaMat) indicate that the alternative structures (b), (c) and (d) are progressively farther from
the reference secondary structure (a).

[Hofacker et al., 2003]. The former computes the distance between two ssNAs structures of same

length L, by calculating

DHamming (SA,SB) = Ndiff/L (2)

where Ndiff is the number of unmatched positions between the two strings corresponding to the the149

dot-bracket notation of the compared structures. RNAdistance computes the distance between two150

ssNAs structures by representing them as ordered rooted trees. At a full resolution, this representa-151

tion is deducible from the dot-bracket notation by assigning each unpaired nucleotide to a leaf and152

each base pair to an internal node, as showed in Figure 1d. In order to calculate the distance between153

two trees, the tree editing approach is used, which consists in a series of edit operations (deletion,154

insertion or mutation of a node), to which a cost is assigned and that allow to transform a tree TA into155

a tree TB. The resulting distance DRNA(SA,SB) corresponds to the minimal total cost of the series of156

operations allowing to transform one tree into the other.157

In addition, for the structures taken from [Ivry et al., 2009] (Table S1), we included in the bench-

mark of AptaMat the comparison with the algorithm DoPloCompare, which uses an approach based

on image processing to measure the distance between two ssNAs secondary structures. This algo-

rithm has been selected for comparison with AptaMat, because of its higher sensitivity as compared

to the Hamming distance and RNAdistance (Figure 2), and because it is based on the dotplot dia-

grams of the compared structures, as AptaMat. The distance grade proposed in this algorithm to

compare two structures SA and SB can be defined as

DDoPloCompare (SA,SB) = Dist (SA,SB) / Corr (SA,SB) . (3)

The Dist (SA,SB) term corresponds to the geometrical distance from the points in the dotplot dia-158

gram of structure SA (reference) to the dotplot diagram of structure SB (alternative). The Corr term159

is related to the cross correlation between histogram vectors built from the dotplot diagrams of both160

structures by adding the number of points in four different directions (X, Y, diagonal and antidiag-161

onal). Although the Dist term in DoPloCompare is somehow similar to AptaMat, it doesn’t seem to162

be symmetrically defined, and hence it does not take into account the number of base pairs in the163

alternative structure. On the other hand, the Corr term accounts for the similarity in the order and164

number of elements that both structures contain, even if the base pairs involved in these elements165

are not the same in structures SA and SB.166

Results and Discussion

We used AptaMat to measure the distance between pairs of secondary structures using the ssNAs re-167

ported in Table S1 and we compared the AptaMat distance with the Hamming distance and RNAdis-168
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tance. Among these, for ssNAs 2, 4, 5, and 7 (Figures 5, 3 and Figures S5 and S6) the Hamming169

distances, RNAdistances and AptaMat distances of the alternative secondary structures from the ref-170

erence one follow the same trend. This shows the coherence between our method and the most used171

distance metrics when there is a clear difference between the compared secondary structures in terms172

of both dot-bracket notation and the trees used to calculate RNAdistance. We discuss here the results173

for ssNA 7 (Table S1 and Figure 3), since for this ssNA we could gather 3 different alternative struc-174

tures, which allows for a more extensive analysis. The three distances from the reference structure175

(a) progressively increase proceeding from the alternative structure (b), obtained by RNAstructure176

[Reuter et al., 2010] (Hamming distance = 0.15, RNAdistance = 8 and AptaMat distance = 0.44), to177

(d), obtained by RNAfold ([Gruber et al., 2008a]) (Hamming distance = 0.40, RNAdistance = 32 and178

AptaMat distance = 9.95). Indeed, the reference secondary structure (a) made of a stem, a multi-179

branched loop, a bulge and two hairpin/stem loops is progressively lost. The alternative structure180

(b) is close to the reference: instead of the original G9-C20 base pair, it has a base pair between C7181

and G17 and one between A8 and T18. This leads to the transformation of the bulge in an internal182

loop and the reduction of the width of the multi-branched loop. Structure (c) has a much wider183

multi-branched loop because of the loss of 5 base pairs, which also shorten the two hairpin/stem184

loops, with one of them becoming a bulge. Finally, structure (d) only conserves 2 hairpin/stem loops185

and the bulge but they do not involve the same positions as in the reference.186

However, sometimes the structural differences between two ssNAs are quite subtle and the Ham-187

ming distance and RNAdistance are not able to discriminate between structures. A striking example188

is represented by ssNA 1 (Table S1 and Figure 2), which has been taken from [Ivry et al., 2009]. This189

example is not based on the analysis of a proper ssNA sequence but it focuses directly on struc-190

tures. As shown in Figure 2, the three structures compared to the reference differ from this latter191

and one from another. The three alternative structures have an additional bulge, which becomes192

progressively wider from structure (b) to structure (d), since the third base pair progressively shifts193

towards the 5’ end. However, both the Hamming distance and RNAdistance predict the same dis-194

tance to the reference for the three alternative structures. Indeed, the Hamming distance counts the195

number of mismatches between the dot-bracket strings to compare. Therefore, it doesn’t take into196

account the position of the nucleotides involved in base pairs. As a result, any information about the197

structure is lost and different secondary structures with the same number of mismatching positions198

as compared to a reference structure will have the same Hamming distance from it. In ssNA 1 all199

the alternative structures have 2 mismatching positions, which, accordingly to Equation 2, leads to200

a Hamming distance of 0.10 in all the cases. Conversely, RNAdistance takes into account the corre-201

lation between opening and closing position of the dot-bracket notation strings. However, it might202

happen that the series of editing operations of two comparisons have an equivalent weight leading to203

the same RNAdistance, as it occurs in the example of Figure 2 (see Figure S1 for the details). On the204

opposite, both AptaMat and DoPloCompare are able to correctly calculate the distance trend, with205

the first alternative structure being the closest to the reference (AptaMat distance = 0.67 and DoPlo-206

Compare distance = 0.30) and the third alternative structure being the furthest (AptaMat distance =207

2.00 and DoPloCompare distance = 1.00).208

SsNAs 3, 6, 9, and 10 also show the same RNAdistance and/or Hamming distance between differ-209

ent predicted structures and their reference (Figures S4, S7, S9 and S10). As mentioned before, the210

Hamming distance will be the same if the alternative structures have the same number of mismatch-211

ing positions as compared to the reference one. However, depending on the number and the position212

of the mismatches, the structural difference might become highly relevant and lead to wrong con-213

clusions about the similarity of a structure to a reference one. In order to highlight the issues arising214

from the Hamming distance and RNAdistance in a unique example, we ad hoc created the example215

reported in Figure 4 (ssNA 11 in Table S1). As for ssNA 1, we decided to focus on the secondary216

structures and not on the nucleotide sequence. The structures (b) and (c) have the same Hamming217

distance to the reference structure (a), since they both have 4 mismatching positions. However, struc-218

ture (c) doesn’t have the N12-N19 and N13-N18 base pairs, leading to the loss of the hairpin/stem219

loop. Conversely, structure (b) maintains the reference structure consisting of a hairpin, a bulge, an220

internal loop and the hairpin/stem loop, although the bulge is 3 nucleotides shorter and the internal221

6
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(a)
Reference

(b)

0.11
6

0.86

Hamming distance
RNAdistance
AptaMat

.(((((.....((....))......)).....))). .(((((.....((....)).........))..))). (((((...................)).....))). .(((....((.((....))...........))))).

(d)

0.22
8

2.14

(c)
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8

2.33

Figure 4: SsNA 11 shows the limits of the Hamming distance and RNAdistance in comparing ssNAs secondary structures.
Alternative structures (b) and (c) have the same Hamming distance to the reference secondary structure (a), although
structure (c) misses the hairpin/stem loop. Alternative structures (c) and (d) have the same RNAdistance to the reference
secondary structure (a), although the bulge and the internal loop involve different nucleotides as compared to the refer-
ence.

loop 3 nucleotides wider. This clearly comes out from RNAdistance and AptaMat, both indicating222

that structure (b) is closer to the reference structure than structure (c).223

Within the example in Figure 4 we can further investigate the limits of RNAdistance, since struc-224

tures (c) and (d) have the same RNAdistance to the reference structure (a). Indeed, the sum of the225

weights associated to the editing tree operations from (c) to (a) and from (d) to (a) is the same (Fig-226

ure S10). Conversely, although both the alternative structures (c) and (d) are far from the reference,227

AptaMat indicates that structure (d) is slightly closer to the reference than structure (c). As previ-228

ously said, because of the loss of the missing N12-N19 and N13-N18 base pairs, structure (c) doesn’t229

have the hairpin/stem loop present in the reference structure, although the hairpin and the bulge230

involve the same nucleotides as in the reference (N2-N35, N3-N34, N4-N33, N5-N27 and N6-N26).231

Conversely, structure (d) keeps the overall structure of the reference and the same number of base232

pairs, but the bulge and the internal loop don’t involve exactly the same nucleotides as the refer-233

ence: base pairs N2-N35, N3-N34, N4-N33, N12-N19 and N13-N18 are maintained, while base pairs234

N5-N27 and N6-N26 are replaced by base pairs N9-N22 and N10-N21. Together with being able to235

observe even a slight difference in the distance from structures (c) and (d) to the reference struc-236

ture (a), AptaMat focuses more on the overall secondary structure and the conserved base pairs than237

on the matching positions of the dot-bracket notations, as required when working on ssNAs, whose238

function is structure-dependent. Similar observations can be done for ssNAs 9 and 10 (Figures S9239

and S10), where the ssNA reference secondary structure has been extrapolated from the 2VJU and240

5HRU PDB entries, respectively.241

Together with being able to distinguish between differences in pairs of compared structures, Ap-242

taMat is capable to establish more meaningful ranking of the alternative secondary structures in243

terms of distance from the reference as compared to the Hamming distance and RNAdistance in all244

the examples herein presented. This is important when investigating the effect of sequence muta-245

tions on the ssNAs secondary structure. In this context, ssNAs 3, 5, 6, 8 and 9 (Table S1) show the246

limits of these latter methods as compared to AptaMat. Here we focus our discussion on ssNA 6,247

which has more alternative structures than ssNAs 3, 5 and 9, and more subtle modifications than248

ssNA 8. Thus, this example offers the possibility to deeply explore the differences between the con-249

sidered metrics. SsNA 6 (PDB ID: 1NGO) has a simple hairpin/stem loop structure (Figure S7). The250

alternative structure (b) obtained by CentroidFold is correctly considered by the three metrics as the251

closest one to the experimental structure (Hamming distance = 0.074, RNAdistance = 2 and AptaMat252

= 0.091). AptaMat then indicates that the alternative structure (d) obtained by MC-Fold is closer to253

the reference (AptaMat distance = 0.20) than the alternative structure (c) obtained by RNAfold (Ap-254

taMat distance = 0.22), since the former only misses two pairs of bases (T5-G23 and T6-G22) while255
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maintaining the overall structure. Conversely, structure (c) has 2 additional base pairs that lead to256

the loss of the characteristic loop of 1NGO (Figure S7). On the opposite, the Hamming distance fails257

in finding this difference, and RNAdistance suggests the opposite trend, with structures (c) and (d)258

having an RNAdistance of 6 and 8, respectively. Similar conclusions are applicable to ssNA 3 and259

8 (Figures S4 and S8), while for ssNAs 5 and 9 (Figures S6 and S9) the Hamming distance indicates260

an opposite and inadequate ranking of the two alternative structures in terms of distance from the261

reference, because of the different number of mismatches.262

The overall better performance of AptaMat as compared to the Hamming distance and RNAdis-263

tance in ranking the alternative secondary structures in terms of distance from a reference is partic-264

ularly evident for structures having a similar distance from the reference, which are more difficult to265

properly rank. The ability of AptaMat in doing so is due to the higher weight given by our algorithm266

to the relative position of the base pairs. This leads to focus on the global secondary structure more267

than on the local differences from the reference secondary structure. As previously mentioned, this268

is of particular importance for the comparison of ssNAs, since their function highly depends on their269

global 3D structure and only to a minor extent on local sequence information.270

In addition, together with the better performance as compared to RNAdistance and the Hamming271

distance, AptaMat has the advantage of being easy to interpret. Indeed, by observing the herein re-272

ported examples, we could suggest a threshold of about 2 to conclude on the proximity of a sequence273

to the reference one: an AptaMat distance below this threshold indicates that the two structures are274

close, while a greater distance indicates that the two structures are far one from another. This is sup-275

ported also by a benchmark study on the the available ssNAs secondary structures prediction tools276

we performed (article in preparation), but this threshold can be adapted for different applications.277

On the opposite, RNAdistance relies on tree editing operations with fixed weights, which cannot be278

interpreted in an absolute way: although the lower is the RNAdistance the closer are the compared279

structures, an RNAdistance of 8 might indicate close structures as in ssNA 7 (Figure 3b) but it can280

also be associated to more relevant changes in the ssNA structures as in ssNA 11 (Figure 4c).281

The analysis of the alternative structures ranking relative to the reference structure allows also to282

highlight the limits of DoPloCompare as compared to AptaMat. SsNAs 2, 4 and 5 (Figure 5 Figures283

S5 and S6) have a DoPloCompare trend opposite not only to AptaMat but also to the Hamming284

distance and RNAdistance. We argue that this is due to the Corr term in DoPloCompare, which, as285

we mentioned before, accounts for the similarities in the number and order of the elements (stems,286

loops, etc.) in the compared structures. In the three previous examples, the structures that are found287

to be closer to the reference one are those having a more similar number of elements, despite the fact288

that the base pairs involved in these elements are not the same. For example, if we consider ssNA289

2 (Figure 5), we can clearly see that the alternative structures (b) and (c) are both structurally far290

from the reference structure (a). However, the structure (b) is closer to the reference (a) (Hamming291

distance = 0.15, RNAdistance = 24 and AptaMat = 6.35) than the alternative structure (c) (Hamming292

distance = 0.41, RNAdistance = 26 and AptaMat = 7.50), as correctly indicated by the Hamming293

distance, RNAdistance and AptaMat. Indeed, structure (b) maintains the secondary structure of294

the reference except for 3 missing base pairs (G28-C37, G29-C36 and C30-G35), while structure (c)295

has 4 additional base pairs (C5-G39, C6-G38, C12-G27, U13-G26), leading to a significant change296

in the global structure. DoPloCompare indicates that this latter structure is closer to the reference297

(DoPloCompare = 0.12) than structure (b) (DoPloCompare = 0.13), because structure (c) has two298

hairpin/stem loops and an internal loop as structure (a), while structure (b) only has a hairpin/stem299

loop and and an internal loop. However, the global structure (c) differs from those in structure300

(a), because of a different base pairs pattern. In addition, the DoPloCompare scores are close to 0,301

suggesting a high similarity of the alternative structures to the reference one, which is clearly not the302

case as indicated by RNAdistance and AptaMat. Similar observations can be done for ssNAs 4 and303

5 (Figures S5 and S6). Furthermore, looking at the DoPloCompare scores obtained for ssNAs 1 to304

5, it seems that they depend on the sequence length: although the alternative structures of ssNAs 1305

(Figure 2) are globally close to the reference one, they show a DoPloCompare score which is higher306

than those obtained for ssNAs 2 to 5, where the alternative structures are very far from the reference,307

as also showed by the RNAdistance and AptaMat.308
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0.15
24

0.13
6.35

Hamming distance
RNAdistance
DoPloCompare
AptaMat

..((((..(((......)))..)))).(((....))).. ..((((..(((......)))..))))............. ....((.....(((((......)))))(((....)))))

(b)

0.41
26

0.12
7.50

(c)(a)
Reference

Figure 5: SsNA 2 shows the limits of DoPloCompare in ranking the alternative secondary structures in terms of distance
from the reference. The alternative structure (b) is closer to the reference according to the Hamming distance, RNAdis-
tance and AptaMat, since it has the same internal loop and one hairpin/stem loop, while the alternative structure (c)
involves different nucleotides in one of the hairpin/stem loops and it assumes a 3-ways junction structure.

Conclusion

Being able to compare ssNAs secondary structures is fundamental to understand the function and309

evolution of this kind of biomolecules, to design ssNAs with a desired secondary structure or even to310

predict the conformational effects of sequence mutations. In the light of this, in this work we present311

AptaMat, a new matrix-based algorithm, capable of comparing pairs of ssNAs secondary structures312

of the same length L. AptaMat takes as input the two ssNAs structures in the dot-bracket notation313

and, for each of them, creates a matrix of size L×L, named A = (aij ) and B = (bij ). The (i, j)th entry of314

the matrix is either equal to 1 if the nucleotide in position i is paired with the nucleotide in position j315

or 0 if the nucleotides in positions i and j are not paired. Then, for each 1 ≤ i < j ≤ L such that aij = 1,316

the Manhattan distance to the closest entry equal to 1 in matrix B, and vice versa, is calculated. The317

distances between all the closest pairs are summed up and normalized by the total number of cells318

containing 1 in both matrices, leading to AptaMat distance.319

We compared AptaMat to two of the most used metrics for ssNAs secondary structures com-320

parison, namely the Hamming distance and RNAdistance, and to a more recent approach based on321

image processing, DoPloCompare, by [Ivry et al., 2009]. In order to do this, we chose 5 structures322

taken from the examples reported in the work by Ivry et al. and 5 structures taken from the PDB323

database. In addition, we ad hoc created an additional structure in order to clearly show the advan-324

tages of AptaMat over the Hamming distance and RNAdistance.325

We showed that AptaMat is able to properly distinguish between different structures, presenting326

a higher sensitivity as compared to the Hamming distance and RNAdistance. In addition, our method327

allows to more adequately rank the ssNAs structures as a function of their distance from a reference328

in all the examples herein discussed, which is not the case for the Hamming distance, RNAdistance329

and DoPloCompare. Moreover, it is easy to interpret, with an AptaMat distance of 2 as a reasonable330

threshold between close and far structures, but this threshold can be adapted depending on the331

applications. By definition, AptaMat is less affected by ssNA length than other of the considered332

metrics. Additionally, AptaMat is easy to implement and to manipulate. Indeed, we plan to extend333

its usage to ssNAs of different lengths by previous alignment, and to peculiar structures, such as334

pseudoknots and G-quadruplex, which represent a challenging task in nucleic acids modeling.335
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Data Availability

The python code for AptaMat is available at https://github.com/GEC-git/AptaMat.git
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