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Abstract 
 

Sleep has long been considered as a state of disconnection from the environment, with absent 

reactivity to external stimuli. Here, we questioned this sleep disconnection dogma by directly 

investigating behavioral responsiveness in 49 napping subjects (27 with narcolepsy and 22 healthy 

volunteers) engaged in a lexical decision task. Participants were instructed to frown or smile 

depending on the stimulus type (words vs pseudo-words). We found accurate behavioral responses, 

visible via contractions of the corrugator or zygomatic muscles, in all sleep stages in both groups 

(except slow-wave sleep for healthy volunteers). Stimuli presented during states with high (vs. low) 

values of neural markers indexing rich cognitive states more often yielded responses. Our findings 

suggest that transient windows of reactivity to external stimuli exist in all sleep stages, even in healthy 

individuals. Such windows of reactivity could be used to probe sleep-related mental and cognitive 

processes in real-time across all sleep stages. 
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 Sleep has classically been considered as a time when we are dead to the world, with 

significantly reduced (or absent) reactivity to external stimuli. However, research in recent years has 

progressively called into question this assumption1. First, congruent evidence from event-related 

potentials (ERP)2–4, fMRI5, or intracranial recordings6 have shown that at least low-level sensory 

processing is preserved across sleep stages. Several studies indicate that sleepers can even process 

symbolic stimuli at different cognitive levels of representation, including semantic and decisional 

stages7. Furthermore, learning-related sensory cues presented during sleep positively impact 

subsequent recall of cue-related material upon awakening8–10 and can even influence participants’ 

behavior (e.g. smoking reduction) a week later11. While all of these examples of sensory processing 

during sleep are thought to occur automatically and unconsciously4,12, some studies have shown an 

incorporation of sensory stimuli into reported dream content13,14, suggesting that, at least sometimes, 

external stimuli could be processed up to conscious stages during sleep. However, the lack of single 

trial evidence of stimulus integration during sleep complicates the exploration of the 

neurophysiological basis of this complex and variable phenomenon. Obtaining behavioral responses 

that serve as real-time indicators of subjective reports could allow us to analyze brain dynamics 

associated with sensory integration in a trial-by-trial manner.  

 

Potentially because behavioral responses have long been assumed to be possible only during 

wakefulness, they are either rejected from the analysis12 or not collected at all in sleep studies. The 

rare studies which explicitly attempted to measure behavioral responses in sleeping participants 

discovered manual behavioral responses during N1 sleep (sleep onset)4,15,16, but not in deeper sleep 

stages. However, the loss of limb muscle tone could mask behavioral responses during consolidated 

sleep.  Because facial muscles are less affected by muscle atonia than the limbs are17, they could be 

more suited for assessing behavioral responsiveness. In addition, eye movements persist during REM 

sleep and can be used to signal lucidity in people who are aware of dreaming while asleep14,18 (lucid 

dreamers). In a collaborative study, we combined eye movements and facial muscle contractions to 

show that lucid dreamers could respond to queries sent during their dreams in polysomnographically-

verified REM sleep14. 

 

In the present work, we capitalized on this research strategy to further question the sleep 

disconnection dogma and to explore stimuli integration at the behavioral and neurophysiological level. 

We recruited 27 participants with narcolepsy, - who present excessive daytime sleepiness, a short 

REM sleep latency, and a high frequency of lucid dreams19, and 22 healthy participants. They were 

explicitly instructed to perform an auditory lexical decision task while napping by frowning or smiling 

three times depending on the stimulus type (word versus pseudo-word). Facial EMG on corrugator 

and zygomatic muscles was recorded in addition to usual polysomnography signals. 

 

We discovered that accurate behavioral responses were possible across all sleep stages 

including non-REM N3 sleep (slow-wave sleep) and REM sleep. Furthermore, and regardless of the 

group or sleep/wake stages, responsiveness was associated with previously validated 

electrophysiological markers of high-cognitive processing. Finally, we also found electrophysiological 

and subjective (post-nap reports) evidence for a conscious processing of external stimuli during lucid 

REM sleep. Our findings demonstrate that sleepers can transiently process external stimuli at a high-

cognitive level and respond to them across all sleep stages. These transient communication windows 

could be used to interact with any sleeper in real time. 
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RESULTS   
 

Participants can behaviorally respond to auditory stimuli across all sleep stages.  

 

In this study, we tested participants’ ability to perceive, understand, and behaviorally respond 

to auditory verbal stimuli across different sleep stages. We included both participants with narcolepsy 

(NP, n=27) and healthy participants (HP, n=22). Their sleep/wake stage was continuously monitored 

by polysomnography (EEG, EOG, EMG). Words and pseudo-words were verbally presented in a 

pseudo-randomized order during daytime naps; 1-min periods of stimulation (ON periods) alternated 

with 1-min periods during which no stimuli were presented (OFF periods) (Figure 1A). Participants 

were instructed to perform a lexical decision task by frowning or smiling three times according to the 

stimulus type (behavior-stimulus matching counterbalanced across participants), every time they 

heard a stimulus whether they were awake or asleep. As we previously showed14, such behavioral 

responses are visible to the experimenters thanks to surface EMG sensors measuring corrugator 

(frowning) and zygomatic (smiling) isometric contractions (see example in Figure 1B).  At the end of 

each nap, participants reported: (i) their mental content during the nap, (ii) whether they had a lucid 

dream, and (iii) whether they recalled having actively performed the lexical task while sleeping. Each 

nap was labeled as lucid or non-lucid in function of participants’ post-nap subjective report, with REM 

sleep trials from these naps being labeled as lucid or non-lucid accordingly. Importantly, participants 

were also instructed to signal their lucidity (if any) with a “mixed-contraction”, by alternating one 

corrugator and one zygomatic muscle contraction. These objective dream lucidity signals matched 

participants’ subjective reports upon awakening (for details see Supplementary Results).   

 

We first assessed the responsiveness to task-stimuli across sleep stages in the two groups. 

We compared response rates (corrugator and zygomatic contractions combined) during ON and OFF 

stimulation periods (Figure 2A). Importantly, we excluded all responses performed during micro-

arousals and only kept periods when participants were asleep according to the sleep scoring rules20. 

As expected, we found significantly higher response rates during ON vs OFF periods, both during 

Wakefulness (HP: 79.8% vs 1.5%, z = 31.61, p < .0001 after FDR correction; NP: 86.1% vs 2.1%, z 

= 27.02, p < .0001) and N1 sleep (HP: 23.2% vs 1.4%, z = 11.44, p < .0001; NP: 64.2% vs 1.7%, z = 

18.29, p < .0001) in both groups. Crucially, we also found, in both HP and NP, significantly higher 

response rates in ON vs OFF periods during N2 (HP: 4.9% vs 2.1%, z = 4.70, p < .0001; NP: 20.27% 

vs 2.2%, z = 16.57, p < .0001) and (non-lucid) REM sleep (HP: 6.5% vs 2.2%, z = 3.59, p = .0004; 

NP: 34.2% vs 1.4%, z = 13.93, p < .0001). Note that the response rates were higher in NP than in HP. 

We did not find a significant difference between ON and OFF periods in HP during N3 sleep (0.2% vs 

0.1%, z = 1.23, p = 0.22), but we found significantly more responses during ON than OFF periods in 

N3 sleep in NP (5.7% vs 2.4% , z = 3.31, p = .0009). Response rates during ON periods decreased 

significantly from Wake to N1 sleep, REM sleep, then N2 sleep (in order) in HP. Similarly, they 

decreased significantly from Wake to N1 sleep, non-lucid REM sleep, N2 sleep, and N3 sleep (in 

order) in NP (Figure 2A and Table S1). Participants can therefore provide behavioral motor codes with 

their facial muscles during all sleep stages.  

 

In order to ensure that participants actually performed the lexical decision task while asleep, 

we next computed subject-level accuracy scores (Figure 2B). Note that we did not have enough 

responsive trials per participant to perform this analysis in REM sleep in HP and in N3 sleep in NP. 

Both HP and NP performed the task significantly more accurately than chance level in all sleep stages, 

with median accuracy above 71% (HP: Wake 93.7%, p < .0001; N1 85.4%, p = .0002; N2 83.3%, p = 

.008. NP: Wake 87.9%, p < .0001; N1 84.1%, p < .0001; N2 71.8%, p = .0001; non-lucid REM sleep 

73.37%, p = .003).  We observed a significant main effect of the sleep stages on accuracy in both NP 

(𝟀²(4) = 38.23, p < .0001) and HP (𝟀²(2) = 13.14, p = .002), indicating a decrease in performance from 

Wake to deeper sleep stages. Accuracy in Wake, N1 sleep, and N2 sleep was higher in HP than NP 

(t = 2.98, p < 0.003). 
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We then wondered if a behavioral hallmark of lexical decision task during wakefulness, 

defined by slower response times (RTs) for pseudo-words than for words21, could be found in our 

sleeping participants. For both NP and HP, we found a main effect of both sleep stage (NP: 𝟀²(4) = 

82.5, p < .0001 ; HP: 𝟀²(2)  = 20.7, p < .0001) and stimulus type (NP: 𝟀²(1) = 36.9, p < .0001; HP: 

𝟀²(1) = 59.3, p < .0001) on RTs; crucially, there was no significant interaction effect between these 

two factors (NP: 𝟀²(4) = 7.3, p = .1; HP: 𝟀²(2) =2.3, p = .32), suggesting that the effect of stimulus type 

was similar across all sleep stages (Figure S2). Reponses to pseudo-words were on average 130ms 

slower than responses to words in NP (median: 1.42s), and 120ms slower in HP (median: 1.28s). This 

was also the case for each sleep stage independently. In NP, responses were faster during 

wakefulness than during sleep (median RT: Wake, 1.36s vs N1 sleep 1.56s, p = .034; N2 sleep 1.59s, 

p = .0001; non-lucid REM, 1.49s, p = .0001), whereas no significant differences were found between 

sleep stages (Figure 2C). A similar pattern was observed for HP, including significantly shorter 

reaction times in Wakefulness and N1 sleep than in N2 sleep (Wake vs N2 sleep: t = 4.1, p < .0001; 

N1 vs N2 sleep: t = 2.4, p = .025).  

            

 We finally assessed whether lucid and non-lucid REM sleep differed on the behavioral level. 

Only NP reported lucid dreams upon awakening, in 33/134 naps (24.6%). Similar to non-lucid REM 

sleep, response rates were higher during ON vs. OFF periods in lucid REM sleep (52.7% vs 6%, z = 

18.04, p < .0001). Lucid participants also had better performance than chance (65% vs. chance level 

at 50%, p = .001). Lucidity significantly increased the response rate in REM sleep (z = 7.97, p < .0001) 

to a level similar to the one observed in N1 sleep (Figure 2A and Table S1). Interestingly, RT were 

significantly longer during lucid REM sleep than during wakefulness but also than during other sleep 

stages (median RT: lucid REM sleep, 2.1s vs.  N1 sleep, 1.56s, p < 0.0001; vs. N2 sleep, 1.59s, p = 

0.0001; vs. non-lucid REM sleep, 1.49s, p = 0.0024) (Figure 2C). Finally, we found a clear association 

between lucidity and post-nap recall of having performed the task during sleep (Figure 2D): while 

75.8% of lucid naps with at least one behavioral response during sleep were associated with a recall 

of having performed the task, only 15.5% of non-lucid naps with responses were associated with recall 

(𝟀²(2) = 36.15, p < .0001).  

  

 As an interim conclusion, our behavioral results demonstrate that sleepers are able to 

perceive verbal stimuli, make a lexical decision, and perform an adequate motor response while 

remaining asleep in all sleep stages (except N3 sleep in HP). The fact that participants’ responses 

were accurate and slower for pseudo-words than for words suggest that stimuli were processed at a 

high cognitive level. Overall, these results suggest the existence of transient states that allow 

responsiveness to external information during sleep, whose frequency and duration depend on sleep 

stage.  

 

Electrophysiological markers of higher cognitive states predict responsiveness during 

ordinary sleep. 

 

To explore whether responsiveness during sleep could be explained by an ongoing, richer 

cognitive state prior to stimulation in non-lucid participants (NP and HP), we computed 

electrophysiological markers known for distinguishing high versus low cognitive states22,23. These 

markers were previously shown to differentiate patients with unresponsive wakefulness syndrome 

from patients in a minimally conscious state and healthy participants22,24,25, as well as wakefulness 

and REM sleep from N3 sleep26. We included five spectral measures (normalized power spectral 

densities [PSD] in delta, theta, alpha, beta, and gamma frequency bands), one connectivity measure 

(weighted symbolic mutual information [wSMI] in the theta band), and three complexity measures (the 

Kolmogorov Complexity [KC], the Permutation Entropy in the theta band [PE θ], and the Sample 

Entropy [SE]). Crucially, we computed these markers in the 1000ms time window before the stimulus 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 5, 2022. ; https://doi.org/10.1101/2022.05.04.490484doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?2Bx4r3
https://www.zotero.org/google-docs/?SO8A24
https://www.zotero.org/google-docs/?8F7QnJ
https://www.zotero.org/google-docs/?6GFMwr
https://doi.org/10.1101/2022.05.04.490484
http://creativecommons.org/licenses/by/4.0/


 

  

 

presentation; therefore, these markers reflected the “resting-state” brain dynamics of the participants 

just before the stimulus presentation, and not the evoked activity of the stimulus or the response.   

 

In order to ensure that these markers would provide meaningful information about the 

cognitive state of our participants, we first assessed how the markers varied in different sleep stages 

as a sanity check (NP: Figure 3, HP: Figure S3). As expected, complexity measures and high-

frequency PSD decreased from wake to N1 sleep, REM sleep, N2 sleep and N3 sleep (in order). 

Please note that this descending profile mirrored the response rates in those sleep stages. Moreover, 

delta PSD varied as expected: more delta was observed in N3 sleep compared to N2 sleep, REM 

sleep, N1 sleep, and wake (in order). Finally, wSMI was higher in wake compared to sleep. These 

results demonstrated that these markers can reliably distinguish the sleep/wake stage of the 

participants. For the details of the statistical comparisons between the different sleep stages, for each 

marker and each group, see tables S2 and S3.  

 

 Next, we assessed how these electrophysiological markers differed in responsive and non-

responsive trials (see Table S4 for detailed comparisons). Note that after preprocessing of EEG data, 

we did not have enough remaining responsive trials in REM sleep for HP and in N3 sleep for NP to 

conduct this analysis. Figure 4A shows the difference in the estimated marginal means of the z-scored 

marker values in responsive and non-responsive trials for each sleep stage in non-lucid NP (left panel) 

and HP (right panel). Positive marker values indicate an increase of the markers in the responsive 

trials compared to non-responsive trials whereas negative marker values signify a decrease in the 

responsive trials. Our analysis revealed similar patterns of variations in non-lucid NP and HP, including 

an increase in the EEG complexity and in the high-frequency PSD, and a decrease in the delta PSD 

in responsive trials vs non-responsive trials. Connectivity, as assessed by wSMI, did not differ in the 

two conditions. Importantly, marker values in responsive trials during sleep were never at the same 

level as wake (even in non-responsive trials), implying that the sleep state was not contaminated by 

short awakenings (Figure S4). Scalp topographical analyses were not informative given the small 

number of electrodes (n=10). 

 

To further explore the predictive power of these EEG markers on responsiveness, we trained 

a random forest classifier using a multivariate combination of the markers collected in non-lucid NP 

and did so independently for each sleep stage. We then tested whether this classifier could predict 

responsiveness on a trial-by-trial basis in both NP (using a classical stratified cross-validation 

procedure) and HP trials (in N2 sleep). The balanced accuracy score was above 60% for all sleep 

stages in NP non-lucid naps (reaching 67% for REM sleep) and reached 58% for N2 sleep in HP 

(Figure 4C). All balanced accuracy scores were significantly different than the chance level computed 

by a 500-permutation procedure (p < .002 for all stages in NP, and p = .006 for N2 sleep in HP), with 

a mean balanced accuracy score of permutation trials very close to 50% for all stages (Table S5).    

 

In sum, the EEG results suggested that a particular brain state prior to the stimulation, 

characterized by increased complexity and faster oscillations, allowed responsiveness during sleep. 

A multivariate combination of these markers predicted the presence/absence of response in a trial-

by-trial level. The fact that the markers varied with responsiveness similarly in non-lucid NP and HP 

and that the classifier trained with NP data could classify responsive trials in HP better than chance 

strongly suggest that the same brain dynamics underlie responsiveness in both participants with and 

without narcolepsy (in non-lucid sleep).      

 

Lucid dreaming as a proxy for inferring conscious processing of responded stimuli in other 

sleep stages  

 

 To further investigate the specificities of lucid REM sleep in NP, we first compared the 

electrophysiological markers between responsive and non-responsive trials in this condition. 
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Interestingly, none of these markers differentiated responsive from non-responsive trials in lucid REM 

sleep (all uncorrected p > 0.05) (Figure 5A and Supplementary Table 6). To check that this null result 

was not due to a lack of statistical power in our frequentist approach, we conducted, for each marker 

independently, a supplementary Bayesian analysis (see Table S6). We computed the Bayes Factor 

(BF) of our full mixed linear model and compared it to the one of a “null-model” with only the random 

effect. All BF were inferior to 1 (ranging from 0.21 to 0.08). Such values of BF indicate moderate 

(<0.33) to strong (<0.1) evidence for the null model27, suggesting a true absence of difference between 

responsive and non-responsive trials in lucid REM sleep. 

 

We next investigated how the marker values in lucid REM sleep differed from the ones in non-

lucid (ordinary) REM sleep. We observed higher complexity (sample entropy) and normalized PSD of 

gamma, as well as lower normalized PSD of delta values in lucid trials compared to non-lucid trials. 

Interestingly, statistical analyses (both frequentist and Bayesian) restricted to only responsive trials 

revealed similar values in lucid and non-lucid conditions for all markers, indicating comparable brain 

activity during responsive trials between non-lucid and lucid REM sleep (Figure 5A and Table S7). 

 

In sum, lucid REM sleep was characterized by a systematic increase in EEG markers of higher 

cognitive states, irrespective of behavioral responsiveness to the task, with a pattern of markers 

similar to the one observed in non-lucid/responsive trials (i.e. faster oscillations and higher complexity 

compared to non-lucid/non-responsive REM trials). This is evocative of a ceiling effect for marker 

values in lucid REM sleep, indicating a steadily high-cognitive state during this condition. 

 

This neurophysiological profile combined with the subjective report of having performed the 

task during sleep (see behavioral results) suggest that NP consciously processed the stimuli when in 

lucid sleep. Several signatures of conscious processing have been described in the literature, such 

as the late P3b component in evoked related potentials28–30 or the square-like shape pattern in the 

temporal generalization method31,32. As the latter was more appropriate to the specificities of our 

dataset (e.g., unbalanced trials), we explored whether the pattern of temporal generalization supports 

our hypothesis of a conscious processing of external stimuli during lucid REM sleep. In brief, this 

analysis tests how stimulus-induced brain activity differs from baseline activity; it consists in training 

a linear classifier at each time-point to differentiate stimulus-present versus stimulus-absent epochs 

and testing its performance for all the other time-points (for example, training the classifier at t=2 and 

testing its ability to correctly classify at t=1,2,3,4,5,…, obtaining thus a whole matrix of performance 

for each training time point/testing time point). We found that responsive trials during lucid REM sleep 

were associated with the expected square-like shape pattern starting from 350ms post-stimulus 

presentation. Such a pattern reflects a late, stable, and sustained processing stage that has been 

previously related to conscious access31–33 (Figure 5B). Importantly, this pattern was very similar to 

the one observed in responsive Wake trials, indirectly supporting our hypothesis that NP are 

conscious of the stimuli presented during responsive trials in lucid REM sleep. In contrast, we did not 

find any discernible decoding pattern for non-responsive trials in lucid REM sleep, suggesting that NP 

are not conscious of external stimuli when they do not respond. This result might seem at odds with 

our previous observation that marker values computed prior to the stimulation were similarly high in 

responsive and non-responsive trials (Figure 5A) in lucid NP. It suggests that high marker values are 

indicative of a rich cognitive state, which is permissive (but not necessarily sufficient) for 

responsiveness during sleep. We hypothesize that missed trials (no responses) during lucid REM 

sleep are due to a competition for attentional resources between external stimuli and internal percepts  

(higher attention to the ongoing dream)1, resulting in a dual task. This hypothesis is consistent with 

the longer reaction times (a typical hallmark of dual task) observed in lucid REM sleep (see behavioral 

results). 

 

Lucid REM sleep trials were therefore associated with: (I) a subjective report of having 

performed the task while sleeping; (II) a systematic increase in EEG markers of higher cognitive 
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states; (III) an electrophysiological signature of conscious processing of external stimuli in responsive 

trials (temporal generalization pattern), and (IV) longer reaction times, suggesting that participants 

were engaged in a dual task during which external information (outside world, including verbal stimuli) 

and internal information (ongoing dream) compete for attention. All of these findings not only hint that 

lucid participants could integrate and respond to external stimuli during sleep, but also that this 

process was conscious.  

 

 

DISCUSSION 
 

Our results provide compelling evidence that sleeping humans present, in all sleep stages, 

transient windows of sensory connection with the outside world during which they process external 

information at a high-cognitive level and are able to exhibit a behavioral response. Until now, 

behavioral responsiveness had only been demonstrated during some light sub-stages of N1 sleep 

(sleep onset)4,15,16 or in some unique individuals during lucid REM sleep14. Our findings go further by 

demonstrating the possibility for behavioral responsiveness to external stimuli across all sleep stages 

in ordinary sleep in a large group of participants. Furthermore, we show that these transient windows 

of sensory connection are associated with specific brain dynamics (faster oscillatory activity and 

higher signal complexity), which predict responsiveness on a trial-by-trial basis. Finally, for the 

particular case of lucid REM sleep, we provide strong arguments in favor of a conscious processing 

of external information, including the presence of a neural signature of conscious access31 in 

responsive trials and explicit recall of having performed the task during sleep. This finding reveals that 

lucid dreamers’ enhanced consciousness of their internal world also extends to the external world 

during REM sleep.  

 

 Before further discussing our results, it is important to stress several limitations of our study. 

First, behavioral responses were assessed by a visual inspection of the corrugator and zygomatic 

muscle activity on EMG channels. We chose this strategy rather than an automated scoring procedure 

because the amplitude of muscular responses was highly variable between participants and between 

trials (even during Wake). However, because behavioral responses were scored while blind to the 

stimulation period (ON or OFF), the participant identity and the sleeping stage (all channels other than 

corrugator and zygomatic EMG channels were removed before scoring), any subjective bias during 

the scoring procedure affected every sleep stage and stimulation period the same way. Second, the 

fact that this experiment was done over the course of several daytime naps limited the quantity of N3 

sleep that we could record, preventing us from assessing the presence of behavioral responses during 

N3 sleep in healthy participants or to measure our neurophysiological markers in responsive N3 sleep 

trials in participants with narcolepsy. Further studies are necessary to better assess behavioral 

responsiveness during N3 sleep, and more generally during night-time sleep (instead of daytime 

naps). Third, the whole-brain connectivity as assessed with wSMI at theta frequency did not differ 

between responsive and non-responsive trials in any of the sleep stages. A recent study15 showed 

that whole-brain connectivity might not be as relevant as fronto-temporal connectivity when predicting 

responses in N1 sleep. Our small number of electrodes limits the interpretation of this connectivity 

metric. Recording with more electrodes in the frontal and temporal regions are needed to further 

investigate the link between the functional connectivity and responsiveness in sleep. Fourth, we used 

post-nap subjective reports to determine lucidity instead of the gold-standard, objective signal of 

lucidity18,34,35. Nevertheless, we also collected an objective lucidity signal (successive corrugator and 

zygomatic contractions) that substantially matched participants’ subjective reports upon awakening 

(supplementary results), confirming the reliability of subjective reports in determining participants’ 

lucidity.  Additionally, we only obtained lucid naps in patients with narcolepsy. Therefore, our results 

for lucid REM sleep need confirmation in lucid healthy participants.  
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  Although the response rate was minimal during OFF periods (compared to ON periods), it 

was still greater than zero, which might appear surprising in the absence of stimuli. This can be due 

to several factors: (i) participants might have had spontaneous contractions, (ii) they might have 

dreamt about the task and contracted their muscles in response to a dreamt auditory stimulation, or 

(iii) we might have over-estimated the contraction rates. Spontaneous single contractions called 

‘twitches’’ are common during REM sleep. However, we only considered two or more successive 

contractions as responses, eliminating all twitches. Moreover, as mentioned before, behavioral 

responses were assessed while blind to the sleep stage and to the stimulation period (ON vs OFF). 

Even if blind scorers had false alarms when detecting contractions, this bias should be uniformly 

distributed in all sleep stages and stimulation periods. Therefore, any differences in the response rates 

between ON and OFF periods reflect a genuine effect. 

 

One might argue that the behavioral responses we observed during sleep occurred during 

brief episodes of wakefulness. Yet, all trials containing a micro-arousal (before and/or after the 

stimulation) were excluded from all analyses to ensure that participants were indeed asleep while 

responding, at least according to the well-accepted sleep scoring rules20. However, recent studies 

showed that local-sleep phenomena can be observed during wake, suggesting that the discrete 

frontiers between wake and sleep might be fuzzier than the international sleep criteria would 

suggest36,37. In the same way, it is possible that participants had ‘local wake events’ allowing them to 

respond to external stimuli while sleeping. Our current gold-standard sleep scoring guidelines are not 

suited to detect such subtle variations in brain dynamics. In this sense, it is important to stress that 

some of the neurophysiological markers used in this study could also be interpreted as markers of 

arousal (for example, more power in fast frequencies and less delta power). Our study could thus 

precipitate the development of finer-grained sleep scoring which better captures cognitive capacities 

including behavioral responsiveness in the wake-sleep continuum.  

 

One interesting yet expected finding was that participants with narcolepsy had higher 

contraction rates compared to participants without narcolepsy. Given their tendency to fall asleep in 

unconventional situations, they might have acquired the capacity to remain connected with their 

surroundings while sleeping. Alternatively, a reduced muscle atonia compared to healthy controls38 

might enable participants with narcolepsy to respond more during sleep. Finally, patients with 

narcolepsy have many symptoms reflecting a sleep-wake instability (e.g., sleep paralysis, hypnagogic 

hallucinations), and might thus be more prone to experience “local wake events”, enabling them to 

respond more frequently to external stimuli during sleep.    

 

 Our results enhance our understanding of the lucid dream phenomenon and of its neural 

correlates35,39. We found modifications in spectral power (increase in normalized PSD of gamma and 

decrease in normalized PSD of delta) as well as an increase in signal complexity (Sample Entropy) 

during lucid REM sleep, compared to ordinary (non-lucid) REM sleep. Interestingly, a reduction in low-

frequency spectral power coupled with an increase in signal complexity were also found in a recent 

study40. Our low-density EEG montage (10 electrodes) did not allow for a more precise topographical 

description of these modifications, but this could be clarified in future studies. More importantly, we 

provide strong evidence that, in the case of lucid participants, the stimuli in our task were perceived 

in a conscious manner. Indeed, participants reported having heard the stimuli and having performed 

the task upon awakening. On top of this subjective report, which is the gold standard to assess 

conscious access, they also exhibited stable and sustained brain activity in response to stimuli. Such 

neural responses have been previously shown to reflect conscious perception31–33. Finally, neural 

metrics computed prior to the stimulation indicated a richer neural state presumably allowing 

responsiveness. Evidence from literature demonstrates that these rich neural states differentiate 

conscious from unconscious humans (for example, patients with unresponsive wakefulness 

syndrome22,24,25). Taken together, these observations strongly imply that lucid participants consciously 

responded to stimuli while asleep. These results extend our understanding of lucid dreaming at the 
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cognitive level, by showing that lucid dreaming is not only characterized by a reemergence of 

metacognitive and volitional capacities41,42, but also by a capacity to consciously process external 

information.       

 

To what extent were non-lucid sleepers conscious when responding to stimuli? The answer 

is not as clear as in lucid dreamers since non-lucid dreamers typically could not recall having 

performed the task during sleep. Moreover, due to the insufficient number of trials, we could not 

perform temporal generalization decoding in these participants and therefore could not investigate 

neural responses to stimuli. However, there are several lines of evidence that favor conscious 

processing in this population. First, neurophysiological markers computed before the stimulation in 

responsive trials were similar to the ones in lucid participants. This suggests that their neural state in 

the responsive trials was comparable to the one in lucid participants. Furthermore, the 

unconventionality of the response modality (corrugator or zygomatic muscle contractions) makes the 

automatization of the task difficult. Indeed, we rarely use these muscles in everyday life to convey 

binary responses. Finally, reaction times to stimuli exceeded several seconds, a duration much longer 

than the one (typically around 200ms) classically observed for automatic and unconscious 

processing43. One may wonder why participants would fail to report having done the task if they had 

consciously performed it. One possibility is that they simply forgot or did not encode this information. 

Some cases of lucidity amnesia have already been described in the literature34,44. Moreover, some of 

our participants signaled their lucidity using mixed contractions and did not remember doing so nor 

being lucid at awakening. We could also hypothesize that the rich neural states presumably allowing 

responsiveness need to be sustained over a certain period of time in order to be encoded. These rich 

states might have been less stable in non-lucid participants (as suggested by the difference in 

neurophysiological markers between responsive and non-responsive trials in non-lucid participants 

(not found in lucid ones), preventing episodic memory encoding and thus subjective reports.   

 

The standard, binary view of sleep/wake states assumes that we would be either awake or 

asleep. Overall, our findings suggest that this view does not account for the richness and high 

variability within each of these states. Our results show that access to external information is a 

fluctuating phenomenon that might vary even in traditionally defined states of consciousness (e.g., a 

given sleep stage). We could imagine sleep and wake as a continuum of stages whose physiology is 

more (e.g. wake) or less (e,g, N3 sleep) favorable for the emergence of the rich neural states that 

enable conscious access and behavioral response to external stimuli46. In this sense, it is interesting 

to note that the values of the neurophysiological markers computed at the sleep stage level mirrored 

the response rates at these given sleep stages.   

 

Our study opens the way for many exciting studies investigating sleepers’ cognitive capacities 

and their associated phenomenology. With some small modifications of the current approach (e.g. 

implementing a second probe about a participant's current mental state), we could assess 

metacognition during responsive moments (e.g., do sleepers know that stimuli come from the outside, 

or do they integrate them in their dream?). By tracking how the neurophysiological markers indexing 

a rich cognitive state fluctuate in real time and by sending stimuli depending on their values, we could 

test the causal relationship between the neural state and responsiveness. Moreover, as the brief 

windows of reactivity in sleep can be predicted from EEG signal, they could be targeted to test the 

possibility for real-time communication with sleepers, not only in some unique individuals who 

experience lucid dreams14, but in all sleepers across all sleep stages. Such two-way communication 

with sleepers may open novel research avenues, allowing inquiries about sleepers' mental states in 

different sleep stages. This new method could also have clinical applications, for example in the 

medical treatment of patients suffering from post-traumatic stress disorder, by communicating with 

them during recurrent nightmares as a way to relieve them, or for bringing mechanistic insights into 

the puzzling mismatch between subjective wake perception and objective sleep markers in patients 

suffering from paradoxical insomnia. By demonstrating the existence of windows of behavioral 
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responsiveness across all sleep stages, our study provides a new tool for unlocking the mystery of 

what happens in sleepers’ minds.    

  

MATERIAL AND METHODS 

 

Participants 
 

Participants with narcolepsy. Thirty participants with narcolepsy were recruited for this study (14 

women, mean age: 35 ± 11 years) from the patients followed in the National Reference Center for 

Narcolepsy in Pitié-Salpêtrière University Hospital. Twenty-four of them (80%) were frequent lucid 

dreamers who reported more than 3 lucid dreams per week on average (others reported less than 1 

lucid dream per year). Participants met the international criteria for narcolepsy46, including (i) 

excessive daytime sleepiness occurring daily for at least 3 months; (ii) a mean sleep latency lower 

than or equal to 8 min and two or more sleep onset REM sleep periods on the multiple sleep latency 

tests (5 tests performed at 08:00, 10:00, 12:00, 14:00, and 16:00; and (iii) no other better cause for 

these findings, including sleep apnea syndrome, insufficient sleep, delayed sleep phase disorder, 

depression, and the effect of medication or substances or their withdrawal. They were required to 

pause their medication for the day of the experiment to facilitate sleep onset. We recruited patients 

with narcolepsy type 1 (n= 17, with clear cataplexy or hypocretin deficiency) and type 2 (n= 13, no 

cataplexy or hypocretin deficiency). Among the 30 participants, 3 (2 women) were discarded from the 

analyses because of technical issues affecting the recordings. In total, data from 27 participants with 

narcolepsy (21 frequent lucid dreamers) were analyzed in this study.  

      

Healthy participants. Twenty-two healthy participants (all non-lucid dreamers) were recruited for this 

study (10 women, mean age: 24 ± 4 years). They had no or little experience with lucid dreaming (less 

than two lucid dreams in their lives). They had no sleep disorder and were in good shape, as assessed 

by a sleep clinician. To further facilitate sleep onset, we asked participants to sleep about 30% less 

than usual during the night preceding the experiment (either by going to bed later or waking up earlier) 

and to avoid stimulants on the day of the experiment. Fourteen went through the experiment in the 

morning and eight of them went through the experiment in the afternoon. One participant was 

discarded from the analysis because of technical issues affecting the recordings.  

 

All participants were native French speakers and gave written consent to participate in the study. The 

protocol had been approved by the local ethics committee (CPP Ile-de-France 8). Participants with 

and without narcolepsy were paid €200 and €70 respectively, as compensation for their participation 

in the study (participants with narcolepsy also took part to an unrelated experiment the following day; 

the results of this second study are not described here). 

 

Experimental design 
 

In this study, we tested participants’ ability to perceive, discriminate, and respond to auditory stimuli 

while asleep. Participants lied in a bed in a sound attenuated room in the sleep unit. They were asked 

to perform a lexical decision task in which words and pseudo-words were verbally presented in a 

pseudo-randomized fashion. Participants with narcolepsy went through five 20-min naps, with an 80-

min break between each nap (Figure 1A). Before the experiment, participants underwent a short 

training (10 min) to familiarize themselves with the type of stimuli and the task (10 repetitions). Each 

nap session contained ten “ON” stimulation periods during which 6 stimuli (3 words and 3 pseudo-

words) were presented every 9 to 11 seconds on top of continuous white noise. Each stimulus was 

presented only once in the entire experiment. The “ON'' stimulation periods were separated by 1 min 

non-stimulation periods (OFF periods) during which only white noise was presented. Following a 

previously validated response paradigm during sleep14, participants were instructed to decide whether 
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the stimulus was a word or a pseudo-word and indicate their response by making three, brief, 

successive contractions of either the corrugator (frowning) or the zygomatic (smiling) muscles, 

depending on the stimulus type (e.g., contracting the corrugator if they heard a pseudo-word and the 

zygomatic if they heard a word). The muscle-stimulus association was counterbalanced across 

participants. Importantly, the stimulation started when the subjects were still awake, but participants 

were explicitly authorized to fall asleep while performing the task. They were asked to perform the 

task before falling asleep, if they woke up during a nap, and if they heard the stimuli in their sleep. If 

participants were lucid dreaming but did not hear any stimuli (word or pseudo-words), they were 

instructed to communicate their lucidity with a "mixed" signal, alternating a single corrugator muscle 

and a single zygomatic muscle contraction. Note that we chose not to use the gold-standard method 

to signal lucidity here (Left-Right-Left-Right ocular code) for three reasons: i) the ocular code ‘pollutes’ 

the EOG channel, which might lead to bias when scoring REM sleep, ii) several lucid dreamers with 

narcolepsy explicitly told us that facial codes were easier to perform, less disturbing of the ongoing 

dream, and less awakening than the ocular code, and iii) our experiment required three different codes 

(one for each stimulus type and one for signaling lucidity if no sounds were heard). After each nap, 

participants were awakened by an alarm that rang until they pressed a button. They were asked to 

report ’what was going through their mind’ before the alarm and indicate whether i) they had a lucid 

dream, ii) they communicated their lucidity with the mixed-signal, iii) they heard the stimuli during the 

nap, iv) they responded to the stimuli, and v) they remember any stimuli (word or pseudo-word) from 

the nap (free recall). Finally, participants performed an old-new recognition task, during which they 

were presented with stimuli they heard during the preceding nap and new stimuli that were never 

presented during the experiment. Participants had to indicate whether they had heard the stimuli 

during the preceding session with one of the following responses: 1: I heard it from the dream (for 

example, a person from their dream saying the word), 2: I heard it from the outside world (pronounced 

by the computer), 3: I am not sure I heard it, 4: I am sure I did not hear it. They responded by pressing 

the corresponding button without any time pressure. The four options were explained to the 

participants during training, prior to the first session.  

Healthy participants went through the same procedure except that the 5 naps were combined into a 

single, longer, 100-min daytime nap.  

 

Stimuli 
 

Stimuli were French words and pseudo-words pronounced by a female voice, taken from the 

MEGALEX database45. All stimuli were controlled for their duration (690ms) and the words were 

controlled for their frequency and valence. Five distinct lists (one for each nap session) of sixty stimuli 

(thirty words and thirty pseudo-words) were created for each participant in a randomized fashion. 

Participants heard each stimulus only once during the day. Stimuli were presented through speakers 

using the Psychtoolbox extension47 for MATLAB (The MathWorks). Stimuli were played every 9–11 s 

(random uniform jitter) after a 60 second OFF period (without stimuli). Button-press responses in the 

old-new recognition task were collected through a regular keypad. 

   

Electrophysiological recording 
 

Electroencephalography (EEG, 10 channels: Fp1, Fp2, Cz, C3, C4, Pz, P3, P4, O1, O2, referenced 

to the A2; 10–20 montage), electrooculography (EOG, 2 channels, positioned above the right superior 

canthus and the left inferior canthus), electromyography (EMG, 1 channel on chin muscle for sleep 

staging, 1 channel on zygomatic and 1 channel on corrugator muscles for recording participants’ 

behavioral responses) and electrocardiography (EKG, 1 channel) were continuously recorded during 

the nap sessions. All signals were recorded simultaneously at a 2048 Hz sampling rate. EEG data 

were amplified through a Grael 4K PSG:EEG amplifier (Medical Data Technology, Compumedics Ltd, 

Australia). 
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Sleep scoring and identification of muscular responses 

 
Sleep scoring. Sleep stages were scored offline by a certified sleep expert according to established 

guidelines49 using Profusion software (COMPUMEDICS, Medical Data Technology). For scoring, the 

EEG and EOG signals were filtered between 0,3 Hz and 15 Hz, the EMG and EKG signals were 

filtered between 10Hz-100Hz and 0,3Hz-70Hz respectively. A 50 Hz notch filter was applied on all 

channels. Sleep scoring was visually performed on 30-second time epochs, each scored as 

wakefulness, N1, N2, N3, or REM sleep, according to the AASM international rules. Micro-arousals 

were scored when alpha rhythm was present during more than 3 sec and less than 15 sec (if longer, 

the epoch was scored as wake) and, in REM sleep, when there was an increase in chin muscle tone 

in addition to the alpha rhythm. Trials containing micro-arousals were excluded from further analyses. 

A nap was considered lucid based on the subjective report (if the participant reported having a lucid 

dream during the nap). In this case, all REM sleep epochs of this nap were then considered as lucid 

REM sleep. Note that healthy participants never reported having a lucid dream.    

            

Identification of muscular responses. The recording of the nap was divided into 120 mini-epochs 

of 10 seconds. The sleep stage for each mini-epoch was defined by the sleep score of the 

corresponding 30-second epoch. Mini-epochs containing a micro-arousal were discarded from the 

analyses. The presence of zygomatic or corrugator muscle contractions was assessed visually, 

looking offline at the EMG signal for each mini-epoch. Importantly, the scorer was blind to the sleep 

stage and to whether a stimulus was presented during the mini-epoch (corresponding to an ON period) 

or not (corresponding to an OFF period). Muscle contractions were considered as a response if they 

contained at least two consecutive contractions. Single contractions were considered as a twitch and 

scored as a no-response. To ensure the quality of the scoring, 10% of the data was later re-evaluated 

by another blind scorer who showed 84% consistency with the first scorer. 

      

EEG preprocessing and analysis 
 

Only the EEG segments corresponding to the “ON periods” were analyzed.   

 

Preprocessing  

Raw files were set to a mastoid reference (A2 electrode). We applied two different preprocessing 

procedures:  

 

For calculation of electroencephalographic markers of consciousness and related machine learning 

classification          

Following previous work22, raw EEG files were band-pass filtered between 0.5 and 45Hz, with 50Hz 

and 100 Hz notch filters. Data was down-sampled to 250Hz. Trials were then segmented from -

1000ms to the onset of the stimuli (words and pseudo-words during ON-periods).  

 

The obtained epochs were cleaned, based on their voltage maximum peak-to-peak amplitude, using 

a fully automatic procedure with the autoreject48 algorithm. The Python49 implementation of the 

autoreject algorithm allows for the automatic calculation of an optimal global rejection threshold for a 

set of epochs, using a cross-validated machine learning algorithm. For each wake/sleep stage in our 

data (Wake, N1, N2, N3, and REM sleep), we calculated a separate global rejection threshold (the 

same for all participants in each group for a given sleep/wake stage) and we rejected all trials with at 

least one EEG channel exceeding the given threshold. Note that this drastic rejection method was 

associated with high rejection rates but ensured the quality of our data. More conservative automatic 

cleaning methods such as interpolation of bad channels were not applicable to our 10 channels EEG 

montage.  
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For Temporal Generalization Decoding against baseline analysis:  

Raw EEG files were band-pass filtered between 0.1 and 20Hz, with 50Hz and 100 Hz notch filters. 

Data was down-sampled to 250Hz. Trials were then segmented from -350ms to +1700ms relative to 

the onset of the stimuli (words and pseudo-words during ON-periods). The obtained epochs were then 

cleaned using the same automatic procedure described above.    

 

All trials were labeled as belonging to a particular sleep/wake stage (Wake, N1, N2, N3, or REM sleep) 

according to the sleep scoring described above (corresponding 10s mini-epoch), as being responsive 

or non-responsive according to the presence or absence of a valid behavioral response (corrugator 

or zygomatic muscle contraction), and as lucid or non-lucid according to the global label of the nap 

(cf. above).  

 
Calculation of electroencephalographic markers tracking consciousness modifications 

Previous work has shown that consciousness state modifications can be tracked using different 

spectral, connectivity, or complexity measures derived from the scalp or intracranial 

electroencephalographic recordings. By combining these markers, it is possible to distinguish 

conscious participants, patients in a minimal consciousness state, and patients with unresponsive 

wakefulness syndrome22,25. These measures can also differentiate sleep stages (REM sleep and 

wakefulness versus N3)26 and track consciousness modifications related to psychedelics or 

meditation23.  

 

In our study, we selected 3 types of measures among those markers:  

- Spectral measures: we computed the normalized power spectral densities (PSD) in delta (1-

4 Hz), theta (4-8 Hz), alpha (8-12 Hz), beta (12-30 Hz), and gamma (30-45) frequency bands.   

- Connectivity measures: we computed the weighted symbolic mutual information (wSMI), a 

functional connectivity measure capturing linear and non-linear coupling between sensors, 

which relies on the symbolic transformation of the EEG signal. We computed the wSMI in the 

theta band (4-8Hz)24. The choice of the theta frequency band was based on previously 

reported results22,24 , showing that the wSMI calculated on this frequency band was the most 

efficient in detecting residual consciousness in brain-injured patients with a disorder of 

consciousness.   

- Complexity measures: we computed three different complexity measures, the Kolmogorov 

Complexity (KC), the Permutation Entropy in the theta frequency (PE θ), and the Sample 

Entropy (SE).  

 

See Supplementary material of Sitt et. al (2014)22 for a detailed description of each measure and its 

computation. Details regarding the sample entropy can be found in Richman & Moorman (2000)50. 

 

Each one of the previously described markers was computed during the 1000ms time window 

preceding the presentation of the stimulus (word or pseudo-word), during the ON-periods, 

independently for each subject, trial and for every electrode (n = 10) or pair of electrodes (n = 45) for 

the wSMI. A wSMI global score for each electrode was computed by calculating the median 

connectivity of each electrode with all the other electrodes. Finally, for each subject and each trial, 

each marker was summarized by calculating the mean across channels, resulting in a single scalar 

per marker per trial.  

 

Prediction of responsiveness using a decision tree algorithm 

 

We aimed at predicting, independently for each sleep/wake stage, if a given trial would contain a 

response or not based on the consciousness markers computed during the 1000ms time period 

preceding the stimulus presentation.  We used a Random Forest algorithm, a classification algorithm 
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consisting of many decision trees. This algorithm implements bootstrapping and feature randomness 

when building each tree, which ensures the construction of an uncorrelated forest of trees. Since the 

different trees in the forest are uncorrelated, their global prediction by committee is more accurate 

than that of any individual tree. Random Forest has shown to be among the best currently used 

machine learning classifiers, in a very wide range of different datasets (n=112) from several research 

fields51, outperforming other choices as SVM classifiers.  

 

We conducted an independent analysis for each sleep/wake stage. For each trial, the classifier was 

provided with 10 features, as well as the label (“responsive” versus “non-responsive”) of the trial. The 

10 features were the 9 consciousness markers described in the previous section and the subject 

identity. The Random Forest classifier was composed of 100 estimators (trees). Since our data was 

unbalanced in terms of the number of responsive trials compared to non-responsive ones, the weights 

of each class were adjusted in an inversely proportional manner to class frequencies.  

 

Two different training/testing strategies were used:  

- For the participants with narcolepsy, we used for each stage a standard 10-fold stratified 

cross-validation procedure. In each fold, data was split into training (9/10 of the trials) and 

testing (1/10 of the trials) sets, in a manner that preserved class frequencies in each split.  

Trials of each class were shuffled before splitting in a pseudo-randomized manner. In each 

fold, the predictions of the classifier for the testing set were used to compute the Balanced 

Accuracy score and the F1-score of the classifier (see definition and method for calculation 

of these scores below). We then computed the mean Balanced Accuracy and F1 scores 

across folds, as well as their confidence interval. F1 scores can be found in Table S5. 

- For the participants without narcolepsy, since responsive trials were scarce in particular 

during N2 sleep and REM sleep, we decided to train our classifier with the data of the 

participants with narcolepsy and to test its performance on data from participants without 

narcolepsy. Specifically, we fitted our classifier with the N2 sleep trials from participants with 

narcolepsy, and then tested its predictions on N2 sleep trials from the participants without 

narcolepsy. As before, we computed balanced accuracy and f1 scores.  To obtain a 

distribution of scores in the absence of cross-validation, we repeated the fitting and testing 

steps 10 times (note that the random parameters of the Random Forest classifier allowed us 

to obtain a distribution of -closely related- scores in this manner). 

 

As mentioned above, we computed two scores to measure the performance of our classifier, both 

measures being well adapted to unbalanced datasets52 as ours (with more non-responsive trials than 

responsive ones during sleep):  

- The balanced accuracy score corresponds, in binary classification problems, to the mean of 

the sensitivity (Se) (“How many relevant items are retrieved?”) and the specificity (Sp) (“How 

many non-relevant items are correctly identified”). In terms of true positives (TP), false 

negatives (FN), true negatives (TN) and false positives (FP) (where, in our case, true positives 

are responsive trials correctly identified by the classifier, and true negatives non-responsive 

trials correctly identified by the classifier), the balanced accuracy score can be computed by 

the following formula:  

 
- The F1-score corresponds, in binary classification problems, to the harmonic mean of the 

precision (“How many retrieved items are relevant?”) and the sensitivity. It can be computed 

by the following formula: 
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Decoding of stimulus-related brain activity  

 

We aimed at assessing brain responses to stimuli in function of participants’ sleep/wake stages and 

of their responsiveness to the task.  Our unbalanced datasets across participants and conditions did 

not allow for a more classical approach such as ERP (Evoked Related Potentials). We hence decided 

to use a multivariate pattern analysis (MPVA) with the temporal generalization decoding method31. 

The idea of this analysis is to test, for a given time-point after stimulus presentation, how different the 

multivariate pattern of activity across electrodes was at this specific time point compared to the pattern 

at baseline (before stimulus presentation), for the different conditions.  

 

To reduce computation time, we first down-sampled our data to 100Hz (decimation factor of 2.5). To 

ensure a correct features/number of trials ratio, we restricted our analysis to 3 centro-parietal 

electrodes (Cz, Pz, and P3), and, for each condition (sleep stage/responsiveness), we only included 

in our analysis the participants who had at least 15 trials of the given condition. Given these 

restrictions, we only had enough participants for statistical analysis for Lucid REM sleep (10 

participants for responsive trials, and 9 participants for non-responsive trials) and for Wake (14 

participants for responsive trials). Then, for each condition, participant, trial, and channel, we 

computed the mean voltage during the 350ms baseline period before stimulus presentation and used 

this value to create dummy “baseline” trials with the same dimensionality as the original trials. Note 

that after this step, for each condition and each participant, we obtained a balanced set of dummy 

“baseline trials” (reflecting baseline brain activity before/without stimulus presentation) and actual trials 

where the stimulus was presented.    

 

Then, independently for each condition and each participant, we trained a linear classifier to decode 

stimulus-present versus stimulus-absent trials (“baseline” dummy trials versus actual trials), using an 

L2-regularized (C=1) logistic regression, in a 5-fold cross-validation procedure. In each fold, all the 

trials were shuffled in a pseudo-randomized manner and split into a training set (⅘ of the trials) and 

a testing set (⅕ of the trials). The features (channel amplitudes) were standardized across training 

trials before being provided to the classifier for training. This training procedure was applied at each 

time step independently. Following the time generalization approach, the model trained at each time 

step was then tested at all the time steps on the testing set trials, at each cross-validation fold. The 

classifier performance at each training and testing time was evaluated by the area under the receiver 

operating curve (AUC) at each cross-validation fold. At the end of the cross-validation procedure, the 

global performance of the classifier at each training and testing time was obtained by averaging the 

intermediate values obtained at each fold, for each participant and each experimental condition.  

Group-level performance for each condition was finally obtained by averaging across participants, 

independently for each condition (stage /responsiveness).            

 

Statistical analysis 
Most statistical analyses were conducted in R53 using the lme454, emmeans55, BayesFactor56 and 

DHARMa57 packages. For the machine learning analysis, statistics were conducted in Python49 using 

the numpy58, scipy59, and scikit-learn60 packages. All statistics were corrected for multiple 

comparisons using the False Discovery Rate (FDR) Benjamini–Hochberg procedure. 

 

Behavior. Linear mixed models with subject ID as a random factor were used for all statistical 

analyses. We evaluated participants’ ability to respond to stimuli in different sleep stages (Figure 1A 
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and Figure 2B). First, we focused on the comparison between the ON and OFF periods separately for 

each sleep stage. Binomial generalized linear mixed models with stimulation period (ON vs OFF) as 

the independent variable and responsiveness (response vs no response; both contraction types 

combined) as the dependent variable were used in this analysis. The models’ assumptions were 

evaluated using the DHARMa57 package in R53. Next, we focused on the “ON” stimulation periods 

during which participants were presented with stimuli. The model had sleep stages (wake, N1, N2, 

N3, REM sleep in healthy participants and wake, N1 N2, N3, non-lucid REM sleep and lucid REM 

sleep in participants with narcolepsy) as the independent variable and responsiveness (response vs 

no response) as the dependent variable. For accuracy, we computed the percentage of correct 

responses for each participant at each sleep stage and compared them to the 50% chance level using 

Wilcoxon signed rank test. Only participants with at least 3 responses are included in this analysis. 

Finally, the differences in reaction times in different sleep stages were assessed using a linear mixed 

model (Figure 1C). An inverse transformation was applied to the reaction times (1/RT) to better fit the 

model assumptions. 

 

EEG markers. In order to investigate how different neural markers differ in trials with a response and 

without any response, we first z-scored marker values at subject level. We then used a mixed linear 

model for each EEG marker with subject ID as a random factor, responsiveness as the independent 

variable, and the EEG marker as the dependent variable. The analysis was conducted at a single-trial 

level. Since the responsiveness and the sleep stage are not independent (for example, in wake we 

observed more responses than in N2 sleep), we could not include the sleep stage as an additional 

independent variable in the models. Thus, we performed the tests separately for each sleep stage, 

resulting in a test for each marker in each sleep stage. We computed a similar analysis to compare, 

in REM sleep, lucid and non-lucid trials.  

 

Prediction of responsiveness at a trial level using a Random Forest Classifier.  We scored 

classifier performance at each sleep/wake stage and for each group using the Balanced Accuracy 

score and the F1-score (cf above). To assess how different these scores were from chance level, we 

performed, independently for each score, a 500-permutation procedure. At each permutation, trial 

labels (responsive versus non-responsive) were randomly shuffled, and the entire 10-fold cross-

validation procedure was performed, allowing us to obtain a distribution of chance-level scores. To 

calculate the p-value for each state, we counted the number of permutation scores equal or higher to 

our true score and divided it by the number of permutations plus one.  

 

Decoding of stimulus-related brain activity using temporal generalization decoding. For each 

experimental condition (sleep stage/responsiveness), classification performance at each training and 

testing time was tested against 0.5 (chance) using a two-sided non-parametric sign test across 

subjects, and these statistics were then corrected for multiple comparisons using the False Discovery 

Rate (FDR) Benjamini–Hochberg procedure. In figure 5 panel B, significant time points (p<0.05 FDR 

corrected) with an AUC>0.5 are outlined in black.    
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Figure 1. Experimental design for participants with narcolepsy and example of a responsive 

trial.  

(a) Participants with narcolepsy went through five 20-minute naps during the same day. In each nap, 

periods with stimulation (ON) alternated, every minute, with periods when no stimulus was presented 

(OFF). During the ON periods, participants were presented with words and pseudo-words and asked 

to either frown (corrugator muscle contractions) or smile three times (zygomatic muscle contractions) 

in response to the stimuli. Stimuli were presented every 10 seconds (+/- 1 second). Following each 

nap, participants were asked to report whether: (i) they had any dream; (ii) they were lucid; and (iii) 

they recalled any words presented during the nap. Immediately after this debriefing, participants 

performed a forced-choice ‘old/new’ recognition task. Healthy participants went through the exact 

same procedure except that they had a single 100-min nap. (b) Example of behavioral responses 

during wake (left, 3 zygomatic muscle contractions in response to a pseudo-word) and REM sleep 

(right, 4 corrugator muscle contractions in response to a word). The orange vertical line on the last 

channel indicates the stimulus onset. In this example, we observed the typical markers of REM sleep: 

low chin tone (EMG), rapid eye movements (EOG), and theta rhythm (EEG). 
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Figure 2. Behavioral results. (a) The overall response rate across different sleep stages during OFF 

(blue) and ON (green) stimulation periods in participants without (left) and with (right) narcolepsy. The 

response rate was computed by combining both response types (zygomatic or corrugator muscle 

contractions), whether the response was correct or not. The total number of trials is indicated on top 

of the bars. We used binomial generalized mixed-linear models with participants as a random factor 

for statistical analysis. Significant differences between ON and OFF periods are indicated for each 

sleep stage. Response rates were significantly larger in ON than in OFF periods in all sleep stages 

except for N3 sleep in participants without narcolepsy. (b) Accuracy computed over responsive trials 

in the lexical decision task for participants without narcolepsy -HP (left) and with narcolepsy -NP 

(right). Only participants with at least 3 responses were included in this analysis. Each dot represents 

a participant and dashed lines indicate the 50% chance level. Both HP and NP were significantly more 

accurate than chance in all sleep stages (c) Distribution of reaction times from stimulus onset to 

response in correct trials (words and pseudo-words) in NP across sleep stages. Dashed lines indicate 

medians. A mixed-linear model with subject as a random factor revealed slower reaction times in lucid 

REM sleep. (d) Flowchart detailing the repartition of naps in participants with narcolepsy: the 

percentage of naps with at least one behavioral response is indicated, and the responsive naps are 

further divided depending on whether participants reported a lucid dream upon awakening and 

whether they explicitly recalled responding during the nap. Please note that, after the naps in which 

participants with narcolepsy responded to stimuli, the majority of participants who were lucid 

remembered performing the task while those who were not lucid did not.  

**** : p<0.0001, ***: p<0.001,**: p<0.01, *: p<0.05, all p values are corrected for multiple comparisons using 

Benjamini–Hochberg procedure. 
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Figure 3. Evolution of electrophysiological markers across sleep stages in participants with 

narcolepsy. Three complexity measures (the Kolmogorov Complexity -KC, the Permutation Entropy 

-PE, and the Sample Entropy -SE), one connectivity measure (weighted symbolic mutual information 

(wSMI) in the theta band), and five spectral measures (normalized power spectral densities (PSD) of 

delta, theta, alpha, beta and gamma frequency bands) were computed separately for the wake, N1, 

N2, N3, and REM sleep stages in participants with narcolepsy. The results in healthy participants can 

be found in Figure S3. Each dot indicates marginal means estimated by a mixed-linear model including 

sleep stage as an independent variable, EEG marker as the dependent variable, and participant ID 

as a random variable. Error bars depict 95% confidence intervals. Complexity and high-frequency 

PSD decreased in sleep compared to wake (wake > N1 > REM sleep > N2 > N3), whereas delta PSD 

increased with sleep (N3 > N2 > REM sleep > N1 > wake). Details of the statistical comparisons can 

be found in Table S2. 
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Figure 4. Consciousness markers computed before stimulus presentation predict 

responsiveness to stimuli in each non-lucid sleep stage. (a) Univariate analysis; After the z-score 

transform of marker values, we subtracted the marginal estimated mean of non-responsive trials (NR) 

from responsive (R) trials for each marker and each stage. Almost all markers showed a variation in 

the direction corresponding to increased conscious processing when contrasting responsive trials to 

non-responsive trials (e.g.: increased EEG complexity and decreased EEG delta power), both in 

participants with (left) and without narcolepsy (right). Note the similarity with Figure 3 in Sitt et al., 

(2014) which contrasted conscious to non-conscious states in patients suffering from disorders of 

consciousness. (b) and (c) Multivariate analysis. We fed a random forest classifier with these 9 EEG 

markers and trained it to classify R trials versus NR ones using a 10-fold cross-validation method. A 

confusion matrix for REM sleep stage in non-lucid naps of participants with narcolepsy is shown in 

(b), with a description of the balanced accuracy measure that we computed to take unbalanced 

datasets into account. The confusion matrix for each stage and group can be found in Table S5.  TP: 
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True Positives (responsive trials classified as responsive). TN: True Negatives (non-responsive trials 

classified as non-responsive). FP: False Positives (NR trials classified as responsive). FN: False 

Negatives (R trials classified as non-responsive). Balanced accuracy scores are plotted in (c) for 

different sleep stages, both for participants with narcolepsy (Wake, N1, N2, REM sleep; left) and 

without narcolepsy (N2, right), with the corresponding statistical significance against chance-level 

(approximated by 500 permutations). Note that:  (i) responsiveness to stimuli could be predicted for 

each sleep/wake stage in participants with narcolepsy (NP); (ii) the classifier trained with data from 

participants with narcolepsy could generalize to healthy participants (HP), as shown by significant 

decoding of responsiveness in N2. 

**** : p<0.0001, ***: p<0.001,**: p<0.01, *: p<0.05, red stars indicate significance after FDR correction for 72 

comparisons.   
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Figure 5. Effect of lucidity on EEG markers and response to stimuli in participants with 

narcolepsy. (a) The top panel shows Kolmogorov complexity (left), normalized gamma PSD - norm-

gamma (middle), and normalized delta PSD - norm-delta (right) prior to stimuli onset as a function of 

whether the stimulus will be followed by a behavioral response (in blue) or not (in orange), for lucid 

and non-lucid REM sleep in participants with narcolepsy. Kolmogorov complexity and norm-gamma 

were significantly higher for responsive trials compared to non-responsive trials in non-lucid naps for 

all participants. Conversely, the norm-delta was significantly lower in responsive trials in non-lucid 

naps.  No such differences were observed in lucid naps, suggesting a ceiling-effect for cognitive 

richness markers in lucid naps. Overall, Kolmogorov complexity and norm-gamma were higher, and 

norm-delta was lower in lucid naps compared to non-lucid naps irrespectively of the responsiveness. 

(b) Time-generalization decoding of stimulus-related brain activity compared to baseline brain activity, 

in trials with (top) and without (bottom) response, in Wake (left) and Lucid REM sleep (right). The 

logistic regression classifier was trained on each time point and then tested on all the time points to 

obtain a generalization pattern. Each intersection point of a training time and a testing time shows the 

AUC (Area under the receiver operator curve) of the classifier. Time points with an AUC>0.5 and that 

are statistically significant are outlined in black (two-sided non-parametric sign test across subjects 

with FDR correction for 41 616 comparisons, p < 0.05). Note that in trials with a behavioral response, 

we observed for both Wake and Lucid REM sleep short diagonal pattern suggestive of a ballistic 

transient chain of distinct processing stages, followed by a squared-shape pattern revealing a late, 

stable, and sustained stage of processing which has been previously associated with conscious 

access. 

 **** : p<0.0001, ***: p<0.001,**: p<0.01, *: p<0.05, ns: non-significant, red stars indicate significance after FDR 

correction for 15 comparisons.  
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