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Abstract

Purpose: In positron emission tomography (PET) quantification,
multiple pharmacokinetic parameters are typically estimated from
each time activity curve. Conventionally, all but the parameter
of interest are discarded before performing subsequent statistical
analysis. However, we assert that these discarded parameters also
contain relevant information which can be exploited to improve
the precision and power of statistical analyses on the param-
eter of interest. Properly taking this into account can thereby
draw more informative conclusions without collecting more data.
Methods: By applying a hierarchical multifactor multivariate Bayesian
approach, all estimated parameters from all regions can be anal-
ysed at once. We refer to this method as PuMBA (Parameters
undergoing Multivariate Bayesian Analysis). We simulated patient-
control studies with different radioligands, varying sample sizes
and measurement error to explore its performance, comparing the
precision, statistical power, false positive rate and bias of esti-
mated group differences relative to univariate analysis methods.
Results: We show that PuMBA improves the statistical power for
all examined applications relative to univariate methods without
increasing the false positive rate. PuMBA improves the precision
of effect size estimation, and reduces the variation of these esti-
mates between simulated samples. Furthermore, we show that PuMBA
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yields performance improvements even in the presence of substan-
tial measurement error. Remarkably, owing to its ability to lever-
age information shared between pharmacokinetic parameters, PuMBA
even shows greater power than conventional univariate analysis of
the true binding values from which the parameters were simu-
lated. Across all applications, PuMBA exhibited a small degree of
bias in the estimated outcomes, however this was small relative
to the variation in estimated outcomes between simulated datasets.
Conclusion: PuMBA improves the precision and power of sta-
tistical analysis of PET data without requiring the collection of
additional measurements. This makes it possible to study new
research questions in both new and previously collected data.
PuMBA therefore holds great promise for the field of PET imaging.

Keywords: Positron emission tomography, Bayesian statistics, Precision,
Power, Pharmacokinetic modelling

1 Introduction

Positron emission tomography (PET) is an in vivo neuroimaging method with
high biochemical sensitivity and specificity. It is an essential tool for the study
of the neurochemical pathophysiology of psychiatric and neurological disease,
as well for pharmaceutical research. However, PET is a very costly and inva-
sive procedure that involves exposing participants to radioactivity, thereby
limiting the feasibility of large studies. As a result, low statistical power is a
common obstacle encountered for studying clinically relevant research ques-
tions. Efforts to improve the power of PET imaging have typically focused on
the development of new radiotracers with improved sensitivity as well as new
pharmacokinetic (PK) models with greater accuracy; more recently there have
been data standardisation and sharing initiatives to foster inter-group collabo-
ration and increase sample sizes [1–3]. However, there has been comparatively
little attention paid to the development of more nuanced statistical analysis
of PET data for the same purpose.

PET quantification involves fitting PK models to a series of radioactivity
concentrations in a region of the brain over time, called a time activity curve
(TAC), most often using nonlinear least squares (NLS) optimisation. These
models typically consist of between 1 and 5 parameters of which one (or a
function of two or more parameters) is used as measure of the binding of the
radioligand to the target protein. Once the TAC data from all regions and
all subjects have been fit using the selected model, the parameter estimates
reflecting target binding for each region and subject are then entered into
a subsequent statistical model, e.g., a C-test comparing patients and control
subjects, while the other estimated parameters are not taken into account in
the analysis.
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We recently introduced SiMBA [4], which makes use of Bayesian hier-
archical multifactor modelling to fit PET TAC data and perform statistical
analysis simultaneously across both individuals and regions. The primary dis-
advantage of this technique is that it is highly computationally intensive, and
currently only implements the two-tissue compartment model [5]. However, the
model improves the estimation of binding parameters, and yields substantial
advantages in terms of increased precision and statistical power for statistical
comparisons. Intriguingly, in simulation studies we found that the statistical
power of SiMBA for detecting group differences was even greater than for uni-
variate statistical analysis performed on the “true” binding values from which
the TACs were generated. This suggests that even if binding measures could
be measured exactly for each subject, it would still not be possible to attain
the statistical power that we observed with SiMBA.

Upon further inspection, we discovered that this performance gain could be
explained by the multivariate modelling strategy employed in SiMBA. In other
words, instead of extracting only a single parameter as a measure of binding,
statistical analysis was performed using all estimated parameters simultane-
ously, thereby allowing the model to exploit shared information among all the
PK parameters. This general concept is demonstrated in Figure 1: the shape
of the 2-dimensional density plot of the two variables is highly dependent upon
their correlation with one another. If two parameters are highly correlated
with one another, then the conditional variance of each parameter at any given
value of the other is considerably smaller. Hence, if the estimation of both
variables and their correlation with one another are sufficiently precise, then
the conditional variance of estimated parameters can be reduced to below that
of the marginal true values. In other words, by exploiting shared information
between parameters, even if those parameters are not directly relevant to the
statistical contrast of interest, the performance of the statistical model can be
improved.

Fig. 1 Comparisons of marginal and conditional densities for multivariate normal dis-
tributions. Left: Marginal densities of variables X and Y after standardisation. Middle:
Multivariate contour plots of the two-dimensional densities of X and Y, with either no cor-
relation or a strong correlation between them. Right: Conditional densities of variable Y
conditional on X when there is either no correlation or a strong correlation between variables
X and Y.
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In this study, we evaluate whether applying a multivariate statistical analy-
sis to PET pharmacokinetic outcome parameters estimated in the conventional
manner using NLS estimation can also provide inferential advantages, with-
out needing to fit the full SiMBA model to the dynamic TAC data. We refer
to this approach, by analogy with SiMBA, as Parameters undergoing Multi-
variate Bayesian Analysis: PuMBA. The computational requirements for this
modelling strategy is on the order of minutes on a single core, compared with
days for SiMBA, and can readily be adapted to a wider range of pharmacoki-
netic models, thereby facilitating its application to a broader range of research
questions. PuMBA may therefore serve as a convenient intermediate substitute
for a full SiMBA analysis.

2 Methods

2.1 Model Specification

PuMBA can be described as a multivariate hierarchical multifactor model. It
is multivariate in that there are multiple dependant variables estimated at
once — in contrast with a multivariable model in which there are multiple
independent variables. It is hierarchical in that it makes use of “partial pool-
ing”. This means that parameters are modelled as originating from a common
distribution, and are therefore shrunk towards the global mean in an adaptive
regularisation process. This shrinkage allows the model to take advantage of
similarities between individuals within the dataset to improve its inferences
[6–8]. Finally, PuMBA is multifactor in that there are multiple hierarchies at
once within which we perform partial pooling [9].

For PuMBA, as for SiMBA, linear models are defined for each of the PK
parameters, defined by an intercept, covariates, and partially pooled deviations
from the expectation value for each individual 9 and region :, for each of the
< PK parameters. We define a global mean intercept (U) for each parameter,
representing the mean value for that parameter. For each PK parameter 8, the
influence of covariates of individual 9 are expressed by a covariate vector (V8)
multiplied by a covariate matrix (-8, 9). These covariate matrices are defined
independently for each PK parameter, and can include variables such as age,
sex, or group membership. Lastly, we define an additive sequence of differences
for each of the separate hierarchies [9]: across individuals (g9), across regions
(h:), as well as a final term for residual variation (n 9 ,:).

\8, 9 ,: = U8 + - ′8, 9 V8 + g8, 9 + h8,: + n8, 9 ,:
[g1, 9 , . . . , g<, 9 ] ′ ∼ MVNormal(

[
0
]
,ΣSubject)

[h1,: , . . . , h<,: ] ′ ∼ MVNormal(
[
0
]
,ΣRegion)

[n1, 9 ,: , . . . , n<, 9,: ] ′ ∼ MVNormal(
[
0
]
,Σresidual)
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This defines the generalised model framework, in which estimation is per-
formed using partial pooling for all parameters across all hierarchies, resulting
in some degree of shrinkage towards the mean. In practice, shrinkage of most
parameters towards a shared mean is desirable, however regional differences
in certain parameters are so heterogeneous that a common distribution can-
not be assumed owing to regional neuroanatomical differences. For this reason,
blood delivery and binding parameters are estimated independently from one
another without pooling, i.e., using fixed effects. More details are provided in
the following section.

2.2 Model Implementation

Firstly, all PK parameters are transformed to their natural logarithms. This
serves several purposes. Firstly, this naturally constraints all parameters to
be positive, corresponding to their theoretical range as biological quantities
and rate constants. Secondly, this serves to define additive differences within
the linear model as proportional differences in the original quantity, since bio-
logical differences or changes in PET are typically assumed to exhibit similar
proportional, as opposed to absolute, differences between different regions or
individuals. Lastly, this serves to stabilise the variance between regions: in
PET, we typically make the assumption that the proportional variance between
regions is relatively similar.

The input parameters for PuMBA are the PK parameters estimated by
the kinetic model from the TACs using NLS. For the two-tissue compartment
(2TC) model [10], the model parameters were  1, +ND, �%P, and :4. For the
1TC [10], we used  1 and +T. Finally, for the SRTM [11], we used '1, : ′2 and
�%ND. We selected parameterisations of the model parameters in such a way
as to improve the ease by which priors could be defined. To this end, for each
model we defined a binding parameter and a blood delivery parameter, and
defined the remaining PK parameters in such a way as to maximise the extent
to which shrinkage towards a common mean value is most theoretically moti-
vated, i.e. which can be considered as originating from a common distribution.
For the 2TC, �%P was selected over �%ND, as the former is more identifiable
using NLS and in simulations, estimated values show stronger correlations with
the true values compared to �%ND. For SRTM, we used : ′2 rather than :2 as
the former parameter is a property of the reference region and should theo-
retically be fairly consistent between regions within each individual, similar to
how this parameter is set to a global estimate using SRTM2 [12].

For the definition of covariate matrices for each parameter, this task can
depend both on the tracer as well as the sample itself. For instance, age might
be a predictor for both blood delivery and binding. On the other hand, patient
status might only be included as a predictor for binding - unless the condition
is also thought to affect regional blood delivery, in which case patient status
might also be included as a predictor for blood delivery. Careful judgement
should be applied to this task, although model comparison methods can also
be helpful [6, 13, 14].
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2.3 Model Fitting

We make use of multivariate Bayesian hierarchical multifactor modelling to
fit the model described above using Markov Chain Monte Carlo (MCMC)
sampling. We defined the model using the STAN probabilistic programming
language [15], which applies Hamiltonian Monte Carlo (HMC), with code
generated using brms 2.15.0 [16] using R version 4.0.5 (Shake and Throw) [17].

Priors were specified in such a way as to exclude parameter values which
could be deemed as unlikely a priori based on domain knowledge, but not to
greatly inform the model. We used moderately informative normal priors for
the intercept (U) terms, and zero-centred half-normal regularising priors for
the standard deviation of all pooled parameters. LKJ [18] priors were defined
for correlation matrices. More details are provided in Supplementary Materials
S1.

NLS parameter estimation was performed using kinfitr [19, 20] for the
one-tissue compartment model (1TC) and the simplified reference tissue model
(SRTM) [11]. For the two-tissue compartment model (2TC), the model was
fitted directly using NLS using an analytical convolution of the arterial input
function with the impulse response function, as previously described [4], solving
for  1, +ND, �%P and :4. In all cases, weights were estimated using the default
kinfitr weighting scheme.

2.4 Simulations

For the purpose of assessing the performance of this modelling approach,
we generated simulated datasets to compare the proposed methodology with
that of the conventional approach. Simulation parameters were generated
based on the posterior mean values of parameters estimated from empirical
data by fitting the relevant model to the data and simulating from the esti-
mated parameters. The datasets used were as follows: 97 individuals measured
with [11C]WAY100635 [21], 16 measurements from 8 individuals measured
with [11C]ABP688 [22], 47 measurements with [11C]DASB from 33 individu-
als [23, 24], and 23 individuals measured with [11C]GR103545 [25]. Simulated
datasets had between 10 and 100 individuals in each of a patient and a con-
trol group, i.e. between 20 and 200 individuals in total, with between 8 and 9
regions for each ligand (more details in Supplementary Materials S2).

We simulated new sets of individuals by simulating from the estimated
multivariate and univariate normal distributions describing variation between
individuals and regions within individuals. When simulating regional variation,
we used the estimated values for each region, rather than simulating from the
estimated distributions. In this way, we simulate from the same set of regions,
but within a unique set of individuals, with a unique set of individual variations
at the regional level.

We set global group differences in the natural logarithm of the binding
parameter to be equal to 0.1, corresponding to a 10.5% difference between
groups, and separately to zero to assess the false positive rate. Simulated data
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were generated without any effects of age or sex, and so these covariates were
not included in the PuMBA models applied to the simulated data. The uni-
variate analyses performed included C-tests and linear mixed effects (LME)
models with the natural logarithm of the parameter representing ligand bind-
ing as the dependent variable, considering group and region as fixed effects
and subject as the only random effect. The C-tests were performed indepen-
dently for each region of the dataset. LME analysis was performed across all
regions using lme4 [26].

We evaluated power and false positive rates by fitting logspline density
functions [27] to the upper and lower bounds of the 95% confidence/credible
intervals of the estimated difference between groups. We then assessed the
cumulative density of these fitted density functions above and below zero,
which we could use to estimate the proportion of simulated datasets for which a
the 95% confidence/credible interval would overlap with (or not overlap with)
zero. We have shown previously that this method closely aligns with empirical
estimates, and allows for the estimation of power in small numbers of trials [4].

2.4.1 TAC Simulations

For TAC simulations, we first fit the TAC data using SiMBA, and then used
the posterior mean values of the SiMBA fit to simulate new TAC data. To
model these data, the TACs were first fitted using NLS to generate PK param-
eters, which served as the input to the LME and PuMBA models. Data were
generated with the standard deviation of the measurement error equal to
that estimated in the original sample. We also considered half, double and
quadruple the original measurement error to assess the sensitivity of the dif-
ferent approaches to the magnitude of the measurement error. We assessed
the performance of these approaches using 500 simulated datasets for each
condition.

We also assessed the performance of PuMBA in the same simulated TAC
datasets for each condition as examined previously with SiMBA [4], in order
to compare the performance of PuMBA and SiMBA in the same data. In
this dataset, group differences were equal to 0.182 in the natural logarithm of
�%P, corresponding to a group difference of 20%. This included 50 simulated
datasets for each condition owing to the much-greater computational burden
of SiMBA.

The simulation parameters are provided in Supplementary Materials S2.
The binding parameter for which group differences were simulated and
estimated, was �%P.

2.4.2 Parameter Simulations

While the TAC simulations above were based on parameters estimated using
SiMBA, SiMBA only currently applies the 2TC. For SRTM and 1TC, we there-
fore simulated data from estimated PuMBA parameters instead. To this end,
the empirical TAC data were first fitted using NLS to generate PK parame-
ters, which were then modelled using PuMBA. The posterior mean values of
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the PuMBA model fit were used to simulate new sets of parameter estimates.
PuMBA parameters, however, do not allow for the discrimination of variance
originating from error in the estimation of the PK parameters using NLS, and
variation at the region-within-individual level: both of these sources of varia-
tion are part of the residual variance, n . For this reason, simulating TAC data
from PuMBA parameters and subsequently estimating PK parameters from
these TACs using NLS would effectively amount to doubling the influence of
measurement error. It would be present firstly in the estimated n matrix from
the PuMBA model fitted to the empirical data, as well as from the estimation
of the PK parameters from the generated TACs themselves. For this reason, for
SRTM and 1TC, we estimated only parameter data from the PuMBA parame-
ters, and not full TACs from these parameters. To model these data, PuMBA,
LME and C-tests were applied to the simulated parameter estimates, using 250
simulated datasets for each condition.

We made use of data from two radioligands for each model: for the one tis-
sue compartment (1TC) model, we used [11C]DASB and [11C]GR103545; and
for the simplified reference tissue model (SRTM), we used [11C]WAY100635
and [11C]DASB with cerebellar white and grey matter respectively as reference
region corresponding with previous recommendations [28–31]. The simula-
tion parameters are described in Supplementary Materials S2. The binding
parameter used for each model in which group differences were simulated and
estimated, were �%ND for SRTM and +T for the 1TC model.

3 Results

3.1 TAC Simulations

For the TAC simulations, we compare the performance of PuMBA to that of
LME models applied to the estimated �%P values. For comparison, we also
applied LME to the “true” �%P values from which the TACs were simulated,
i.e. representing the “ideal” case in which binding parameters are perfectly esti-
mated, incorporating only individual-level and regions-within-individual-level
variation. The results of these simulations are shown in Figure 2. Naturally,
we see that the power of both LME and PuMBA are decreased with increasing
measurement error, although these decreases are of less consequence for LME
compared to PuMBA. Although concerns have previously been raised about
the accuracy of direct quantification of �%P [32], i.e. without the use of a ref-
erence region, we observe that LME applied to the estimated �%P values with
the original measurement error exhibits similar or only marginally reduced
power compared to when LME is applied to the true values. This supports the
use of �%P as a sufficiently good index of specific binding for these two tracers.

In all cases, the power of PuMBA exceeds that of the LME model for
the same degree of measurement error. In most circumstances, the power of
PuMBA even exceeds that of applying LME to the “true” �%P values, i.e.
assuming perfect quantification. PuMBA analysis yielded lower standard error
(Figure 2B) as well as lower standard deviation between simulated datasets
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(Figure 2C and Supplementary Materials S3) of the estimated group differ-
ences between simulations for relative to LME. These imply respectively that
PuMBA estimates exhibit greater precision, or certainty, of the magnitude of
the group differences; and that PuMBA estimates are more consistent between
simulated samples, i.e. differ less from sample to sample. Decreases in the
standard error of estimates of group differences without correspondingly large
decreases in the standard deviation of these estimates across samples would
result in an increase in the false positive rate in the presence of no group dif-
ferences. However, we see no evidence for any increase in the false positive rate
when PuMBA is applied to data simulated with no group differences: in fact
PuMBA exhibits a lower false positive rate on average for both tracers, and
for every level of measurement error (Supplementary Materials S3).

Both LME and PuMBA exhibit a small degree of bias in the estimated
group differences (Figure 2C) presumably owing to inaccuracies in the PK
parameters estimated using the NLS model fitting procedure, i.e. prior to the
parameters being entered into the statistical models. For [11C]ABP688, there
was a tendency to underestimate group differences, while for [11C]WAY100635
there was a tendency to overestimate group differences. In all cases this bias
was greater for PuMBA than for LME, suggesting that PuMBA exacerbates
this bias. The bias was also more pronounced both in cases of smaller sam-
ple sizes and greater measurement error. For [11C]ABP688 with the original
measurement error, mean estimates across the simulated datasets of the true
difference of 0.1 were 0.066 and 0.080 for PuMBA and LME respectively
for n=10; while for n=100 the mean estimates were 0.084 and 0.089. For
[11C]WAY100635 with the original measurement error, the mean estimates
were 0.138 and 0.104 for PuMBA and LME respectively for n=10, while for
n=100 they were 0.105 and 0.101, respectively. In all cases however, the bias
of the estimates was smaller than the sample-to-sample variation: the bias of
the group difference estimates relative to the true value was never greater than
65% of the standard deviation of these estimates across simulated datasets
(median: 41% for [11C]ABP688 and 23% for [11C]WAY100635; see Supplemen-
tary Materials S3). This implies that the combined effects of sampling error
and measurement error are of greater consequence for the estimation of group
differences compared to the bias in the PuMBA estimate for any given sample.
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Fig. 2 TACs were simulated with the standard deviation of measurement error equal to
the same, half, double or quadruple the estimated measurement error in the original data,
represented with colours, and modelled with LME or with PuMBA. A. Power as a function
of sample size for a 0.1 difference between patients and controls. The black dashed line
represents the power of the LME analysis applied to the true values of �%P from which
the simulations were generated. B. Mean standard error of the estimated group differences
across the simulated datasets. The black dashed line represents the mean standard error of
the LME analysis applied to the true values of �%P. C. Mean estimated group differences
across simulated datasets, with the true difference of 0.1 shown with a dashed black line. The
error bars represent the standard deviation of estimated group differences across simulations,
shown only for the original measurement error.
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3.1.1 Comparison with SiMBA

In order to directly compare the performance of PuMBA with SiMBA using
the same priors, we applied both models to the same simulated datasets as
described in our previous report [4]. Furthermore, in order to maximise the
comparability of the outcomes, we estimated the same binding parameter,
�%ND (as opposed to �%P as before) using both PuMBA and SiMBA with
exactly the same priors on all shared parameters. Firstly, MCMC sampling
time is much more rapid for PuMBA compared to SiMBA (Figure 3A), showing
that fitting a PuMBA model is completed approximately 4000 times more
quickly compared to SiMBA for the same number of iterations. We show that
SiMBA outperforms PuMBA, with greater power (Figure 3B), lower standard
error (Figure 3C), lower standard deviations of estimated group differences
(Figure 3D), and a smaller degree of bias (Supplementary Materials S4). Lastly,
while PuMBA and SiMBA both outperform univariate LME analysis of the
true values of �%ND underlying the simulations in power, standard error or
standard deviation across simulations, they do not outperform a multivariate
PuMBA model fit to the true values of all four of the PK parameters.

3.2 Correlation Matrix Recovery

Since PuMBA exploits the correlations between PK parameters, it is important
to consider how well these correlations are estimated and, as a result, to what
extent the bias or variance in these estimates affect the quality of PuMBA infer-
ences, especially the false negative rate. To this end, we extracted the estimated
correlation coefficients from the TAC simulations described in section 3.1 to
compare with the corresponding matrices that were set for the simulation.
We also simulated additional uncorrelated data in which the parameters were
generated using multivariate distributions but with the correlations between
parameters removed, i.e. with diagonal variance-covariance matrices. Using the
uncorrelated simulation parameters, we simulated both TAC data and param-
eter data to examine the influence of PK parameter estimation from TACs.
More details are provided in Supplementary Materials S5.

For simulated uncorrelated parameter data, estimated correlations were
centred around zero for all parameter pairs, demonstrating that PuMBA
itself is capable of recovering the parameter intercorrelations accurately in the
absence of any bias introduced during PK parameter estimation from TACs.
However in simulated TAC data, the recovery of the parameter intercorrela-
tions was reasonably poor for most pairs of PK parameters in the individual
(g) correlation matrices, both for the correlated and uncorrelated data, in con-
trast to SiMBA [4]. Together, these results imply that the poor recovery of the
true parameter correlations is primarily due to bias in the estimation of the
PK parameters from TACs using NLS.

Despite the poor recovery of parameter intercorrelations, application of
PuMBA to uncorrelated data resulted in higher mean standard error and
standard deviation of group difference estimates, and reductions in statistical
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power relative to the original correlated data. In the correlated simulations,
estimated correlation coefficients were closer to the true simulated values
for [11C]ABP688 than for [11C]WAY100635, which may explain the greater
improvements performance observed with PuMBA relative to LME with
[11C]ABP688. Together, these results suggest that the power and precision
of PuMBA estimates are influenced by the true underlying parameter inter-
correlations, and are likely improved when these intercorrelations are more
accurately estimated.

PuMBA therefore exploits parameter intercorrelations to improve its infer-
ences, yet these correlations tend to be estimated relatively poorly. We were
concerned that this might imply that, in the absence of true correlations, that
the artefactual correlations arising from parameter estimation bias might yield
a higher risk of false positive conclusions. However, for both [11C]ABP688 and
[11C]WAY100635 we observed no apparent increase in the false positive rate
in either of the uncorrelated datasets relative to either PuMBA applied to the
correlated datasets or to LME (Supplementary Materials S5).

3.3 Parameter Simulations

In order to test whether PuMBA can also be applied for other kinetic mod-
els which cannot yet be modelled using SiMBA, we performed additional
parameter-only simulations using the 1TC and SRTM, as described in section
2.4.2. The results of these simulations are shown in Figure 4, in which we
observe increases in power for linear mixed effects (LME) modelling rela-
tive to C-tests, and improved power for PuMBA relative to LME. We observe
larger improvements in power for SRTM, while improvements in power for the
1TC were more modest. In all cases, these improvements in power were not
associated with any increase in false positive rate (Supplementary Materials
S6).

When examining the estimated group differences, we observed lower
standard error as well as lower standard deviation of the estimated group dif-
ferences between simulated datasets for LME relative to C-tests, as well as for
PuMBA relative to LME. While we observed no bias in the mean estimated
group differences for C-tests or LME, PuMBA showed slightly biased estimates
in all cases, with more bias in smaller sample sizes (Supplementary Materials
S6).
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Fig. 3 PuMBA and SiMBA were applied to the same simulated datasets in each condi-
tion, with identical priors on all shared parameters to compare their performance. Note that
the measurement error sigma is equal to approximately double the original measurement
error [4]. Black lines refer to the performance of these models applied to the true values
underlying the simulations: univariate LME applied to the binding parameter, and multi-
variate PuMBA analysis applied to the true values of all the pharmacokinetic parameters.
A. MCMC sampling times for PuMBA and SiMBA per iteration. B. Power as a function
of sample size for a 0.182 (20%) difference between patients and controls. The shaded area
represents the upper and lower bounds of the 95% confidence interval obtained using boot-
strap resampling. C. Standard error of group difference estimates as a function of sample
size. D. Mean estimated group differences across simulated datasets, with the true difference
of 0.182 shown with a dashed black line. The shaded area represents the standard deviation
of estimated group differences across simulations for each approach, with their individual
boundaries emphasised with dotted lines.
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Fig. 4 Power as a function of sample size for a 0.1 difference between patients and controls.
The models are the one-tissue compartment model (1TC) and the simplified reference tissue
model (SRTM).
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4 Discussion

In this study, we show that a multivariate statistical analysis of all estimated
PET pharmacokinetic parameters using PuMBA yields significant inferential
advantages over univariate analysis of the parameter of interest performed
without considering the other parameters. We also show that PuMBA can be
fruitfully applied even when there is a substantial degree of measurement error.
As would be expected, because PuMBA is applied to parameter estimates, it
cannot outperform a similar analysis which is conducted on the full TAC data
in which quantification and statistical analysis are both able to benefit from
the hierarchical multivariate framework, i.e. SiMBA. However, PuMBA models
can be fitted in minutes, in contrast to days required by SiMBA. Furthermore,
PuMBA can be directly applied to data from more PET pharmacokinetic
models as a substitute for conventional statistical analysis approaches, while
SiMBA requires the user to incorporate the pharmacokinetic model itself into
the Bayesian model, which can be challenging.

While PuMBA can more easily be applied to a wider range of pharma-
cokinetic models than SiMBA, this does not necessarily imply that it can be
applied when the identifiability of PK parameters for a given model and tracer
is poor. For instance, the identifiability of the 2TC is reasonably good for
[11C]WAY100635 and [11C]ABP688, in contrast with [11C]GR103545 for which
the 2TC is rather poorly identified [33]. On the other hand, SiMBA stabilises
the fitting of the PK model itself using the hierarchical multifactor framework,
and therefore has the additional advantage of improving model identifiability:
this is not a property of PuMBA. Hence, while SiMBA is more generalisable
in the sense that it makes the application of the more complex models possible
for a wider variety of PET tracers for which they are otherwise insufficiently
identifiable, PuMBA is more generalisable in the sense that it can, without
any substantive modifications, be applied to data originating from a wider
assortment of PK models, including reference tissue models – provided that
the parameters are sufficiently identifiable.

Since PuMBA, in contrast to SiMBA, cannot improve the estimation of the
PK parameters themselves from the NLS model, its function is only to take
advantage of information shared between individuals, regions and parameters.
Both LME and PuMBA make use of partial pooling, and both make use of the
same predictors for the binding parameter. Thus, the only difference between
the performance of these models is due to the multivariate partial pooling strat-
egy applied in PuMBA, in contrast to the univariate partial pooling applied
in LME. Moreoever, by exploiting the relationships between PK parameters,
PuMBA exhibits greater precision and power compared to a univariate LME
analysis of even the true binding parameters from which the simulations were
generated, i.e. as if binding could be estimated perfectly. This can be described
with an analogy. Consider that we wish to compare binding potential of two
groups of individuals. We have the option of either measuring all of our par-
ticipants in a noisy PET system and modelling their resulting TACs — or of
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being informed of each individual’s true binding potential value by an omni-
scient oracle. Counter-intuitively, the present results suggest that we ought to
shun the oracle, and perform the PET study as planned using PuMBA, or
SiMBA, for the statistical analysis. However, if the oracle could be persuaded
to provide us with the true values of all of the PK parameters, then of course
it would be advantageous to accept the oracle’s help. This corresponds to the
comparisons of SiMBA and PuMBA with the solid and dashed black lines
in Figures 3B–C. In other words, by discarding the otherwise irrelevant PK
parameters during univariate statistical analysis of the parameter representing
target binding, we effectively remove valuable context for our model. We are
therefore guilty of floccinaucinihilipilification when it comes to the additional
estimated PK parameters from our models.

It cannot be assumed that a multivariate analysis will improve the power
of any given statistical comparison. With reference to Figure 1, it is clear
that with sufficiently strong correlations between parameters, and sufficiently
precise estimates of the parameters and their correlations with one another,
the variance of the conditional distribution of an estimated parameter can
be reduced to below that of the marginal distribution of the true parameter.
However, in the presence of high uncertainty, small samples, or low correla-
tion between variables, this potential gain is likely to be reduced: we see some
evidence of this with = = 10 in Figures 2A and 3B. We also see that PuMBA
yielded greater improvements in precision and statistical power when the cor-
relation matrices were more accurately estimated in [11C]ABP688 compared
to [11C]WAY100635.

In all applications, PuMBA exhibited bias in its group difference estimates,
particularly for smaller sample sizes and with larger measurement error, for
instance in Figure 2C. We find that this bias was never greater than 65% of the
standard deviation of sample-to-sample estimate variability, which implies that
even in the worst case scenario, the estimated differences for [11C]ABP688 will
still be greater than the true value approximately 25% of the time given infinite
replications of the same study. Although the magnitude of this bias is not large,
it is still important to understand its source. One factor is that PuMBA makes
use of a regularising prior for the estimation of group differences, which makes
the model skeptical of large differences between groups, effectively shrinking
the estimated group differences towards zero. However, for [11C]WAY100635,
we observe that the bias is positive, which is incompatible with shrinkage being
solely responsible for the observed bias. This corresponds with the observation
that the LME group differences are also biased in the same direction as the
PuMBA estimates in the TAC simulations, but to a smaller degree in each
case. This suggests that the bias is also partially explained by identifiability
issues in the PK parameter estimation from the TAC data using NLS, and that
bias in the estimation of the binding parameter is also accompanied by bias
in the estimation of the other model parameters in a systematic fashion. This
corresponds with the results of the uncorrelated data simulations, in which
correlations were partially induced between parameters by the PK parameter
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estimation from TACs. It is noteworthy however that PuMBA exacerbates this
bias, presumably owing to its estimation of the correlations between the PK
parameter estimates with potentially induced correlations. Finally, for 1TC
parameter simulations of [11C]DASB, there is positive bias in small sample
sizes, which cannot be explained by either of the above reasons. This suggests
that the identifiability of the PuMBA model itself may also play a role in the
observed bias, particularly in small sample sizes. For these reasons, the precise
magnitude of PuMBA estimates should be interpreted with some degree of
care particularly in applications for which the identifiability of the individual
parameters is poor, or in small sample sizes.

While PuMBA is much faster to estimate and easier to implement com-
pared to SiMBA, it does still require additional effort from the analyst
compared to conventional approaches. Firstly, we would advise paying more
attention to the estimated parameters generated by the NLS procedures prior
to analysis: even when estimates of binding potential, for example, may appear
reasonable, estimates for some of the other parameters could be problem-
atic. For this reason, we made use of reasonably conservative upper and lower
limits when fitting the NLS models, coupled with estimating the fit with
multiple starting points [34] in order to minimise the chance of our model yield-
ing parameter estimates obtained from a local minimum. Another additional
requirement of PuMBA compared to conventional approaches is that, because
all parameters are included in the PuMBA model, the analyst must define lin-
ear model specifications for each of them. Age, for instance, might affect blood
delivery, or the kinetics of the radioligand in a reference tissue, even if it does
not affect the binding potential for a particular target. Furthermore, because
PuMBA is a Bayesian model, prior distributions need to be defined not only
for all covariates, but for all parameters in the model. Using PuMBA there-
fore requires more care and consideration than conventional approaches, and
in order to be applied most effectively, we recommend collaboration between
researchers with domain expertise and technical expertise. This allows for the
incorporation what is already known about the relevant clinical and biological
constraints into the specification and priors of the model for a given research
question.

One interesting observation which emerges from the fitting of all of the
datasets is the fact that inter-individual variation in blood delivery ( 1 and '1)
and binding (+T, �%P and �%ND) were positively correlated with one another
across all models and tracers, using both PuMBA and SiMBA (Supplemen-
tary Materials S2). Importantly, these correlations refer to the correlation of
partially pooled estimates (i.e. random effects) of the PK parameters at the
individual level, and not to the parameters estimated for each individual TAC.
While PuMBA may be more sensitive to issues of poor identifiability when
fitting the PK model, SiMBA ought to be more robust to this possibility. The
exact meaning of this observation is beyond the scope of the current investi-
gation, and perhaps cannot be understood using pharmacokinetic modelling
alone. However, this raises questions about how independent the parameters



18 Multivariate Analysis of PET Pharmacokinetic Parameters

of these models are, or ought to be between individuals; as well as whether
this has implications for how these parameters can be understood.

In conclusion, PuMBA allows researchers to make more precise and pow-
erful statistical inferences, and thereby extract more information from a given
dataset without needing to collect any additional information. PuMBA takes
in the order of minutes to fit on a single computer core and can more easily
be applied to a wider range of pharmacokinetic models than SiMBA. PuMBA
may therefore serve as a convenient intermediate substitute for a full SiMBA
analysis, and a useful tool for statistical analysis of PET data in general. Poten-
tial avenues for future research include examining the similarity of estimated
parameter intercorrelations between different datasets collected by different
groups, assessing the factors which contribute to the differential performance
of PuMBA in different settings, as well as whether PuMBA could be applied
simultaneously to data collected using multiple radioligands in the same indi-
viduals to estimate and take advantage of similarities in blood delivery or in
target protein levels within individuals.
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