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Abstract

Solving the chemical master equation is an indispensable tool in understanding the behavior of biological and
chemical systems. In particular, it is increasingly recognized that commonly used ODE models are not able to
capture the stochastic nature of many cellular processes. Solving the chemical master equation directly, however,
suffers from the curse of dimensionality. That is, both memory and computational effort scale exponentially in the
number of species. In this paper we propose a dynamical low-rank approach that enables the simulation of large
biological networks. The approach is guided by partitioning the network into biological relevant subsets and thus
avoids the use of single species basis functions that are known to give inaccurate results for biological systems. We
use the proposed method to gain insight into the nature of asynchronous vs. synchronous updating in Boolean
models and successfully simulate a 41 species apoptosis model on a standard desktop workstation.

Mechanistic models are commonly used to acquire in-
sights about the biochemical reaction networks that gov-
ern cellular processes inside a cell. These models are typ-
ically obtained by a combination of expert and literature-
driven knowledge as well as experimental data. Models
based on ordinary differential equations (ODE) are most
commonly used [1]. However, it is also well known that in
a number of problems the ODE formulation is insufficient
to describe important features of the biological system
[2, 3, 4, 5]. Often this inability comes from the fact that
ODE models replace stochastic dynamics by some aver-
age. In contrast, such stochastic effects are taken into
account by models based on the chemical master equa-
tion (CME).

The primary challenge associated with models based
on the CME is the large computational cost. For a di-
rect solver, the computational effort and memory require-
ments increase exponentially with the number of species,
limiting such simulations to relatively small systems. This
is a reason why the less computationally expensive ODE
models are popular. In this paper, we employ a dynamical
low-rank approximation to drastically reduce the compu-
tational and memory costs and therefore make the so-
lution of large, complex systems tractable. In our ap-
proach, the network is subdivided into subsets that are
tightly coupled, while only averaged information is ex-
changed between them. This enables simulations with a
network size that would be prohibitive for direct solvers.
Although low-rank approximations have been used in the
past — particularly in the quantum physics literature —
our approach departs from traditional applications by ex-

ploiting the underlying structure of the network rather
than reducing the equations to single species basis func-
tions (orbitals in the language of quantum dynamics). In
our view, this represents a paradigm shift of how these
methods should be applied to obtain accurate results with
drastically reduced computational effort.

We note that in the literature the large computational
cost of solving the CME has been addressed in a variety of
ways. If a system is very sparse (i.e. only a few chemical
states are populated) finite state projection [6] is a vi-
able way to reduce computational complexity. However,
especially for Boolean models (for details see below) this
essentially assumes that a large number of species is either
on or off with probability 1, a very unrealistic assumption.
The other commonly used technique is Monte-Carlo sim-
ulation or SSA [7, 8]. In this approach trajectories in
the space of possible configurations are sampled and a
statistical representation is obtained by repeated simula-
tions. Thus, to obtain, e.g., low abundant phenotypes
requires the computation of an excessively large number
(depending on the problem potentially tens to hundreds
of thousands) of trajectories [9].

The idea of dynamical low-rank approximation is to
use lower dimensional basis functions in order to approx-
imate the high dimensional probability distribution. If a
relatively small number of such basis functions is suffi-
cient to describe the relevant dynamics, this results in a
drastic reduction of the required computational resources.
In [10], such an approach is presented for a relatively low-
dimensional CME. In this work, following the quantum
physics literature, each species is considered its own sub-
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space (i.e. the basis functions only depend on a single
species). The proposed method works relatively well for
the given examples (≈ five species and ≈ ten reactions),
but has the disadvantage that an approximation error is
made in each reaction. In biological applications, it would
be difficult or even impossible to consider each species as
independent, particularly given the intricate structures of
complex biological networks [11]. Therefore, approximat-
ing the probability distribution of a system of reactions
using a single species basis function could significantly de-
grade the accuracy of the method. For this reason, single
basis functions have been considered as poor representa-
tions for biological systems.

Our proposed dynamical low-rank approximation for-
malism for biological networks leverages prior work. In
particular, the projector splitting based dynamical low-
rank approach introduced in [12] and its later extension
to hierarchical tensors [13]. This was the first robust
low-rank approach able to handle dynamical systems [14].
More recently, this approach found success in solving par-
ticle kinetic equations such as the Vlasov equation [15,
16, 17] and radiative transfer problems [18, 19, 20, 21].
Our dynamical low-rank approach is fully deterministic
(i.e. noise free) and provides the entire probability dis-
tribution with a single simulation. This enables us to
get an accurate picture of the network dynamics, while
still being relatively cheap from a computational point of
view. In addition, the proposed approach does not show
unfavorable scaling with the number of reactions (as does
SSA), but only with the dependent species for each reac-
tion. The approximation error in the dynamical low-rank
approach is controlled by how the network is partitioned,
thus allowing us to make use of expert knowledge to refine
the result.

While the dynamical low-rank approach can be ap-
plied to any model based on the CME, in this paper we
consider Boolean models [22]. In this formalism, each
biochemical species (e.g. genes, proteins) can exist in
two states (on or off), which significantly simplifies model
complexity and only requires that one knows the struc-
ture of the network (which in some situations can be
inferred from data [23]). The state of the network is
then determined by a binary string that encodes which
species are switched on and which are switched off. In
the CME approach a probability is assigned to each such
state. Boolean models have proven very useful to extract
mechanistic insights from complex systems [24, 25] and
a range of software packages are available for practition-
ers. We note that the Boolean model formalism is also
used in a variety of applications outside biology includ-
ing circuit theory, natural language processing, and search
engines [26, 27]. For increasingly large and complex prob-
lems Boolean models have the added advantage that they
do not require precise knowledge of a large number of
kinetic parameters, which otherwise must be either mea-
sured experimentally, or inferred using statistical meth-

ods [28, 29].

Results

An illustrative example: a Boolean model of
the mTOR pathway

To demonstrate the use of the low-rank approximation
based on network structure for a biochemical reaction net-
work, we chose the model of the mTOR pathway intro-
duced in [30]. The model includes 22 species and its net-
work diagram is given in Figure 1. The full Boolean rule-
set can be found in the file supplement2 mTOR.pdf.

Network partitioning

The first step in our dynamical low-rank approach re-
quires the partitioning of the network into subnetworks
while leveraging the network structure. For this step, we
require that the partitioning of the network yields sub-
networks with an approximately equal number of species.
Every interaction that remains within its partition (e.g.
the rule for TSC1/2 in the blue partitioning in Figure 1)
is treated exactly by the algorithm. Therefore, we want
to minimize cross-partition dependencies (indicated by ar-
rows in the Figure) as these interactions will be subject
to low-rank approximations (e.g. the pathway that con-
nects TSC1/2 to RHEB in the blue partitioning). In
Figure 1, we introduce five different partitionings that we
will use in the following. The blue, green, purple, and
red networks are chosen following this general principle
of minimizing connections between the subnetworks. To
demonstrate the consequences of a bad partitioning, we
also included the yellow partition, where the species are
randomly assigned.

The most important parameter of the low-rank ap-
proximation is the choice of rank. A smaller rank r leads
to faster compute time and less memory requirements for
a simulation. However, decreasing rank can also lead to
larger error. The maximum rank of a simulation is given
by 2d/2, where d is the number of chemical species. In
our example, d=22 and thus the maximum possible rank
would be 2048. At the highest rank, the simulation is
exact but this does not result in any computational im-
provements in compute time or memory use relative to a
direct solver. In Figure 2 (top-left), we compare the er-
rors of five different network partitions in relation to the
exact solution for different ranks (namely, r = 2, r = 4,
r = 8, and r = 16). It is assumed that initially all states
of the system are equally likely. For the blue (reference
partition scheme) we can see that in order to obtain an
error on the order of 1% (0.01) only rank 4 is required. To
reduce this error to 10−3 the rank has to be increased to
approximately 16. We also clearly see from the top-left of
Figure 2, by comparing e.g. the blue with the yellow par-
titioning, that choosing an appropriate partitioning can
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Figure 1: Boolean networks for the mTOR pathway model. We consider five different partitionings for the low-rank
algorithms (blue, green, purple, red, and yellow). How the partitioning is done influences how small the rank (which
is proportional to computational cost) can be chosen for a given accuracy. The blue and purple partitioning perform
best as they treat the important pathway from Q15382 to AKT with minimal error.
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significantly reduce the rank and thus computational ef-
fort. Since we chose the yellow network randomly, we do
not expect the partitioning to be competitive. In fact, as
we can see, even increasing the rank to 16 does not de-
crease the error below its initial threshold, while the other
partitionings see a significant reduction in the error. We
also note that minimizing the connections between two
partitions is not enough information in order to obtain
an ideal partitioning. This can be seen in the behavior of
the red and the green network. Both networks have five
edges that separate the two partitions, but their accuracy
is very different. The reason for this is that both the green
and the red network disturb the important pathway from
Q15382 to AKT in a significant way.

Steady states and dynamics of mTOR

The proposed dynamical low-rank integrator (see Meth-
ods for the algorithm) is able to obtain all the statisti-
cal information in a single simulation because it is di-
rectly solving the chemical master equation. The results
of the corresponding simulation are shown in in Fig 2
(top-right). We display only the steady states that have a
probability that exceeds 10−3 (20 in total for this model).
For very small ranks the approximation becomes inaccu-
rate and SS9 and SS10 are lost. However, even for r = 5
all of the relevant steady states are captured and starting
at rank r = 10 the probabilities match exactly those of
the reference solution.

In addition to the steady states, the dynamical low-
rank algorithm also provides information about which tra-
jectories lead to a given steady states as well as their prob-
ability. In order to study such time-dependent effects
the dynamical low-rank approach is particularly useful.
E.g. Consider the dynamics in Figure 3, where initially
only a few states have a non-zero probability. Moreover,
after some time the system settles in a small number of
steady states. Both of these would be well represented
by finite state projection. However, in the dynamics that
the system follows to reach these few steady states we see
an explosion in the number of states with non-zero prob-
ability. The dynamical low-rank approach, in contrast to
finite state projection (which here again would suffer from
the curse of dimensionality), is able to resolve these in-
termediate states without any increase in computational
cost as we can see from Figure 3.

Finally, we look at the dynamics predicted by the dy-
namical low-rank algorithm. In Figure 2 bottom we plot
the time evolution of mTOR for the different partition
schemes and different ranks for the uniform initial con-
dition (left) and the single initial condition (right). We
observe that the blue and purple partitions in particular
give results in agreement with the exact solution, even
for rank 4. For rank 16 all partition schemes display the
correct behavior.

We conclude that for appropriately chosen partition-
ings even a small rank (i.e. low computational cost) is suf-

ficient to obtain accurate results (both in terms of steady
states and dynamics). If, for some reason, a good par-
titioning is not available, the rank needs to be increased
which adds to the computational and memory cost.

Computational efficiency

The mTOR network described in some detail in the pre-
vious section with its 22 species is still a relatively small
model. Ultimately, we are interested in using the dynam-
ical low-rank approach for larger problems. In the sub-
sequent sections we will discuss two examples. A model
of pancreatic cancer with 34 species and a more detailed
model of apoptosis with 41 species. To illustrate the dra-
matic growth of memory requirements that results from
increasing the number of species let us assume that a di-
rect solver would only need to store a single input and out-
put vector (a highly questionable assumption as a real im-
plementation would most likely significantly exceed this
theoretical value). In this case, the pancreatic cancer
model would require 275 GB of main memory (RAM).
This renders it beyond the scope of a desktop worksta-
tions and would require parallelization to a distributed
memory supercomputer. For the apoptosis model consid-
ered the requirements would be even more severe. In fact,
35 TB of RAM would be required in this case, which is
clearly not feasible.

In Table 1 (top) we show that our C++ implementa-
tion of the low-rank algorithm drastically reduces these
requirements. For the pancreatic cancer problem running
simulations with r = 10, which gives very accurate re-
sults (see supplement2 mTOR.pdf), only 421 MB are
required which is a reduction by a factor of 650. For
the apoptosis model this is even more pronounced, as
we would expect. In this case 12 GB are required for
r = 10, a reduction by a factor of approximately 3000.
Together with the timings provided in Table 1 (bottom)
this clearly demonstrates that using the dynamical low-
rank approach proposed here enables us to easily conduct
these simulations on a desktop workstation within a rea-
sonable amount of wall clock time.

Asynchronous vs. synchronous updating for a
pancreatic cancer model

Results using the stochastic simulation algorithm (SSA)
can be obtained using two distinct update rules. In syn-
chronous updating all rules are applied at the same time
and thus all species are updated simultaneously. While
synchronous updating is commonly used, there is signifi-
cant debate as to its biological interpretation [31, 32, 33,
34]. Asynchronous updating has been proposed as an
alternative [35, 36, 37, 38, 39]. In asynchronous updat-
ing a single reaction is selected at random and then the
corresponding rule is applied. As such, it has a direct
interpretation in terms of chemical reactions and it has
been shown that asynchronous updated SSA in the limit
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Figure 2: On the top-left the error of the dynamical low-rank approximation for the five different partitionings of
the mTOR network is shown for ranks 2, 4, 8, and 16. The error is the maximum of the difference in probability
between the low-rank approximation and the exact solution at a given time. On the top-right the steady states with
probability larger than 10−3 are shown, sorted by their respective probability (red indicates on, blue indicates off).
The blue partitioning and an initial value in which all states are equally likely are used. On the bottom the time
evolution of the probability that mTOR is switched on is shown. The configuration on the left starts with an initial
configuration where mTOR initially is equally likely to be in an on or an off state. The configuration on the bottom
has mTOR initially switched off and after a transient phase that is mediated by a significant concentration of mTOR
results in a steady state where mTOR is switched off again (with high probability).

of a large number of samples gives the same dynamics as
the chemical master equation [40, 41].

Nevertheless, it has been argued that synchronous up-
dating is sufficient in order to obtain the relevant steady
states [42, 43, 44, 45, 46]. However, recent work, per-
formed using direct and SSA simulation, has called this
assertion into question [47, 48]. Our dynamical low-rank
approach gives us a way to easily investigate the full dy-
namics of large systems in this context. As it is based
on the chemical master equation, the dynamical low-rank
approach encodes the biologically relevant asynchronous
updating, while allowing us to obtain statistics over a
range of trajectories and initial values with a single run

of the simulation.
We illustrate this for pancreatic cancer. Studies have

found that overexpression of HMGB1 can lead to increased
proliferation and decreased apoptosis in cancer cells [49].
To model this, a single-cell Boolean network was intro-
duced in [50]. In this model HMGB1 acts as a parameter
that influences the ultimate fate of the cell. Since the
proteins P53, RAS, and INK4a are either mutated or lost
in pancreatic cancer (with a high probability), we will
only look at initial values with P53 and INK4a set to off
and RAS set to on. The suggested network partitionings
as well as additional simulation results can be found in
supplement3 pancreatic.pdf.
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problem r = 2 r = 5 r = 10 r = 20 r = 30 r = 50 direct simulation

mTOR 34 MB 38 MB 83 MB 191 MB – 113 MB > 66 MB
pancreatic 160 MB 267 MB 421 MB 671 MB – 1.4 GB > 275 GB
apoptosis 2.5 GB 6.1 GB 12 GB 24 GB 36 GB – > 35 TB

problem r = 2 r = 5 r = 10 r = 20 r = 30 r = 50

mTOR 0.6 s 1.1 s 3.4 s 4.3 s – 10 s
pancreatic 1 m 39 s 2 m 55 s 5 m 37 s 9 m 08 s – 28 m 47 s
apoptosis 13 m 08 s 33 m 21 s 1 h 06 m 33 s 1 h 39 m 06 s 2 h 39 m 35 s –

Table 1: Main memory (RAM) requirements for the mTOR pathway model (22 species), pancreatic cancer (34
species), and apoptosis (41 species) for the dynamical low-rank algorithm and different values of the rank r is shown
on the top. For comparison, a theoretical lower bound for the memory that a direct solver would require is also
provided (note, however, that an actual implementation will most likely significantly exceed this value). In all
simulations the reference partitioning (blue and setup a, respectively) is used. On the bottom, timing measurements
for the dynamical low-rank algorithm and different values of the rank r are presented. The problem is integrated
until a final time T = 1 and all simulations have been run on a Intel Core i9-7940X CPU with 14 cores and 64 GB
of DDR4 memory.

Figure 3: The number of states with probability larger
than 10−3 for the mTOR network is shown as a func-
tion of time. Initially we start with a deterministic initial
value (which is rank 1) and ultimately we end up in a
single steady state with high probability (again rank 1).
However, a large number of trajectories is generated in-
termittently in this dynamics.

In [50] mathematical techniques were used in order
to prove that certain properties of the Boolean network
are compatible with the experimental observations. For
example, it is shown that overexpression of HMGB1 will
necessarily result in steady states with Proliferate switched
on and Apoptosis switched off. However, these results
only apply to synchronous updating. The dynamical low-
rank approach, on the other hand, allows us to investi-
gate this for the chemical master equation (i.e. with asyn-
chronous updating). The time evolution of the probability

that the cell is in the Proliferate state or that Apoptosis
was triggered is shown in Figure 4. Note that we con-
clude from these results that in the asynchronous case
the dynamics are significantly more complicated. It is
possible, that apoptosis is triggered if HMGB1 is turned
on (the steady-state probability is approximately 16%).
Moreover, there is no difference in the ultimate cell fate
(i.e. with respect to proliferation or apoptosis) whether
HMGB1 is switched on or off. Thus, there is a significant
difference between the steady states in the asynchronous
case compared to the synchronous case that is discussed
in [50]. This casts significant doubt that the model (at
least in the asynchronous case) can describe the experi-
mentally observed effects accurately. This also highlights
that models derived in the synchronous case can not (at
least not without alteration) be considered a viable de-
scription of the relevant biology.

Our results show that even if one is only interested
in the steady states, the result for synchronous and asyn-
chronous updating may exhibit significant differences. The
dynamical low-rank approach is a tool particularly well
suited for obtaining steady states that are consistent with
the biologically more relevant asynchronous updating. The
most likely steady states are shown in Figure 4. We once
again highlight the fact that even a small rank (e.g. r = 5)
is sufficient to capture the steady states as well as their
probability very well.

Low-rank approximation and cell-death execu-
tion

To demonstrate the use of a low-rank approximation in
a real-world problem, we now consider a Boolean net-
work describing programmed cell death regulation taken
from [51]. In this model, competing signals for death and
growth and their interactions are modeled to explore the
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Figure 4: The dynamics of selected species for the pancreatic cancer model (left) and the steady sates (right) are
shown for HMGB1 switched off (top) and HMGB1 switched on (bottom). Steady states are sorted according to their
probability. Red represents that the species is on, blue represents that the species in this steady state is off. Note,
that the dynamics for Akt, p53, NFkB, Apoptosis, and Proliferate are exactly the same. The number of steady states,
however, are much reduced for HMGB=1 (the first couple of significant steady states have a much higher probability
than for HMGB=0 ).

mechanisms that ultimately determine the fate of the cell.
The model inputs are either a signal representing Tumor
Necrosis Factor (TNF) or a growth factor (GF) meant to
capture stimulus by a ligand such as Epidermal Growth
Factor. The main observation in the original paper, is
that setting GF to ”on” is ineffective in reducing apopto-
sis in isolation, but can reduce apoptosis execution when
combined with a TNF signal. This behavior can also
be observed in the simulation results presented in Figure
5. We therefore use this model as a reference model to
demonstrate the use of the dynamic low-rank approxima-
tion method introduced in the previous section.

As shown in Table 1, direct evaluation of the chemical
master equation with traditional methods would require

35 Terabytes of RAM and immense amounts of computer
time. However, dynamic low-rank approximation of the
problem with various ranks converts the problem from
intractable to easily accessible with modest computation
resources on a modern desktop or laptop computer.

Figure 5 shows the dynamics of DNAdam (which in
this model is a proxy for programmed cell death) along-
side five of the important proteins/genes. The full list of
species dynamics can be found in supplement4 apoptosis.pdf.
With TNF switched off the probability of Apoptosis is
approximately 60%. This is independent whether GF is
on or off. Switching TNF on increases the likelihood of
apoptosis dramatically. In this setting switching on GF
significantly suppresses apoptosis. This is consistent with
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previous results from the literature [51]. The mechanism
of the network can be understood from Figure 5 as fol-
lows: TNF directly affects a cascade that includes various
caspases that via Cas3 as the last link in the chain lead to
Apoptosis. If this cascade is active AKT (which is down-
stream of GF ) can act as an inhibitor to Cas9 breaking
the direct link between TNF and Cas3. Thus, if the cas-
pase cascade is active GF is able to suppress it. It has,
however, no significant effect on the baseline Apoptosis
rate (which is mediated via p53 ) and does not rely on the
caspase cascade.

Discussion

We have shown that our dynamical low-rank approach
based on partitioning the network into biological relevant
parts can achieve accurate results for the CME both in
terms of dynamics and steady state results. Since a small
rank (usually between r = 5 and r = 15) is sufficient,
this approach results in a drastic reduction in memory
and consequently allows us to solve large problems (such
as the apoptosis model with 41 species for which a direct
simulation would clearly be prohibitive) on a typical desk-
top workstation. We have also used our method to gain
insight into the nature of synchronous vs. asynchronous
updating, which is still heavily debated in the commu-
nity. Our work shows that for the studied pancreatic
cancer model neither the steady states nor the dynamics
under synchronous updating reflects well the observations
made by solving the chemical master equation (i.e. asyn-
chronous updating).

The most commonly used technique to address the
large computational cost of solving the chemical master
equation is Monte-Carlo simulation or SSA. In this ap-
proach trajectories in the space of possible configurations
are sampled and a statistical picture is obtained by re-
peated simulations. Thus, to obtain, e.g., low abundant
phenotypes requires the computation of an excessively
large number of trajectories. In contrast, our dynamical
low-rank approach is fully deterministic (i.e. noise free)
and provides the entire probability distribution with a
single simulation. This enables us to obtain an accurate
picture of the network dynamics and steady state behav-
ior, while still being relatively cheap from a computational
point of view. In addition, the proposed approach does
not show unfavorable scaling with the number of reac-
tions (as does SSA), but only with the dependent species
for each reaction (usually a small number). The approxi-
mation error in the dynamical low-rank approach is con-
trolled by how the network is partitioned, thus allowing
us to make use of expert knowledge to refine the result.
A possible alternative would be to use graph algorithms
in order to perform the partitioning automatically. This
will be the subject of future work.

Methods

Dynamical low-rank approximation

The chemical master equation describes the dynamics (i.e.
time evolution) of a probability distribution P (t, x1, . . . , xd).
In the case of a Boolean model we have xi ∈ {0, 1}. For
example, for the mTOR network (see Figure 1 for de-
tails) x1 specifies whether ERK is turned on (x1 = 1) or
off (x1 = 0). The value of P (t, x1, . . . , xd) specifies the
probability that our system is in the state (ERK, . . . ) =
(x1, . . . , xd) at time t.

The first step in the low-rank algorithm is to parti-
tion the set of species into two groups {x1, . . . , xm} and
{xm+1, . . . , xd} with m ≈ d/2. We then write the prob-
ability density function in the following matrix form (as-
suming a fixed t and suppressing the explicit time depen-
dence). For example, for a network with four species the
probability density function is thus written in the follow-
ing form

P =

 P (0, 0, 0, 0) P (1, 0, 0, 0) P (0, 1, 0, 0) P (1, 1, 0, 0)
P (0, 0, 1, 0) P (1, 0, 1, 0) P (0, 1, 1, 0) P (1, 1, 1, 0)
P (0, 0, 0, 1) P (1, 0, 0, 1) P (0, 1, 0, 1) P (1, 1, 0, 1)
P (0, 0, 1, 1) P (1, 0, 1, 1) P (0, 1, 1, 1) P (1, 1, 1, 1)

 .

This directly encodes the partitioning. The states with
different x1 and x2 are put in the same row and states
with different x3 and x4 are put in the same column. More
details can be found in supplement1 lowrank.pdf.

Storing the 2m × 2d−m matrix P still requires 2d en-
tries, which is prohibitive from both a memory and com-
putational point of view. To reduce the degrees of freedom
required, we use the low-rank approximation

P = USV T ,

where U is a 2m×r, V is a 2d−m×r, and S is a r×r matrix.
If the rank r is small, as is the case in many problems as
we have shown, then storing the low-rank factors U , V ,
S takes significantly less memory compared to storing P .
The essential idea of the low-rank approximation is to
describe the state of the system with the low-rank factors
only and to never form the full matrix P .

The chemical master equation is a dynamical system
and it is thus necessary to find a way to determine the
time evolution of the low-rank factors. Our approach
is based on early work in the quantum physics litera-
ture, see e.g. [14, 52]. For a mathematical treatment see
e.g. [53, 54]. In the seminal paper [12] the projector split-
ting integrator was introduced, which allows for a robust
treatment of the evolution equations associated for the
low-rank factors (i.e. no regularization is required). We
outline this approach in Algorithm 1

The dynamical low-rank algorithm can be applied to
a range of problems. The information on the specific
problem to be solved enters in the update ∆P (the or-
ange marked parts of Algorithm 1). The terms (∆P )V0,
UT

1 ∆P , etc. describe the projection of the update on the
tangent space of the approximation manifold. It is crucial
that orange-colored routines of the algorithm are com-
puted efficiently. Determining ∆P and then multiplying
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Algorithm 1: Projector splitting dynamical
low-rank algorithm. In each time step the low-
rank factors are updated according to the de-
scribed algorithm.

Input: U0, S0, V0

Output: U1, S1, V1

1 K1 = U0S0 + (∆P )V0;

2 QR decomposition to get U1Ŝ1 = K1;

3 S̃0 = S̃1 − UT
1 (∆P )V0;

4 L1 = V0S̃
T
0 + (UT

1 ∆P )T ;

5 QR decomposition to get V1S
T
1 = L1

with V0, for example, would require assembling the matrix
∆P which is prohibitive. The main insight required in or-
der to do this efficiently is that for the chemical master
equation each reaction can be treated independently and
usually only depends on a small number of species. More
details are provided in supplement1 lowrank.pdf.

Code availability & validation

The code used to run the simulation and generate the
plots is available at https://bitbucket.org/mprugger/

low_rank_cme.
We have compared the results obtained with the dy-

namical low-rank implementation with a direct simula-
tion method for a range of smaller networks (including
the mTOR pathway model considered in this paper). In
addition, as part of the code, a number of automated unit
tests are available.
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Figure 5: On the top the dynamics of selected species for the apoptosis model is shown for the four different
configurations of TNF and GF (i.e. TNF, GF set to 00, 01, 10, and 11). On the bottom the steady states are
depicted corresponding to the same four configurations (from top-left to bottom-right). The steady states are sorted
according to their probability. Red represents that the species is on, blue represents that the species in this steady
state is off. 12
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