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How the growth rate of a microbial population responds to the environmental availability of chem-
ical nutrients and other resources is a fundamental question in microbiology. Models of this response,
such as the widely-used Monod model, are generally characterized by a maximum growth rate and a
half-saturation concentration of the resource. What values should we expect for these half-saturation
concentrations, and how should they depend on the environmental concentration of the resource?
We survey growth response data across a wide range of organisms and resources. We find that
the half-saturation concentrations vary across orders of magnitude, even for the same organism and
resource. To explain this variation, we develop an evolutionary model to show that demographic
fluctuations (genetic drift) can constrain the adaptation of half-saturation concentrations. We find
that this effect fundamentally differs depending on the type of population dynamics: populations
undergoing periodic bottlenecks of fixed size will adapt their half-saturation concentration in pro-
portion to the environmental resource concentration, but populations undergoing periodic dilutions
of fixed size will evolve half-saturation concentrations that are largely decoupled from the environ-
mental concentration. Our model not only provides testable predictions for laboratory evolution
experiments, but it also reveals how an evolved half-saturation concentration may not reflect the
organism’s environment. In particular, this explains how organisms in resource-rich environments
can still evolve fast growth at low resource concentrations. Altogether our results demonstrate the
critical role of population dynamics in shaping fundamental ecological traits.

Keywords: Microbial evolution | Monod model | resource competition | half-saturation concentration |
selection-drift balance

INTRODUCTION

Microbial populations rely on a wide range of re-
sources, including chemical nutrients such as sugars, min-
erals, and metals, as well as space, light, and prey [1].
These resources vary in abundance across time and en-
vironments, which typically elicits differences in growth
rates [2–4]. A significant literature discusses how natu-
ral populations can be classified as oligotrophs or copi-
otrophs [4–6], that differ, among other things, in their
growth rate response to resource concentration. The
most widely-used quantitative model of the relationship
between growth rate and resource concentration is at-
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tributed to Jacques Monod [7]. In the Monod
model, growth rate increases linearly with resource con-
centration at low concentrations, and then saturates at
high concentrations, reaching half its maximum value
at some intermediate concentration of resources. This
half-saturation concentration of the growth response, also
known as the Monod constant, therefore plays a key role
in determining the ability of the population to grow on
scarce resources. This suggests that lower resource con-
centrations in the environment may drive populations to
evolve commensurately lower half-saturation concentra-
tions [8, 9], one of the main predictions of resource-ratio
theory [10–12]. Quantitative models and data for the de-
pendence of growth rate on resource concentration are
important both for predicting the behavior of a popula-
tion under different environmental conditions [13–15], as
well as for inferring the natural environmental niche from
evolved traits of the population. This inverse approach
has been used, for example, to infer separate niches for
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ammonia-oxidizing archaea and bacteria in the global ni-
trogen cycle based on kinetic parameters for resource con-
sumption [16–19].

Even though these concepts have been central elements
of microbiology and ecology for decades, there is lim-
ited experimental evidence that directly demonstrates
the evolution of growth rate response to resources. Con-
tinuous culture for 200–300 generations led to improved
growth rate at low glucose concentrations for Escherichia
coli [20, 21] and Saccharomyces cerevisiae [22], but these
changes were not clearly attributable to genetic (rather
than physiological) adaptation. The Long-Term Evolu-
tion Experiment (LTEE) of E. coli found that the half-
saturation concentration for glucose actually increased
over the first 2000 generations, although the maximum
growth rate at much higher glucose concentrations signif-
icantly increased as well [23]. More recently, Bernhardt
et al. [12] observed adaptation in the half-saturation con-
centration for phosphorus of Chlamydomonas reinhardtii

when limited for phosphorus, but they did not obtain
consistent outcomes for nitrogen and light. Perhaps the
most explicit evidence so far is from Hart et al. [24], who
found that a synthetic auxotroph strain of S. cerevisiae
significantly reduced its half-saturation concentration for
lysine through genetic adaptations.

While laboratory experiments can test the basic prin-
ciple, mathematical models are better suited to exploring
the wide range of environments necessary to establish the
link between environment and evolved traits. Previous
modeling studies on this topic have focused on how trade-
offs in growth rate at low versus high resource concentra-
tions define an optimum strategy for a single strain [13]
or can facilitate coexistence of multiple strains or species
when resource concentrations fluctuate [25, 26]. More
recent work has shown how this coexistence can spon-
taneously evolve if such tradeoffs constrain the effects
of mutations [27, 28]. However, the evidence for these
tradeoffs, especially on spontaneous mutations, is lim-
ited [27–31]. Thus their importance for explaining the
evolved variation in growth rate response, especially the
half-saturation concentration, is unclear.

Here we address this problem using both empirical and
modeling approaches. We first perform a survey of data
for the growth rate response to resource concentration
across a wide range of organisms and resources. We
find that the measured half-saturation concentrations
vary over orders of magnitude, even within some single
species on the same resource, such as E. coli strains on
glucose. We also find no evidence for tradeoffs between
growth rate at low versus high resource concentrations.
To better understand the potential causes of this vari-
ation, we model evolution for populations with a sin-
gle limiting resource under feast-and-famine conditions
(batch dynamics with fixed biomass or fixed dilution fac-
tor) and steady-state growth (chemostat dynamics). We
show how demographic fluctuations, known as genetic
drift, inhibit selection on lower half-saturation concen-
tration, which leads to a general relationship between

the evolved half-saturation concentration, environmen-
tal resource concentration, and the effective population
size. Using this result, we determine that populations
with fixed-bottleneck batch dynamics will evolve half-
saturation concentrations that are proportional to the
environmental resource concentration, but populations
with fixed-dilution batch dynamics evolve half-saturation
concentrations that are practically independent of the en-
vironment. Besides providing a testable theory for labo-
ratory evolution experiments, our results help to explain
how species evolving under high concentrations can main-
tain fast growth at low concentrations and why evolved
half-saturation concentrations may not reflect the envi-
ronment of origin.

RESULTS

The Monod model quantifies growth rate response
to resource concentration

Consider a population of microbes consuming a re-
source; we will generally focus on chemical nutrients such
as carbon or nitrogen sources, but some aspects of the
model apply to other types of resources as well (e.g.,
prey or light). While microbes consume many different
resources simultaneously [32, 33], for simplicity here we
assume only a single resource limits growth (Supplemen-
tary Information Sec. S1). The best-known dependence
of population growth rate g on resource concentration R
is the Monod model [7]:

g(R) = gmax ·
R

R+K
, (1)

where gmax is the maximum growth rate — achieved
when the resource is unlimited — and K is the concen-
tration for the resource at which growth rate is slowed
to half its maximum (Fig. 1). Decreasing the half-
saturation concentration K therefore allows the popu-
lation to grow faster at lower resource concentrations.
The half-saturation concentrationK is not to be confused
with a related but distinct concept of R∗ from resource-
ratio theory [10, 12]. Note that the Monod model of
Eq. (1) is used to describe both steady state [12] and
non-steady-state [25, 28] relationships between growth
rate and environmental resource concentration. While
there are many alternative models of how growth rate
depends on resource concentration (Supplementary In-
formation Sec. S2, Table S1), we focus on the Monod
model due to its wider usage and available data.
The parameter K is sometimes labeled as the affinity

for the resource [34], but this is potentially misleading
as K is inversely proportional to ability to grow on the
resource. We instead use the term specific affinity to
refer to the parameter combination gmax/K, which mea-
sures how much the growth rate increases per unit change
in resource concentration, starting from a low concentra-
tion [35]. The specific affinity is therefore a common
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FIG. 1. Monod model of growth rate response
to resource concentration. The population growth rate
g(R) as a function of the external resource concentration R
for two hypothetical strains: a wild-type (green) and a de-
rived mutant strain (orange), with equal maximum growth
rates (gmax = 1) but different half-saturation concentrations
(Kwt = 5, Kmut = 3). The inset shows a magnified view at
low concentrations near Kwt and Kmut (dotted vertical lines).
Note that the growth rates do not fully overlap at the high-
est concentration shown, but eventually converge to the same
value gmax outside the range of this plot.

measure for oligotrophic growth ability [9, 16, 19, 34].
Note that both K and gmax are required to fully charac-
terize the growth rate dependence; for example, the spe-
cific affinity gmax/K alone does not suffice because while
it describes the growth rate response at low concentra-
tions, it does not define the range of low concentrations
(which is determined separately by K). Since we are pri-
marily interested in how these traits evolve in relation
to the environmental concentration R, we focus primar-
ily on the half-saturation concentration K since one can
directly compare it to R.

One can derive the Monod model of Eq. (1) by mod-
eling biomass growth as a two-step process, in which up-
take of the external resource into the cell occurs at a
rate proportional to the external concentration R [36].
However, the dependence of growth rate on resource
concentration expressed by Eq. (1) is surprisingly ro-
bust to additional model complexities [37, 38], albeit
with the resulting traits gmax and K being emergent
properties of whole cells or populations. In particular,
the half-saturation concentration K is not equivalent to
the Michaelis-Menten constant for resource uptake kinet-
ics [37, 39, 40], despite the mathematical similarity be-
tween the Michaelis-Menten and Monod models (Eq. 1);
this is because the Monod model describes the whole pro-
cess of producing new biomass, of which uptake is just
one step.

Half-saturation concentrations vary widely across
resources and organisms

To explore the diversity of microbial growth re-
sponses, we have compiled 247 measurements of half-
saturation concentrations K from previously-published
studies (Methods; Dataset S1; Fig. S1), substantially ex-
tending previous surveys [41–44]. Figure 2A shows an
overview of this data, sorted by resource. The data in-
cludes a wide range of resources, with phosphate, glucose,
and nitrate having the largest number of measurements
due to their emphasis in marine and laboratory systems.
Organisms include prokaryotes and eukaryotes as well as
autotrophs and heterotrophs (marked by different sym-
bols in Fig. 2A).

Measured values of the half-saturation concentration
K vary over several orders of magnitude, ranging from
below 10−6

µM (for thiamine and vitamin B12) to above
104 µM (for one glucose measurement). This variation
is not attributable to measurement uncertainties, which
never exceeded 20% in the studies that reported them. It
also is not an artifact of technical aspects of the measure-
ments (Fig. S2) such as temperature (linear regression,
R2 ≈ 0.089, p ≈ 1.2 × 10−5) or experimental method
(linear regression, R2 ≈ 0.160, p ≈ 1.3×10−3), nor does
the variation appear to be systematically biased by ex-
perimental design such as the degree of pre-acclimation
to the growth medium (Fig. S3). We furthermore find
no evidence for a major bias from simultaneous limita-
tion (colimitation) for other resources besides the focal
resource (Supplementary Information Sec. S1).

Instead, most variation of concentrations K corre-
sponds to variation in the identity of the organisms and
resources themselves (Fig. S2A). Figure 2B shows a sub-
set of measurements on glucose, which have systematic
differences in K between taxa. For example, measure-
ments of S. cerevisiae and Streptococcus almost all have
K values higher than those of E. coli (Mann-Whitney U
test, p ≈ 1.40× 10−6). Phosphate and silicate similarly
show significant variation between species (Fig. 2C,D),
as do nitrate and ammonium (Fig. S4). Even within
some taxa, there is large variation of K; glucose K in
E. coli varies over three orders of magnitude (Fig. 2B).
This variation within a single resource and taxon does
not appear to be explained by technical covariates of
the measurements (Fig. S2B), but rather corresponds to
genetically-distinct strains of E. coli (Fig. S5), suggest-
ing that even subspecies-level genetic variation can lead
to significant differences in the half-saturation concen-
tration K. Indeed, Ferenci [46] reported single target
genes, like the membrane-associated lamB or the stress-
factor rpoS, that affect the half-saturation concentration
of E. coli on glucose when mutated. The genetic differ-
ences in our dataset are mostly unknown, but we grouped
E. coli measurements by strain labels to find reproducible
half-saturation concentrations for glucose within strains
(e.g., ML 30, see Fig. S5A).

How can we explain this wide variation in half-
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(C) (D)

FIG. 2. Survey of measured half-saturation concentrations. (A) Complete set of half-saturation concentrations K for
the Monod model of growth rate (Eq. (1)) in our survey, grouped by resource (in decreasing order of number of data points). Each
point represents a different measurement; color indicates whether the organism is a prokaryote (green) or eukaryote (orange),
and shape indicates whether the organism can grow as an autotroph (square) or only as a heterotroph (circle). Dashed lines
mark concentrations of one molecule per cell for approximate prokaryotic and eukaryotic cell volumes [45]. (B) Subset of K
measurements from panel A for glucose, grouped by taxon (only those with at least two measurements). We use the taxonomic
identity given in the original publications, where an ending in sp. means the isolate is a representative of the genus but was
not identified at the species level. Symbols are the same as in panel A. For brevity, we use “glucose half-saturation” to refer
to the half-saturation concentration for glucose as the limiting nutrient. (C) Subset of K measurements from panel A for
phosphate, grouped by taxon (with at least three measurements). (D) Subset for silicate, grouped by taxon (with at least
two measurements). See the Supplemental Information for additional plots with K measurements for nitrate (Fig. S4A) and
ammonium (Fig. S4B).

saturation concentrations? Intuitively, we expect evo-
lution to reduce K, since mutations that reduce K in-
crease growth rate (Eq. (1)). For example, Fig. 1 shows
the growth rate dependence for a hypothetical wild-type
strain (green line) and a mutant (orange) with lower half-
saturation K. Since the mutant has a greater relative
growth rate advantage at low resource concentrations,
there could be stronger selection pressure to reduce K
at those low concentrations. This is hinted by some pat-
terns in the data: for example, E. coli often grows in

mammalian large intestines where there are few simple
sugars such as glucose, while S. cerevisiae and Strepto-

coccus often grow in high-sugar environments (fruit and
the oral microbiome, respectively) [47, 48], which could
explain their large difference in half-saturation concen-
trations for glucose.
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Variation in specific affinity has trends similar to
those of the half-saturation concentration

Since K alone does not define the growth rate at low
resource concentrations, it is essential to consider the
maximum growth rate gmax or specific affinity gmax/K
as well. We show the variation in maximum growth
rate gmax across resources in Fig. 3A (reported for
97.5% of all entries for half-saturation concentrations K;
Dataset S1). The most striking feature of this data is
that while maximum growth rates gmax vary less be-
tween resources than do half-saturation concentrations
K (compare Figs. 3A and 2A), there is a clear bimodal-
ity between fast-growing heterotrophs (circles) and slow-
growing autotrophs (squares). Indeed, a closer look
at the covariation between gmax and K in autotrophs
(squares in Fig. 3B) reveals that resources have compa-
rable distributions of gmax but stratify in terms of half-
saturation concentrations K, with the lowest values for
phosphate. In particular, the distributions for phosphate
and nitrate are indistinguishable in terms of maximum
growth rate (Mann-Whitney U test, p = 0.0801), but
clearly different in terms of half-saturation concentration
(Mann-Whitney U test, p = 1.28 × 10−12). Also, the
species differences in maximum growth rate on glucose
and phosphate are less pronounced (Fig. S6) and more
of the variation can be explained by experiment temper-
ature (Figs. S7 and S8) compared to variation in K.
We can also compute the specific affinity gmax/K for

each data point. Figure S9 shows that the variation in
specific affinity is similar to variation in K: the varia-
tion spans orders of magnitude, even for single species,
and there are systematic differences between taxa (e.g.,
E. coli compared to S. cerevisiae and Streptococcus ;
Mann-Whitney U test, p ≈ 1.20 × 10−6; Fig. S9B).
The similarity in patterns of variation between the half-
saturation concentration and specific affinity is because
variation in gmax/K is dominated by variation in K
(Fig. S7B); on a logarithmic scale, gmax/K depends on
additive contributions from gmax and K, and variation
in K is much larger than variation in gmax (compare
Figs. 2A and 3A).

There is no evidence for a tradeoff between
half-saturation concentration and maximum growth

rate

Many previous studies have considered the possibil-
ity of tradeoffs between gmax and K (positive correla-
tion), such that genotypes growing faster with abun-
dant resources will grow slower when resources are
scarce [13, 25–28]. If this were true, evolution at high re-
source concentrations may select for increasing maximum
growth rate gmax at the expense of the half-saturation
concentration K, leading to high values of K. If we
consider all organisms and resources in our data set, we
do find a significant positive correlation between gmax

and K (Spearman ρ ≈ 0.39, p ≈ 5.7 × 10−10; Fig. 3B).
However, this correlation is an artifact of the biased sam-
pling of organism-resource pairs, which are dominated by
fast-growing heterotrophs on glucose (which tend to have
higher concentrations K) and slow-growing autotrophs
on other resources (which tend to have lower concentra-
tions K compared to glucose); the correlation disappears
when we separate heterotrophs (Fig. S10A,B) from au-
totrophs (Fig. S10C,D). If we further separate individ-
ual resources, we see no significant correlations for phos-
phate, nitrate, ammonium, or glucose across organisms
(Figs. 3C,D and S10E–H), while there is actually a neg-
ative correlation (opposite of a tradeoff) for silicate gmax

and K (Spearman ρ ≈ −0.56, p ≈ 0.0025; Fig. 3E).
In Fig. 3F we test the covariation of gmax with K for
two individual species (E. coli and S. cerevisiae) for a
single resource (glucose). The E. coli data shows a pos-
itive correlation indicative of a tradeoff, but it has mod-
est magnitude and low statistical significance (Spearman
ρ ≈ 0.26, p ≈ 0.26). Saccharomyces cerevisiae, on the
other hand, shows a positive correlation between the two
traits (Spearman ρ ≈ −0.75, p ≈ 0.008). The lack
of tradeoff appears irrespective of experimental method
(i.e., batch or chemostat; Fig. S3B) and also holds when
comparing the maximum growth rate gmax to the specific
affinity gmax/K (Fig. S11).
Much of the previous literature arguing for tradeoffs

in these traits based their evidence on measurements for
resource uptake kinetics [27, 28, 30, 49] rather than on
population growth as we consider here. However, we find
little to no correspondence between traits of uptake kinet-
ics with traits of population growth in data points where
we have measurements for both (Fig. S12) [44], consis-
tent with previous analyses [37, 39]. It is therefore not
surprising that the observed tradeoffs in uptake do not
translate to tradeoffs in growth. For example, Litchman
et al. [30] reported a tradeoff between uptake traits for
nitrate, but we see no correlation in growth traits for ni-
trate (Spearman ρ ≈ 0.03, p ≈ 0.84; Figs. 3D and S11C).
Altogether the absence of evidence for a systematic cor-
relation between K and gmax suggests that selection for
gmax does not explain the evolved variation in K.

Models of population dynamics with mutations to
half-saturation concentration

To test how the environmental resource concentration
shapes the evolution of the half-saturation concentration
K, we turn to a model of population dynamics with mu-
tations altering traits of the Monod growth rate response
(Methods; Supplementary Information Secs. S3–S5; Ta-
ble S2). We consider a microbial population consisting
of a wild-type and a mutant, with biomasses Nwt(t) and
Nmut(t) that vary over time t. They grow at rates de-
pending on the resource concentration R according to
the Monod model (Eq. (1)), but with potentially differ-
ent values of the traits gmax and K depending on the
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(A)

FIG. 3. Survey of maximum growth rates and trait correlations. (A) Empirical maximum growth rates gmax for
the microbial isolates in our survey. There are slightly fewer data points for maximum growth rate compared to half-saturation
concentrations in Fig. 2A, since some publications only reported the half-saturation concentration. Markers indicate whether
the organisms can grow as an autotroph (square) or only as a heterotroph (circle); colors indicate if the isolate is prokaryotic
(green) or eukaryotic (orange). Dashed lines mark reference doubling times. (B) Covariation of maximum growth rate gmax

and half-saturation concentration K across the entire set of isolates from panel A. Here colors indicate the limiting resource,
with the number of measurements n given in parentheses. Marker shapes (squares are autotrophs, circles are heterotrophs) are
the same as in panel A. We compute the Spearman rank correlation ρ and p-value across the pooled set of isolates. (C) Subset
of measurements from panel B for phosphate (only autotroph isolates shown). (D) Subset of measurements from panel B
for nitrate. (E) Subset of measurements from panel B for silicate. (F) Covariation between maximum growth rate gmax and
half-saturation concentration K on glucose for measurements of E. coli (green) and S. cerevisiae (orange), with Spearman rank
correlations ρ and p-values by species.
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effect of the mutation [25, 28]. The rate at which the
mutant increases or decreases in frequency compared to
the wild-type is given by the selection coefficient s (Sup-
plementary Information Sec. S6) [50, 51]. We show that
s decomposes into two additive terms

s ≈ shigh + slow, (2)

where shigh measures selection on growth at high resource
concentrations, and is therefore proportional to variation
in the maximum growth rate gmax, while slow measures
selection on growth at low resource concentrations, and is
therefore proportional to variation in the half-saturation
concentration K (Figs. S13–S16; Supplementary Infor-
mation Secs. S7–S9).
We consider selection in three prototypical regimes of

population dynamics. In the first case, the population
grows as a batch culture with serial transfers (Supple-
mentary Information Sec. S3). That is, there is an ini-
tial concentration R0 of the resource, and the population
grows until the resource is exhausted. Figure 4A shows
these dynamics for the hypothetical wild-type and mu-
tant strains of Fig. 1. Although the mutant has the same
maximum growth rate gmax as the wild-type, its lower
value of K allows it to continue growing fast at lower con-
centrations of the resource, decelerating more abruptly at
the end of growth (see inset of Fig. 4A for more dramatic
examples). Then a fixed amount of biomass N0 — sam-
pled from the whole culture, so that the relative frequen-
cies of the mutant and wild-type are preserved on average
— is transferred to a new environment with the same ini-
tial concentration R0 of the resource as before, and the
cycle repeats (Fig. 4B, top panel). This dilution step
represents a form of mortality for the population. We
refer to this regime as fixed-bottleneck batch dynamics,
since the bottleneck of biomass between transfers is held
fixed. Boom-bust dynamics such as these are believed to
be common in some natural environments [52, 53], with a
fixed bottleneck size being plausible for populations that
serially colonize new environments [54] or are reset to a
fixed density by culling [4] between cycles of growth.
The second regime is the same as the first, except in-

stead of transferring a fixed amount of biomass to the
next cycle, we transfer a fixed fraction 1/D, where D
is the dilution factor (Fig. 4B, bottom panel); we there-
fore refer to this regime as fixed-dilution batch dynam-

ics. Note that the dilution factor D and the bottleneck
biomass N0 are related according to D = R0Y/N0 + 1,
where Y is the yield (biomass produced per unit resource;
Supplementary Information Sec. S3). These dynamics
are plausible for populations that experience a constant
death rate between growth cycles or are regularly purged
by the environment, as believed to occur in the human
gut microbiome [55]. This case is also the most common
protocol in laboratory evolution experiments owing to
its simplicity [56]. While the differences between these
two regimes of batch dynamics may appear to be sub-
tle (comparing the two panels of Fig. 4B), we will show

later that these two dilution protocols have different de-
pendences on the resource concentration, which lead to
different evolutionary outcomes.

Finally, we also consider the regime of chemostat dy-

namics, where the population grows as a continuous cul-
ture with a constant supply of the resource and a constant
dilution rate d (Supplementary Information Sec. S5).
Chemostats are used as devices for experimental evolu-
tion [12, 22] and the same dynamics are often applied to
describe natural populations in the ocean [13, 57].

Selection quantifies variation in growth traits
between isolates at different resource concentrations

We previously observed wide variation in half-
saturation concentrations K (Fig. 2A) and maximum
growth rates gmax (Fig. 3A) across isolates, but the sig-
nificance of this variation is difficult to assess by itself.
For example, glucose K for E. coli varied across four
orders of magnitude, but how significant is this varia-
tion for evolution? Our model of selection under differ-
ent population dynamics gives us precisely the metric to
quantify this variation. We demonstrate this in Fig. 4C
by calculating the two components of selection (Eq. (2))
for hypothetical competitions between all pairs of E. coli
isolates measured on glucose. We do this for batch dy-
namics starting at different initial concentrations R0 of
glucose. While selection on variation in gmax (shigh) al-
ways increases with higher R0, selection on variation inK
(slow) depends non-monotonically on the concentration
R0, such that selection is maximized at some intermedi-
ate concentration (Fig. S17, Supplementary Information
Sec. S10). Intuitively, this optimal concentration approx-
imately equals the half-saturation concentration K itself
(Fig. S17C). On the other hand, if the resource concen-
tration R0 also increases the initial population size N0

(i.e., transfer from a pre-growth cycle with fixed dilution
factor), selection on variation in K depends monotoni-
cally on R0 and is maximized at the lowest concentration
(Fig. S18).

We calculate selection between E. coli isolates at
10 µM glucose, which is in the middle of the range of
observed half-saturation concentrations K, as well as at
two higher concentrations corresponding to the condi-
tions of the E. coli LTEE (139 µM) [58] and a common
laboratory concentration (11000 µM ≈ 0.2% w/v). Fig-
ure 4C indeed shows that variation in the value of K is
highly significant for evolution at concentrations around
the half-saturation concentration, whereas at the highest
concentration, selection on the variation in K is small
compared to the selection in gmax.
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FIG. 4. Selection on variation in half-saturation concentrations over batch population dynamics. (A) Simu-
lated growth of wild-type (green) and mutant (orange) strains competing under batch dynamics, with the transient resource
concentration (gray) on the right vertical axis (Supplementary Information Sec. S3). The strain pair is the same as in Fig. 1;
the initial resource concentration is R0 = 25, with strains at equal initial frequencies and equal yields. (B) The same strain
competition from panel A continued over multiple growth cycles under fixed-bottleneck batch dynamics (top panel, N0 = 0.01)
and fixed-dilution batch dynamics (bottom panel, D = 100). (C) Each point represents the predicted selection coefficients
|shigh| and |slow| (Eq. (2); Supplementary Information Sec. S8) for pairs of E. coli isolates with measured growth traits on
glucose (from Fig. 2D). The three colors represent different glucose concentrations. We assume the isolates in each pair start
competing at equal initial frequencies, set the initial cell density to N0 = 4.6 × 105 cells/mL, and use a biomass yield of
Y = 3.3× 108 cells/µmol glucose measured by a previous study [23].

The half-saturation concentration evolves downward
over successive mutations

With our model of population dynamics, we can pre-
dict how the traits of the Monod growth rate response
(Eq. (1)) will evolve over long times. For simplic-
ity, we focus on the “strong-selection weak-mutation”
(SSWM) regime of evolutionary dynamics, where each
new mutation either fixes or goes extinct before the next
mutation arises (Fig. S19; Supplementary Information
Sec. S11) [59].

We first simulate a population growing under fixed-
bottleneck batch dynamics, with an initial half-
saturation concentration K that is higher than the exter-
nal resource concentration R0; the population therefore
decelerates gradually into starvation over each growth
cycle (Fig. 5A, left inset). Mutations then regularly
arise and alter the value of K with a random effect size
(Fig. S19; Supplementary Information Sec. S11). Each
mutation stochastically fixes or goes extinct according to
a fixation probability, which depends on the mutation’s
selection coefficient. Over time these beneficial muta-
tions accumulate and the half-saturation concentration
K systematically decreases. By the end of the simula-
tion, the half-saturation concentration K is 1000 times
smaller than the resource concentration R0, leading to
growth curves that grow much faster and abruptly decel-
erate into starvation (Fig. 5A, right inset).

Such an abrupt arrest is, for example, realized by
E. coli in glucose-limited batch culture through a dy-

namic surge in gene expression late in the growth cy-
cle [60], often involving the use of separate transporters
with lower Michaelis-Menten constants [61]. The pres-
ence of these transporter systems has been raised as evi-
dence for evolutionary adaptation of the species at micro-
molar glucose concentrations [8, 61, 62]. But our model
shows that a feast-and-famine environment dominated
by concentrations orders of magnitude higher would still
allow E. coli to evolve the low half-saturation concentra-
tions K observed in existing strains.

Adaptation in the half-saturation concentration
stalls when it reaches selection-drift balance

The value of K does not evolve downward forever; in
Fig. 5A adaptation slows down and the half-saturation
concentration levels off after a few tens of thousands of
mutations, even though there is no change in the sup-
ply of beneficial mutations. This occurs because selec-
tion on beneficial mutations is inhibited by random de-
mographic fluctuations in the population, known as ge-
netic drift [63]. The strength of genetic drift is mea-
sured by 1/Ne, where Ne is the effective population size
(for the variance in mutant frequency change per unit
time) [64, 65]; smaller populations experience greater
fluctuations. In the simplest cases, Ne is proportional to
the actual (“census”) population size, but in more com-
plex systems Ne may depend on other aspects of demog-
raphy (such as spatial dynamics [66] or age structure [67])
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FIG. 5. Evolution of the half-saturation concentration. (A) The half-saturation concentration K evolving under fixed-
bottleneck batch dynamics. Each gray line is one of 10 independent stochastic simulations using an effective population size
Ne = 1000 and mutation effects κ drawn from a uniform distribution (Supplementary Information Sec. S11). The insets show
the growth curve in a single batch cycle before adaptation (left inset) and at the final state (right inset). The green dashed
line marks our prediction Kevo at selection-drift balance. (B) Evolved half-saturation concentration Kevo as a function of the
effective population size Ne. In the gray region, the effective population size is too small and all evolution is neutral. If Ne is
sufficiently large (white region), the evolved half-saturation Kevo has selection-drift balance along the green line. Parameters
are |κmax| = 0.001, gmax = 1, N0 = 0.01, and Y = 1 for both strains. (C) The evolved glucose half-saturation Kevo as a function
of initial glucose concentration R0 for two regimes of batch dynamics: fixed-bottleneck dynamics (blue line) and fixed-dilution
dynamics (orange line). We use parameters based on the LTEE: N0 = 4.6× 105 cells/mL (for fixed-bottleneck case), D = 100
(for fixed-dilution case), Ne = V N0 where V = 10 mL, gmax = 0.888/h, and Y = 3.3 × 108 cells/µmol [23]. We also set
κmax = 6 × 10−6 (Fig. S27). On the right axis is a histogram of glucose half-saturation K data for E. coli isolates (from
Fig. 2B).

as well as additional sources of noise in the population
dynamics [68].
Beneficial mutations will therefore no longer fix with

high probability if their selection equals genetic drift, a
condition known as selection-drift balance [69–71]:

s =
1

Ne

. (3)

Selection-drift balance occurs in our model under batch
dynamics because the growth deceleration phase becomes
shorter as K decreases over evolution (insets of Figs. 4A
and 5A), which means there is weaker selection to re-
duce it further. Once the half-saturation concentration
K becomes sufficiently small, selection is no longer strong
enough to overcome genetic drift (Supplementary Infor-
mation Sec. S12; Fig. S20).
By combining Eqs. (2) and (3), we can calculate the

value of the evolved half-saturation concentration at
which selection-drift balance occurs (Fig. S21). For typi-
cal regimes of the parameters, the evolved concentration
is approximately (Supplementary Information Sec. S13)

Kevo ≈
R0

Ne|κmax| log(Ne|κmax|R0Y/N0)
, (4)

where κmax is the maximum effect size of a beneficial mu-
tation reducing K. We calculate an example of Kevo in
Fig. 5A (dashed green line), which corresponds well with
the simulations. This result is robust to a wide range
of effective population sizes and frequency-dependent ef-
fects (Fig. S22; Supplementary Information Sec. S11).

We also observe an equivalent result for the adaptation
of the specific affinity gmax/K (Fig. S23; Supplementary
Information Sec. S14) instead of the half-saturation con-
centration K alone.

One salient feature of Eq. (4) is that the evolved half-
saturation concentration Kevo scales inversely with the
effective population size Ne, as shown in Fig. 5B. That
is, larger populations or those with lower genetic drift
can evolve proportionally lower half-saturation concen-
trations Kevo that are orders of magnitude lower than
the environmental resource concentration R0. This po-
tentially explains why we observe such low values ofK for
many organisms and resources (Fig. 2); this also explains
why these half-saturation concentrations are difficult to
measure from time-series data, since low half-saturation
concentrations produce extremely abrupt deceleration at
the end of growth (insets of Figs. 4A and 5A and Fig. S24;
Supplementary Information Sec. S15). Hints of the influ-
ence of Ne are found in ammonia-oxidizing archaea and
bacteria from marine environments, which tend to have
lower half-saturation concentrations than isolates from
soil [18]. Our scaling relationship Eq. (4) suggests that
this ordering can arise from the smaller effective popu-
lation size Ne for spatially-structured environments like
soil.

The other important feature of Eq. 4 is the depen-
dence of the evolved half-saturation concentration Kevo

on the resource concentration R0. For a fixed effective
population size Ne, there is an optimal value of R0 that
minimizes the evolved concentration Kevo (left insets of
Fig. S21A,B), just as we observed for selection on indi-
vidual mutations (Fig. S17). We note that for sufficiently
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low values of the effective population sizeNe, genetic drift
is stronger than selection on any mutation κ (Fig. S20A),
and so the half-saturation concentration K evolves neu-
trally (gray region in Fig. 5B).
In contrast to batch dynamics, selection under

chemostat dynamics does not depend on the half-
saturation concentration K itself (Supplementary Infor-
mation Sec. S9). Intuitively, this is because reductions
in K cause the environmental resource concentration
to decrease proportionally (Supplementary Information
Sec. S5), such that the growth rate remains constant.
Not only does this keep a constant strength of selec-
tion on new mutations, but the effective population size
will actually increase as K evolves lower, making ben-
eficial mutations even easier to fix. Therefore selection-
drift balance never occurs forK under chemostat dynam-
ics; the half-saturation concentration K will continue to
evolve downward until adaptation is limited by the sup-
ply of mutations or other factors (Discussion). Note that
selection-drift balance also does not occur for mutations
to the maximum growth rate gmax under either batch or
chemostat dynamics, since selection does not depend on
the magnitude of growth rate (Supplementary Informa-
tion Secs. S8 and S9).

Population dynamics can decouple the evolved
half-saturation concentration from the resource

concentration

In general the effective population size Ne that controls
genetic drift may be shaped by a variety of demographic
factors besides the census population size [65]. However,
in well-mixed batch cultures, Ne is primarily determined
by the number of cells at the bottleneck of each trans-
fer [69, 72]; we assume that other sources of stochasticity
(such as individual cell division events) are much weaker
than the sampling noise of these transfers. Therefore the
effective population size Ne is proportional to the bottle-
neck biomass N0 (assuming constant biomass per cell).
Under fixed-bottleneck batch dynamics, the effective

population size Ne is thus an independent parameter of
the population, so that the strength of genetic drift does
not depend on the resource concentration (Fig. S25A). In
this case, the evolved trait Kevo is in approximately lin-
ear proportion to the resource concentration R0 (Eq. (4);
Figs. 5C and S26A), making the evolved half-saturation
concentration a biomarker of the resource’s environmen-
tal concentration. This is consistent with our original
speculation about the systematic differences in glucose
K between E. coli and S. cerevisiae, owing to the differ-
ent glucose availability in their different environments.
However, for fixed-dilution batch dynamics, the bot-

tleneck biomass N0, and therefore the effective popu-
lation size Ne, are coupled to the resource concentra-
tion R0 because the dilution factor D is fixed: Ne ∝
N0 = R0Y/(D−1) (Supplementary Information Sec. S3).
This coupling occurs because increasing the resource

concentration increases the biomass at the end of each
growth cycle, but then the fixed dilution factor means
that this must also increase the biomass at the bottle-
neck. The scaling of Ne with R0, though, cancels out
the scaling of Kevo with R0 in Eq. (4), leading to an
evolved half-saturation concentration Kevo that is ap-
proximately independent of the environmental concen-
tration R0 (Figs. 5C and S26B). Conceptually, fixed-
dilution batch dynamics do not allow the strength of
selection to be tuned independently from genetic drift:
the decrease in selection magnitude on K with higher
resource concentration R0 is compensated by weaker ge-
netic drift, due to a higher effective population size Ne

(Fig. S25B). Thus, the population dynamics decouple
the evolved half-saturation concentration of the organ-
ism from the environmental concentration.
This has major consequences for interpreting empirical

variation. We predict the evolved half-saturation concen-
trationKevo for E. coli on glucose as a function of glucose
concentration R0 in Fig. 5C, using parameters estimated
from the LTEE (Fig. S27). On the same plot, we show
a histogram of all measured glucose K values for E. coli
(from Fig. 2B) on the right vertical axis. We see that,
under fixed-bottleneck batch dynamics, we would expect
E. coli to have evolved in glucose concentrations above
100 µM to account for the observed half-saturation con-
centrations. However, under fixed-dilution batch dynam-
ics, the evolved half-saturation concentration depends so
weakly on the environmental concentration that almost
any concentration of glucose is possible to explain the
data.

DISCUSSION

Modeling insights to interpret half-saturation data

Since it is often difficult to measure resource concentra-
tions and population dynamics in natural environments,
can we use the evolved half-saturation concentration K
as a biomarker to infer them? This logic is often implicit
in environmental studies, which attempt to draw con-
clusions about the environmental conditions of an isolate
based on its abilities to grow at different resource concen-
trations [16–19]. However, our model shows that it is not
as simple as assuming the half-saturation concentration
K for a resource is proportional to its concentration in
the environment, since that proportionality is altered by
the population dynamics, at least through the effective
population size Ne (Eq. (4)). In particular, this propor-
tionality is confounded in the case of fixed-dilution batch
dynamics, where the evolved half-saturation concentra-
tion K is largely independent of the resource concentra-
tion R0 (Fig. 5C).
Under fixed-bottleneck batch dynamics, though, the

linear scaling of K with R0 does approximately hold.
In this case, one can compare two populations with un-
known, but identical effective population sizes Ne and
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mutation effects κ; for example, two isogenic popula-
tions located at different points along a resource gradi-
ent. In this case, one can calculate the ratio of evolved
half-saturation concentrations Kevo for the two popula-
tions to estimate the ratio of resource concentrations.
But in many scenarios, one might not even know the
type of bottlenecks the population is experiencing. To
classify the population dynamics as fixed-bottleneck or
fixed-dilution, one could correlate a set of evolved con-
centrations Kevo with their different resource concentra-
tions R0; a strong linear correlation would support fixed-
bottleneck batch dynamics, while little to no correlation
would indicate fixed-dilution batch or chemostat dynam-
ics.

Role of the mutation supply in shaping evolved
half-saturation concentrations

We have focused on the role of selection-drift bal-
ance as a null model for the evolved variation in half-
saturation concentrations, since the competition between
selection and genetic drift is a universal feature of all
evolving populations. In doing so we have assumed
the supply of mutations on K is constant, but real
populations will at some point run out of beneficial
mutations on the trait value K, potentially reaching
this mutation-selection balance before selection-drift bal-
ance [70]. Many mutations will also be pleiotropic, af-
fecting both the half-saturation concentration K and
the maximum growth rate gmax (as well as possi-
bly other traits) simultaneously. The correlation be-
tween pleiotropic effects on both traits is important: if
pleiotropy is synergistic, so that mutations that decrease
K also tend to increase gmax, then the population might
evolve lowerK than otherwise expected since its selection
is enhanced by additional selection on gmax. On other
other hand, if there is a tradeoff between K and gmax,
the population might evolve higher K if its selection is
outweighed by selection for higher gmax. Indeed, this is
what appears to have happened in the LTEE, where K
for glucose actually increased over the first 2000 genera-
tions, but that was offset by a stronger improvement in
the maximum growth rate gmax [23].

Such a tradeoff between K and gmax is interesting both
for its consequences on the stochiometric composition of
community biomass [49, 73] as well as from an evo-
lutionary point of view, since the population can then
diversify into stably-coexisting lineages. While there is
significant theoretical work on this hypothesis [25–28],
it has limited empirical evidence. Some of these pre-
vious studies claiming tradeoffs found them only in pa-
rameters for the Michaelis-Menten model of resource up-
take [27, 28, 30, 49, 74], which we and others have shown
are not equivalent to parameters of the Monod model
of growth (Fig. S12) [37, 39]. In the larger set of data
we have collected in this work (Fig. 3F), we find no com-
pelling evidence of a correlation; E. coli shows a weak but

insignificant tradeoff, while S. cerevisiae shows a slight
synergy [75].
Interpretation of this tradeoff (or lack thereof) is also

complicated by the sample of strains and environmen-
tal conditions being considered. For the tradeoff to af-
fect the evolved half-saturation concentration as we have
discussed, the tradeoff must exist across the entire spec-
trum of spontaneous mutations available to an organ-
ism (i.e., there is an underlying physiological constraint).
This has also been the underlying assumption of previous
models on this topic [25–28]. Testing this would require
a distribution of K and gmax values over a large mu-
tant library in a single environment, which has not been
measured to our knowledge. An experimental study
in E. coli [31] reports a tradeoff between half-saturation
concentration K and maximum growth rate gmax, but
this screen was restricted to mutations in the single gene
lamB, which may not be representative of genome-wide
mutations. However, even in the absence of an underly-
ing correlation in mutation effects, such a tradeoff could
still emerge across clones within a rapidly evolving pop-
ulation, at least transiently [76, 77]. Further systematic
measurements of these traits within and between popu-
lations will be necessary to resolve the issue of a tradeoff
in the future.

Other factors shaping evolved half-saturation
concentrations

Besides mutation supply, there are other phenomena
that may lead to different evolved outcomes for the half-
saturation concentration K. One important assumption
in our model is that we only consider a single resource,
whereas real populations are dependent on several re-
sources [78], including those from biotic sources such
as cross-feeding and predation. Some of these resources
may be rarely or never limiting, and therefore their half-
saturation concentrations K will evolve only as byprod-
ucts of selection on mutations for other traits. In this
sense many observed half-saturation values may actually
be spandrels, an evolutionary term (defined in analogy
with the architectural structure) for traits that evolve
for reasons other than direct selection [79]. Selec-
tion for other traits may occur simply because compe-
tition in natural environments is likely more complex
and could include lag phases [51] and other strategies
for low-resource survival [5, 80–82]. On the other hand,
multiple resources could also be simultaneously colimit-
ing [32, 33]. While we have shown how colimitation under
measurement conditions affects estimates of gmax and K
(Supplementary Information Sec. S1), the effect of colim-
itation, as well as more complex sources of nutrients such
as cross-feeding and predation, on the evolution of these
traits remains an important problem for future work.
We can predict the consequences of relaxing other as-

sumptions in our model as well. For example, simulta-
neous competition of multiple mutations (clonal interfer-
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ence) generally reduces the efficacy of selection [83, 84],
which would make it more likely to evolve higher half-
saturation concentrations than what we predict from
SSWM dynamics. Another assumption in our model is
that the population under batch dynamics always grows
until complete exhaustion of the resources during each
cycle, but earlier transfers could reduce the amount of
growth occurring during deceleration, which would re-
duce selection on the half-saturation K. However, the
population may adapt its maximum growth rate to sim-
ply saturate earlier and restore selection on its decelera-
tion phase. Finally, populations may also have higher
than expected K values if they simply have not had
enough time to reach selection-drift balance, which takes
a timescale of order Ne generations (Fig. S22) [85].

Population dynamics are essential for understanding
microbial ecology

Broadly speaking, our results provide a valuable exam-
ple of how ecological traits are influenced by factors other
than abiotic environmental features. In particular, we
have shown how population dynamics can confound our
naive expectations for the evolutionary fate of such traits.
While here we have focused on the role of genetic drift,
other potentially important factors include mutation sup-
ply, pleiotropy, recombination, and spatial structure. Al-
together our results mean that the half-saturation con-
centration K may not be a reliable biomarker of envi-
ronmental resource concentrations. This does not mean
that K evolves independently of the environment, how-
ever. Rather, it is linked to additional environmental
processes like the bottleneck between growth cycles. To
understand the systematic differences between species,
we need to know not only the resource concentrations
they have evolved in, but also which type of population
dynamics best reflects the time scales of growth, death,
and resource supply in their environment of origin.

Materials and Methods

Literature survey of measured growth rate
dependence on resources

We collected 247 measurements of Monod model pa-
rameters (K and gmax; Eq. (1)) through a targeted
literature search that included prior surveys and re-
views [41, 43], the phytoplankton trait database (130
data points) by Edwards et al. [44], as well as original re-
search papers. In all but two cases, we traced data from
surveys and reviews back to their original papers, which
we report in Dataset S1 (sheet 1). We included only
experiments that directly measured population growth
rates, rather than nutrient uptake rates or respiration.
We excluded measurements where the actual limiting re-
source was unclear, such as measurements in rich medium
with added glucose. Where possible we checked the raw
data of growth rate over resource concentrations to de-
termine if the focal resource concentration was measured
up to saturation and had sufficient sampling of concentra-
tions around K. For a subset of measurements of E. coli
on glucose, we also checked for the concentration of a
nitrogen source to determine the relative impact of col-
imitation (Dataset S1, sheet 2; Supplementary Informa-
tion Sec. S1). If the original K value was reported as
weight per volume, we converted these into units of mi-
cromolar (µM) using the calculated molecular weight of
the compound’s chemical formula. We preserved signifi-
cant digits from the original studies. See Dataset S1 for
more details.

Models of population dynamics

We mathematically model population dynamics using
systems of ordinary differential equations for the wild-
type and mutant biomasses as well as the extracellu-
lar resource concentration (Supplementary Information
Secs. S3 and S5). We numerically integrate these equa-
tions using standard algorithms in Scipy [86] (Supple-
mentary Information Sec. S4).
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FIG. S1. Historical trends of half-saturation concentration measurements. The number of measured half-saturation
concentrations K published in peer-reviewed journals aggregated by year, based on our literature survey (Dataset S1). Colors
indicate the number of measurements for individual resources.

(A)
(B)

E. coli on glucosecomplete dataset

FIG. S2. Comparison of technical covariates for the half-saturation concentration. (A) Linear regressions of
technical covariates against half-saturations log10 K from the complete dataset (Fig. 2A), with degrees of freedom (df), number
of data points (n), and p-values indicated. Each bar represents a separate regression fit, where R2 measures the variation
explained by a single variable as predictor for the half-saturation concentration. (C) Linear regressions of technical covariates
against glucose half-saturations log10 K for all E. coli measurements (shown in Fig. 2B).
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FIG. S3. Comparison of half-saturation measurements with and without acclimation. (A) Empirical half-
saturation concentrations for glucose, grouped by taxon (only those with at least two measurements). The data shown here are
identical to Fig. 2B, but colors indicate which measurements included a phase of acclimation (red). We infer acclimation from
the type of experiments used to measure the half-saturation concentration: For batch solid culture, growth rate is inferred from
the area increase of single cell colonies on agar plates. For batch experiments, the growth rate is observed from exponential phase
of a liquid culture with varying initial resource concentration. For chemostat experiments, the residual resource concentration
is observed in steady state with varying growth rate by tuning the rate of liquid outflow. For serial transfer experiments,
the growth is only measured in exponential phase after multiple transfers. We consider measurements to be acclimated if
they derive from chemostat or serial transfer experiments. (B) Covariation between maximum growth rate gmax and glucose
half-saturation K for isolates of E. coli. The data shown here are identical to E. coli data points in Fig. 3F. We calculate
the Spearman rank correlation ρ and p-value across all isolates with acclimation (red dots). (C) Pairwise comparison of half-
saturation measurements before and after acclimation. We identify a subset of publications in our database (see legend) which
have explicitly tested the effect of acclimation. Each publication has two measurements for the organism’s half-saturation
concentration K which we report together with full citations in our database (Dataset S1). A black diagonal line indicates
exact match between measurements with and without acclimation, with diagonal lines in dashes (y = 10x) and dots (y = 0.1x)
as visual guides for the eye.
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subset of taxonomic groups on nitrate subset of taxonomic groups on ammonium
(A) (B)

subset of taxonomic groups on nitrate subset of taxonomic groups on ammonium(C) (D)

FIG. S4. Survey of half-saturation concentrations and specific affinities for nitrate and ammonium in our
survey. (A) Subset of K measurements from Fig. 2A for nitrate, grouped by taxon (only those with at least two measurements).
Symbols are the same as in Fig. 2A: Color indicates whether the organism is a prokaryote (green) or eukaryote (orange), and
shape indicates whether the organism can grow as an autotroph (square) or only as a heterotroph (circle). We use the taxonomic
identity given in the original publications, where an ending in sp. means the isolate is a representative of the genus but was
not identified at the species level. (B) Subset of K measurements from Fig. 2A for ammonium, grouped by taxon (with at
least two measurements). (C) Subset of gmax/K measurements from Fig. S9A for nitrate, grouped by taxon (with at least
two measurements). (D) Subset of gmax/K measurements from Fig. S9A for ammonium, grouped by taxon (with at least two
measurements).
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E. coli on glucose by substrain
(A) (B) (C)

FIG. S5. Variation in glucose half-saturation concentrations by experiment type and substrain label. Subset
of data from Fig. 2B for E. coli on glucose, with different strains separated. The strains ML 30 and ML 308 were derived
from a natural isolate in human feces by Jacques Monod in 1946 and differ in their genes for lactose utilization [87]: the lacI
repressor is non-functional in ML 308. We only show substrains with two or more measurements from the data. The three
panels show the same data but are colored according to (A) publication, (B) temperature, and (C) experimental method (batch
or chemostat).
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FIG. S6. Survey of maximum growth rates in our survey grouped by resource and taxon. (A) Subset of
gmax measurements from Fig. 3A for glucose, grouped by taxon (only those with at least two measurements). Symbols are the
same as in Fig. 3A: Color indicates whether the organism is a prokaryote (green) or eukaryote (orange), and shape indicates
whether the organism can grow as an autotroph (square) or only as a heterotroph (circle). We use the taxonomic identity given
in the original publications, where an ending in sp. means the isolate is a representative of the genus but was not identified
at the species level. (B) Subset of gmax measurements from Fig. 3A for phosphate, grouped by taxon (with at least three
measurements). Note that we use a logarithmic scale on the y-axis, since this comparison includes both heterotroph isolates
(circles) and autotroph isolates (squares) which differ by an order of magnitude in their growth rate. (C) Subset of gmax

measurements from Fig. 3A for silicate, grouped by taxon (with at least two measurements). (D) Subset of gmax measurements
from Fig. 3A for nitrate, grouped by taxon (with at least two measurements). (E) Subset of gmax measurements from Fig. 3A
for ammonium, grouped by taxon (with at least two measurements).
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(A)

E. coli on glucose - maximum growth rate
(B)

E. coli on glucose - specific affinity

FIG. S7. Comparison of technical covariates for maximum growth rate and specific affinity. (A) Linear
regression of technical covariates against maximum growth rate on glucose gmax for all E. coli measurements, with degrees of
freedom (df), number of data points (n), and p-values indicated. We follow the same analysis as in Fig. S2B, but using gmax as
the target variable for regression (no log transform). (B) Linear regression of technical covariates against the specific affinity
log10(g

max/K) on glucose for all E. coli. The set of underlying isolates is identical to panel A. Here we use the log-transformed
maximum growth rate log10 g

max as a predictor, to compare the contributions of variation in log10 g
max and variation in log10 K

to the total variation in log10(g
max/K). The fraction of variation R2 explained by log10 g

max is too small to be visible.
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FIG. S8. Covariation of Monod growth traits with experiment temperature. (A) Covariation of the half-saturation
concentration K with the experiment temperature reported in the original publication. Some publications in our survey did
not report temperature, so this plot has fewer data points than the full dataset (compare Fig. 2A). We compute the Spearman
rank correlation ρ and p-value across all resources. Colors indicate the limiting resource, with the number of measurements n in
parentheses. Marker shape separates isolates with an autotroph lifestyle (squares) from heterotrophs (circles). (B) Covariation
of the half-saturation concentration K with experiment temperature for all autotrophs (subset of points from panel A). (C)
Covariation of the half-saturation concentration K with experiment temperature for all heterotrophs (subset of points from
panel A). (D) Covariation of the maximum growth rate gmax with experiment temperature. The data shown is less than in
panel A, since some publications did not report maximum growth rate. (E) Covariation of the maximum growth rate gmax

with experiment temperature for all autotrophs (subset of points from panel D). (F) Covariation of the maximum growth rate
gmax with experiment temperature for all heterotrophs (subset of points from panel D). (F) Covariation of the specific affinity
gmax/K with experiment temperature. We compute the specific affinity for all isolates with maximum growth rate in panel D.
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FIG. S9. Survey of specific affinities. (A) Variation in specific affinity a = gmax/K for the microbial isolates in our survey.
For each isolate, we compute the trait value from the maximum growth rate gmax (Fig. 3A) and half-saturation concentration
K (Fig. 2A). Each point represents a different measurement; color indicates whether the organism is a prokaryote (green) or
eukaryote (orange), and shape indicates whether the organism can grow as an autotroph (square) or only as a heterotroph
(circle). The set of isolates shown here is fewer than in the total dataset, since some publications only reported the half-
saturation concentration K and not the maximum growth rate gmax. (B) Subset of K measurements from panel A for glucose,
grouped by taxon (only those with at least two measurements). We use the taxonomic identity given in the original publications,
where an ending in sp. means the isolate is a representative of the genus but was not identified at the species level. Symbols
are the same as in panel A. (C) Subset of K measurements from panel A for phosphate, grouped by taxon (with at least three
measurements). (D) Subset for silicate, grouped by taxon (with at least two measurements). Compare also additional plots
with gmax/K measurements for nitrate (Fig. S4C) and ammonium (Fig. S4D).
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FIG. S10. Covariation of Monod growth traits for autotroph and heterotroph isolates. (A) Covariation
of half-saturation concentration K with maximum growth rate gmax for all heterotrophs (subset of points from Fig. 3B).
We compute the Spearman rank correlation ρ and p-value across all resources. Colors indicate the limiting resource, with
the number of measurements n in parentheses. (B) Covariation of specific affinity gmax/K with gmax for all heterotrophs
(subset from Fig. S11A). (C) Covariation of half-saturation concentration with maximum growth rate for all autotrophs (subset
from Fig. 3B). (D) Covariation of specific affinity with maximum growth rate for all autotrophs (subset from Fig. S11A).
(E) Covariation of half-saturation concentration with maximum growth rate for ammonium only (subset from panel C). See
Fig. 3C–E for phosphate, nitrate, and silicate. (F) Covariation of specific affinity with maximum growth rate for ammonium only
(subset from panel D). See Fig. S11B–D for phosphate, nitrate, and silicate. (G) Covariation of half-saturation concentration
with maximum growth rate for glucose only (subset from panel A). See Fig. 3F for covariation within species. (H) Covariation
of specific affinity with maximum growth rate for glucose only (subset from panel B). See Fig. S11D for covariation within
species.
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FIG. S11. Covariation between maximum growth rate and specific affinity by resource. (A) Covariation of maxi-
mum growth rate gmax and specific affinity gmax/K across all resources and isolates (from Fig. S9A). Marker shapes distinguish
autotrophs (squares) from heterotrophs (circles); colors indicates the limiting resource, with the number of measurements n
given in parentheses. We compute the Spearman rank correlation ρ and p-value across the pooled set of isolates. (B) Subset
of measurements from panel A for phosphate (only autotroph isolates shown). (C) Subset of measurements from panel A for
nitrate. (D) Subset of measurements from panel A for silicate. (E) Covariation between maximum growth rate gmax and glucose
specific affinity gmax/K for measurements of E. coli (green) and S. cerevisiae (orange), with Spearman rank correlations ρ and
p-values by species.

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 18, 2022. ; https://doi.org/10.1101/2022.05.04.490627doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.04.490627


26

(A) (B)

data subset from 
Edwards et al. 2015 

ρ = 0.06
(p = 0.79)

<latexit sha1_base64="V6ZDP/aIZNjQMHQnI0dVhYxBRho="></latexit>

ρ = 0.58
(p = 0.012)

<latexit sha1_base64="5gw/szSJPou0vhCkRJhrvsVQLDg="></latexit>

FIG. S12. Covariation between uptake and growth rate parameters for phosphate based on the phytoplankton
trait database by Edwards et al. [44]. (A) Covariation between the half-saturation concentration k for uptake rate and the
half-saturation concentration K for growth rate (Eq. (1)). The dashed diagonal line indicates perfect agreement (x = y), and
we calculate the Spearman rank correlation ρ with p-value. We show all data points from Edwards et al. [44] which included
half-saturation concentrations for uptake and growth rate. These data points are for phosphate as the limiting resource.
(B) Covariation between maximum uptake rate vmax in the Michaelis-Menten model and the maximum growth rate gmax in
the Monod model, with Spearman rank correlation ρ and p-value. The data shown here corresponds to the same measurements
as in panel A but with one fewer data point, since one isolate lacked the measurement for maximum growth rate. Color and
marker shape are equivalent to Fig. 2A and indicate that the subset of data shown here includes only eukaryotic organisms
(orange fill) capable of autotrophy (square shape).
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FIG. S13. Selection within a batch growth cycle. (A) The fold-change spectrum (thick lines) throughout the growth cycle
for high and low initial concentration R0 (dotted lines). Curves are computed from the weight term in Eq. (S42) with effective
biomass yield Ȳ = 1 and N0 = 0.01. (B) The transient resource concentration, starting from different initial concentrations,
versus generations of biomass growth (gray lines). The lowest line (R0 = 1) corresponds to the resource trajectory for the
selection scenario used for the phase diagram in Fig. S15. The transient resources are converted into generations using the
equations for resource consumption, assuming an identical biomass yield Y = 1 for both strains and initial biomass N0 = 0.01.
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FIG. S14. Test of the selection coefficient approximation. The predicted selection coefficient across a sample of wild-type
and mutant strains, compared to the selection coefficient (Supplementary Information Sec. S6) from simulation of the differential
equations (Supplementary Information Secs. S3 and S4). The black diagonal line indicates perfect agreement between simulation
and prediction. We draw the wild-type traits over four orders of magnitude and sample relative mutant effects on maximum
growth rate, half-saturation concentration, and biomass yield from a cubic region in trait space: [−0.5, 0.5]3. Each strain pair
is systematically evaluated at different initial frequencies x = 0.01, 0.5, 0.99 using the general Eq. (S47) and contributes three
data points. Without loss of generality, we fix the initial biomass to N0 = 0.01 and initial resource concentration to R0 = 1.
The trait values for the half-saturation concentration K span two orders of magnitude around this concentration such that we
cover both limiting scenarios with dominant selection on maximum growth rate (R0 " K) and half-saturation concentration
(R0 # K).

deleterious mutation

beneficial mutation

FIG. S15. Diagram of selection across mutation effects under batch growth. The space of mutation effects on
maximum growth rate γ = (gmax

mut −gmax
wt )/gmax

wt and half-saturation concentration κ = (Kmut−Kwt)/Kwt relative to a wild-type
strain (central dot), with green marking the space of mutations that are overall beneficial (s > 0) and red marking mutations
that are overall deleterious (s < 0) according to Eq. (S47).
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Kmut
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resources

FIG. S16. The gleaner and opportunist strategies in the Monod growth model. (A) The growth rate g(R) as a
function of the external resource concentration R for two strains with a tradeoff. The opportunist strain (green) has a higher
maximum growth rate gmax = 1.5 compared to the gleaner strain (orange) with gmax = 1. But the gleaner has the growth
rate advantage at low concentrations due to a smaller half-saturation concentration K = 0.5 (orange dotted line) relative to
the opportunist with K = 10 (green dotted line). (B) A single growth cycle for the gleaner and opportunist strain pair from
panel A in competition. We simulate the population dynamics according to Eq. (S11), starting from an initial mutant frequency
x = 0.5 and total initial biomass N0 = 0.01. On a separate axis, the transient resource concentration R (gray line, initial value
R0 = 24) and in the panel title, the components of selection as computed from Eq. (S47).
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(A)

(D)(C)

FIG. S17. Selection dependence on resource concentration under fixed-bottleneck batch dynamics. (A) Depen-
dence on external resource concentration R0 of the total selection coefficient (purple) and its two components at high (shigh, red)
and low (slow, blue) resource concentrations under a fixed bottleneck (Eq. (S47)). (B) Selection slow on growth at low resource
concentrations (top panel) decomposed into two constituent factors (bottom panel) at fixed bottleneck biomass (N0 = 10−3).
The top panel is the same as panel A for the approximate selection coefficient slow; in the bottom panel, the two factors that
constitute slow are the trait factor from Eq. (S60) in green and the log term from Eq. (S61) in gray. The log term is related
but not identical to the number of generations in the growth cycle. Panels A and B are based on an example mutation with
relative effects γ = 0.01 on maximum growth rate and κ = −0.04 on half-saturation concentration over the wild-type traits
gwt = 1 and Kwt = 1. (C) Selection on the half-saturation concentration K as a function of resource concentration R0 for
three different values of K (different shades of blue). The inset shows a numerical calculation (orange points) of the optimal
resource concentration Ropt that maximizes selection on K as a function of the wild-type half-saturation Kwt; the gray line is
the identity. Parameters are the same as in panels A and B, but we include two alternative wild-type half-saturation concen-
trations Kwt = 10 (lightest blue) and Kwt = 0.1 (darkest blue). (D) The distribution of beneficial selection coefficients (purple)
as a function of initial resource concentration R0, with the variance (which is proportional to the speed of adaptation) shown
as the dashed gray line and plotted against the right axis. The inset shows the underlying sample of mutations according to
their relative effects on maximum growth rate γ and half-saturation concentration κ. We sample the effects of mutations from
independent Gaussian distributions for γ (mean µ = 0, s.d. σ = 0.01) and κ (mean µ = 0, s.d. σ = 0.02). All panels assume
initial population biomass N0 = 0.001, initial mutant frequency x = 0.01, and equal yields for mutant and wild-type.
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FIG. S18. Selection dependence on resource concentration under fixed-dilution batch dynamics. Same as
Fig. S17A, but for fixed-dilution batch dynamics with D = 1000.
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FIG. S19. Schematic of evolutionary dynamics in the strong-selection weak-mutation (SSWM) regime. The
top panel shows a schematic of the population biomass undergoing cycles of batch dynamics with serial transfers. The middle
panel shows the genetic composition of the population. The population begins with a half-saturation concentration K1. Then
a mutation arises with a different half-saturation K2 (blue), which increases in frequency until it fixes. Then another mutation
with a half-saturation value K3 arises (magenta), and the process continues. The bottom panel shows a simplified algorithm for
this process that we use in our simulations (Supplementary Information Sec. S11), where mutations are determined to fix or go
extinct one at a time based on their selection coefficients, without explicitly simulating their intermediate frequency dynamics.
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aevo

FIG. S20. Selection-drift balance under batch dynamics. (A) Selection slow on the half-saturation concentration K as
a function of the current wild-type trait value in the population (blue line, Eq. (S47)), with mutation effect κmax = −10−2.
The horizontal black line marks the strength of genetic drift; its intersection with the selection coefficient defines the value of
Kevo at which selection-drift balance occurs (vertical dotted line; Eq. (3)). Above this point, selection is stronger than genetic
drift, and so the half-saturation concentration will adapt downward until it reaches that point. (B) Selection on the specific
affinity a = gmax/K as a function of the current wild-type trait value in the population (orange line, Eq. (S52c)) assuming a
relative mutation effect α = 10−2 that acts directly on the specific affinity instead of on the half-saturation concentration. For
the specific affinity, adaptation means the trait value increases. Similar to panel A, the intersection of the selection coefficient
with the black line (strength of genetic drift) defines the evolved trait value aevo at selection-drift balance. Parameters are
identical in both panels with R0 = 1, N0 = 0.01, Ne = 103, and x = 0.001. We set mutant and wild-type to equal maximum
growth rates and equal yields. This plot is based on fixed bottleneck biomass N0, but we observe similar dependences for
fixed dilution factor D. In that case, we rewrite Eq. (S47) (resp. Eq. (S52c)) in terms of D (replacing N0 using Eq. (S21)) and
see that the selection coefficient depends on the wild-type trait K with the same functional form.
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FIG. S21. The evolved half-saturation concentration as a function of experimental parameters with independent
genetic drift. (A) We numerically solve for the evolved half-saturation concentration Kevo under selection-drift balance (using
Eqs. (2) and (3)) as a function of the fixed-bottleneck biomass N0 and initial resource concentration R0, where the effective
population size Ne = 105 is an independent parameter. Where the selection-drift balance condition is infeasible (gray area),
the half-saturation concentration evolves neutrally without steady state. The insets show cross-sections along initial resource
concentration R0 (solid line) and bottleneck biomass N0 (dashed line). (B) Same as panel A, but for a larger effective population
size Ne = 107. (C) Same as panel A but for fixed-dilution batch dynamics, with varying D instead of N0. (D) Same as panel C,
but for a larger effective population size Ne = 107. All panels use identical growth rates gmax = 1 and biomass yields Y = 1
for wild-type and mutant strain with a fixed mutation effect κ = 0.01 on the half-saturation concentration. The initial mutant
frequency x = 1/Ne is adjusted to the effective population size Ne.
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FIG. S22. Simulated evolutionary trajectories of the half-saturation concentration under batch dynamics. We
simulate the time-course of evolution in the half-saturation concentration under the SSWM regime (Supplementary Information
Sec. S11) for different strengths of genetic drift (1/Ne). Each line corresponds to a separate run of the stochastic evolution
process. Here mutations are sampled with random effect κ = (Kmut −Kwt)/Kwt from a uniform distribution in [−0.1, 0.1] and
accepted or rejected according to their probability of fixation (Supplementary Information Sec. S11). (A)–(C) In the top row,
we use the approximate fixation probability Eq. (S63) which depends only on the selection coefficient at the initial mutant
frequency x = 1/Ne. (D)–(F) In the bottom row, we use the integrated form of the fixation probability from Eq. (S62) that
takes into account the frequency-dependence of the mutant selection coefficient (Eq. (S47)). For each panel, we numerically
calculate the half-saturation concentration Kevo at selection-drift balance (dashed line) using Eqs. (2) and (3). To guide the
eye, we also mark the half-saturation concentration K = R0 that matches the environmental concentration (gray line). All
panels are based on identical maximum growth rates gmax = 1 and biomass yields Y = 1 for the mutant and wild-type strain
such that only the half-saturation concentration evolves. The length of the growth cycle is constant with ≈ 6.6 generations at
initial resource concentration R0 = 1 and fixed-bottleneck biomass N0 = 0.01.
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aevo

FIG. S23. Simulated evolutionary trajectories for the specific affinity under batch dynamics. We simulate the
time-course of evolution in the SSWM regime (Supplementary Information Sec. S11) similar to Fig. S22, but assuming that
mutations directly affect the specific affinity a = gmax/K instead of the half-saturation K alone. Here mutations are sampled
with random effect α = (amut − awt)/awt from a uniform distribution in [−0.1, 0.1] and accepted or rejected according to their
probability of fixation (compare also Sec. S14). Here we use the approximate fixation probability Eq. (S63) which depends on
the selection coefficient at the initial mutant frequency x = 1/Ne. The panels (A)–(C) only differ in the effective population size
Ne used for the simulation. For each panel, we numerically calculate the specific affinity aevo at selection-drift balance (dashed
line) using Eqs. (S52c) and (3). All panels are based on identical maximum growth rates gmax = 1 and biomass yields Y = 1
for the mutant and wild-type strain such that only the specific affinity evolves. The length of the growth cycle is constant with
≈ 6.6 generations at initial resource concentration R0 = 1 and fixed-bottleneck biomass N0 = 0.01.

}
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FIG. S24. Detecting the half-saturation concentration K from time-series data. We use an initial resource
concentration R0 = 10 close to the half-saturation concentration of the wild-type strain (Kwt = 5; see Fig. 1) to simulate a
monoculture growth curve from Eq. (S11) (Supplementary Information Sec. S3). The population leaves steady exponential
growth phase (gray area) to enter the deceleration phase (white area). To fit the half-saturation concentration K, the time-series
must include multiple data points in the deceleration phase (orange dots; Supplementary Information Sec. S15). On the right
axis, a bracket marks the fold-change from the onset of deceleration at biomass to the saturation.
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fixed bottleneck transfer

fixed dilution transfer

(A)

(B)

FIG. S25. Environmental dependence of selection and genetic drift under batch dynamics. The top panel
shows selection slow on the half-saturation concentration K (blue solid line, left axis) and the strength of genetic drift 1/Ne

(dashed black line, right axis) as functions of the resource concentration R0 under fixed-bottleneck batch dynamics. In this
case, the effective population size is independent of the resource concentration. We use parameters based on the LTEE
(same as in Fig. 5C): N0 = 4.6 × 105 cells/mL and Ne = V N0 using culture volume V = 10 mL, gmax = 0.888/h, and
Y = 3.3× 108 cells/µmol [23]. The bottom panel shows the same but for fixed-dilution batch dynamics, with D = 100; in this
case the effective population size is proportional to the resource concentration, and thus the strength of genetic drift decreases
with R0.

(A) fixed bottleneck transfer (B) fixed dilution transfer

infeasible

infeasible

FIG. S26. The evolved half-saturation concentration as a function of experimental parameters under coupled
genetic drift. (A) Same as Fig. S21A, but where the effective population size Ne is proportional to the biomass bottleneck
N0 as in well-mixed laboratory experiments with fixed-bottleneck batch dynamics. We set Ne = N0V , where V = 105 is the
culture volume such that a bottleneck biomass of N0 = 0.01 corresponds to an effective population size of Ne = 103 cells.
(B) Same as panel A but for fixed-dilution batch dynamics, where the effective population size is Ne = N0V = V R0Y/(D− 1)
(Eq. (S21)).
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LTEE 
condition

FIG. S27. Inferred mutation effect for the Long-Term Evolution Experiment. Evolved half-saturation concentration
Kevo for glucose as a function of the dilution factor D under fixed-dilution batch dynamics. If we assume the glucose half-
saturation for E. coli in the LTEE is under selection-drift balance, then we can use this dependence to infer the value of
the mutation effect κ that would be consistent with the other known parameters of the system. We numerically solve for
selection-drift balance using Eqs. (2) and (3) with dilution factor D = 100, initial glucose concentration R0 = 139 µM, and
evolved half-saturation concentration K = 0.489 µM (red dot). We obtain an estimate of κ = 6× 10−6.
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S1. EFFECT OF COLIMITATION ON18

ESTIMATES OF MONOD GROWTH TRAITS19

The Monod model (Eq. (1)) assumes there is only a sin-20

gle limiting resource whose concentration affects growth21

rate. However, microbes rely on multiple resources to22

grow, and therefore their growth rate may depend on the23

concentrations of all these resources simultaneously. Here24

we address how these other resources would affect the25

estimation of Monod growth traits for a focal resource.26

For simplicity, we consider the case of two essential, inde-27

pendent resources, where resource 1 is the focal resource28

(e.g., glucose) that we vary over a range of concentrations29

to measure its Monod parameters gmax
1 and K1, and re-30

source 2 is another resource (e.g., ammonium) that is31

fixed in the background medium. While there is no con-32

sensus on the best model for this behavior, we consider33

three of the most widely-used models:34

Liebig model [1–3]:

g(R1, R2) = min

(

gmax
1 R1

R1 +K1
,
gmax
2 R2

R2 +K2

)

, (S1)

Additive model [1, 4]:

g(R1, R2) = gmax R1R2

K2R1 +R1R2 +K1R2
, (S2)

∗ To whom correspondence should be addressed. Email: jus-

tus.fink@env.ethz.ch
† To whom correspondence should be addressed. Email: mman-

hart@rutgers.edu

Multiplicative model [2, 4]:

g(R1, R2) = gmax

(

R1

R1 +K1

)(

R2

R2 +K2

)

. (S3)

Assuming one of these models is the true description35

of how growth rate depends on resource concentrations,36

we imagine fitting an apparent Monod model gapp(R1)37

for resource 1 to data generated by the true model, with38

fixed R2:39

gapp(R1) = gmax
1,app(R2)

R1

R1 +K1,app(R2)
, (S4)

where gmax
1,app is the apparent maximum growth rate for40

resource 1 and K1,app is its apparent half-saturation con-41

centration, both of which may depend on the concentra-42

tion R2 of resource 2. All of the true models correspond43

exactly to the apparent Monod model — with appar-44

ent parameters equaling the true ones, gmax
1,app = gmax

145

and K1,app = K1 — if the concentration R2 is much46

larger than its half-saturation concentration K2, since47

the growth rate no longer depends on resource 2 once48

its concentration is saturating. Therefore R2 ! K2 is49

the general condition on the background resource which50

determines whether we are in the desired regime of limi-51

tation only for resource 1.52

If the concentration R2 is smaller or not much larger53

than its half-saturation concentration K2, we can then54

use the models to determine how colimitation with re-55

source 2 affects estimates of Monod parameters for re-56

source 1. For all of the true models, the apparent maxi-57

mum growth rate gmax
1,app is an underestimate of the true58

maximum growth rate gmax
1 . Specifically,59
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Liebig model:

gmax
1,app(R2) ≈ min

(

gmax
1 ,

gmax
2 R2

R2 +K2

)

, (S5)

Additive model: gmax
1,app(R2) = gmax R2

R2 +K2
, (S6)

Multiplicative model:

gmax
1,app(R2) = gmax R2

R2 +K2
. (S7)

That is, the apparent maximum growth rate for resource60

1 is a Monod-type function of resource 2, meaning it is61

very close to the true gmax
1 for large R2 as expected, but62

becomes a significant underestimate when R2 is below63

its half-saturation concentration K2. Note that the ap-64

parent parameters for the Liebig model are only approx-65

imate because the Liebig model will not exactly fit the66

Monod model for a single resource; this is because at67

some concentration there is a sharp transition in limita-68

tion between resources, owing to the minimum function.69

The apparent half-saturationK1,app is also an underes-70

timate of the true K1 for the Liebig and additive models,71

but equals the true value for the multiplicative model:72

Liebig model:

K1,app(R2) ≈
K1

2
gmax
1

min
(

gmax
1 ,

gmax
2 R2

R2+K2

) − 1
, (S8)

Additive model: K1,app(R2) = K1
R2

R2 +K2
, (S9)

Multiplicative model: K1,app(R2) = K1. (S10)

Note also that this means the apparent specific affinity73

gmax
1,app/K1,app is always correct for the additive model,74

since the dependence on R2 cancels out between the ap-75

parent maximum growth rate and half-saturation, while76

it is biased for the Liebig and multiplicative models.77

To what extent might these biases affect our data?78

We can test this condition in a subset of measurements79

for E. coli on glucose where the nitrogen source is am-80

monium and has a reported concentration. The mea-81

sured K for ammonium in E. coli is 2.6 µM (Dataset S1,82

sheet 1). In the experiments that measure K for glucose,83

the ammonium concentrations are all orders of magni-84

tude higher (0.16 mM to 18.7 mM; Dataset S1, sheet 2).85

This indicates that ammonium was not colimiting with86

glucose in these experiments. Indeed, for almost all the87

resources included in our data, theK half-saturation con-88

centrations are much lower than typical laboratory con-89

centrations. This is not surprising in light of our evo-90

lutionary model that predicts K will often evolve to be91

much lower than the environmental concentration of the92

resource (Eq. (4)), and presumably explains why colimi-93

tation of essential independent resources has been rarely94

observed empirically [3].95

S2. ALTERNATIVE MODELS OF GROWTH96

RATE DEPENDENCE ON RESOURCE97

CONCENTRATIONS98

Table S1 lists several common models for growth99

rate dependence on resource concentration R. Some of100

these models are mathematically equivalent; for example,101

Holling [11] proposed a classification scheme for growth102

models (commonly referred to as Type I, II, and III)103

for the response of predator growth rate on prey den-104

sity, which exactly corresponds to other models of growth105

in Table S1. Some of these models are also equiva-106

lent in certain limits. At high resource concentrations107

R/K ! 1, all of the models are approximately equiva-108

lent to the constant growth model, since the assumption109

is that resources are saturating and growth is limited by110

other processes. On the other hand, at low concentra-111

tions R/K $ 1, the Monod, Blackman, and Bertalanffy112

models are approximately equivalent to the linear model.113

There are also some important differences between114

models. The Blackman, Monod, Bertalanffy, and Hill115

models all saturate at high resource concentrations, but116

the nature of that saturation qualitatively differs. That117

is, the Monod model converges most slowly due its power118

law dependence on R. The Hill model also converges as119

a power law, but assuming n > 1, it does so more quickly120

than Monod. The Bertalanffy model converges even more121

rapidly due to its exponential dependence on R. Finally,122

the Blackman model converges to a constant immediately123

at the half-saturation concentration R = K.124

The model most significantly different from the rest is125

the Droop model, since it depends not on the external126

resource concentration directly, but only on the resource127

concentration internal to the cell. Therefore this requires128

inclusion of a separate resource uptake process to be in-129

cluded in our framework. Under steady-state (chemo-130

stat) growth, this will also be equivalent to the Monod131

model under a shift in the resource concentration param-132

eter Q−Q0 → R, but under non-steady state conditions133

(e.g., batch dynamics), the Droop model can differ [16].134

S3. MODEL OF BATCH POPULATION135

DYNAMICS136

For batch culture we describe the dynamics of the wild-137

type and mutant biomasses Nwt(t) and Nmut(t) and the138
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model definition references

constant g(R) = gmaxΘ(R) [5–7]

linear g(R) = gL ·

R
K

[8]

Blackman or Holling Type I g(R) = gmax
·

(

1 +
(

R
K

− 1
)

Θ(K −R)
)

[9–11]

Monod or Holling Type II g(R) = gmax
·

R
R+K

[11, 12]

Droop (depends on internal concentration Q) g(Q) = gmax
·

Q−Q0
Q

[13–16]

Bertalanffy g(R) = gmax

(

1− e−R/K
)

[4, 17]

Hill, Moser, or Holling Type III g(R) = gmax
·

Rn

Rn+Kn [11, 18, 19]

TABLE S1. Overview of models for microbial population growth rate. For each entry, the column “references” lists
works that establish or build on the model and have been cited elsewhere in this text. The symbol Θ denotes the Heaviside
step function which is 1 for a positive argument and zero otherwise.

definition definition

biomass concentrations Nwt(t), Nwt(t) effective growth rate ḡ(R) = 1−x
Ywt/Ȳ

· gwt(R) + x
Ymut/Ȳ

gmut(R)

initial mutant frequency x

extracellular resource conc. R(t) effective yield Ȳ =
[

1−x
Ywt

+ x
Ymut

]−1

initial biomass concentration N0

initial resource concentration R0 effective max. growth rate ḡmax = 1−x
Ywt/Ȳ

· gmax
wt + x

Ymut/Ȳ
· gmax

mut

population growth rates gwt(R), gmut(R)

biomass yields Ywt, Ymut critical concentration Z = KwtKmut

[

gmax
wt /ḡmax

Ywt/Ȳ
1−x
Kwt

+
gmax
mut /ḡ

max

Ymut/Ȳ
x

Kmut

]

max. growth rates gmax
wt , gmax

mut

half-saturation concentration Kwt,Kmut

specific affinity a = gmax/K

TABLE S2. Key notation and definitions used in the model. The subscripts “wt” and “mut” correspond to wild-type
and mutant. Sometimes we drop the subscript “wt“ and use a plain letter (K or gmax or a) for the wild-type trait (for example,
in the main text).

extracellular resource concentration R(t) using the fol-139

lowing differential equations [20, 21]:140

1

Nwt

dNwt

dt
= gwt(R), Nwt(0) = (1− x)N0,

1

Nmut

dNmut

dt
= gmut(R), Nmut(0) = xN0,

dR

dt
= −

1

Ywt

dNwt

dt
−

1

Ymut

dNmut

dt
, R(0) = R0.

(S11)

See Table S2 for a summary of the main notation and141

definitions used throughout this article. Growth begins142

with an external resource concentration R0 and total143

biomass N0, a fraction x of which is the mutant strain.144

The strains then grow with per-capita rates gwt(R) and145

gmut(R), which depend on the extracellular resource con-146

centration R(t); here we neglect other growth dynam-147

ics such as lag [5, 6] and death [22] for simplicity, but148

they are straightforward to add within this framework.149

The resource concentration R(t) declines in proportion to150

growth of biomass, where the yields Ymut and Ywt for each151

strain set the amount of new biomass per unit resource.152

Here we neglect resource consumption due to mainte-153

nance of existing biomass [23], since we expect consump-154

tion for maintenance to be much less than consumption155

for growth during rapid growth. Growth continues until156

the resource is depleted or the growth rates reach zero.157

While it is difficult to analytically solve these dynamics158

in general, it is straightforward to numerically solve the159

model for a given set of parameters (Sec. S4).160

We note that for the Monod model in the limit of low161

resource concentration R, or any model of growth rate162

that depends approximately linearly on R (Table S1),163

the batch dynamics of Eq. S11 are equivalent to a lo-164

gistic growth model. We can integrate the equation for165

resource consumption dR/dt in Eq. S11 to express the166

current resource concentration R(t) as a function of the167

biomasses of wild-type Nwt and mutant strain Nmut:168

R = R0 +
N0

Ȳ
−

Nwt

Ywt
−

Nmut

Ymut
, (S12)

where Ȳ is the effective population yield (Table S2). Sub-169

stituting R from Eq. (S12) into the equations for dNwt/dt170
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and dNmut/dt from Eq. S11 with linear growth rate de-171

pendence (g(R) ≈ gmaxR/K), we obtain172

1

Nwt

dNwt

dt
=

gmax
wt

Kwt

(

R0 +
N0

Ȳ
−

Nwt

Ywt
−

Nmut

Ymut

)

,

(S13a)

1

Nmut

dNmut

dt
=

gmax
mut

Kmut

(

R0 +
N0

Ȳ
−

Nwt

Ywt
−

Nmut

Ymut

)

.

(S13b)

This is equivalent to logistic growth for both species or173

competitive Lotka-Volterra dynamics.174

Once the resource R is depleted during a single cycle175

of batch growth, we transfer a fraction 1/D of the popu-176

lation to an environment with a new supply of resources177

at the original concentration R0, after which the popu-178

lation resumes growth in the new environment according179

to Eq. (S11). The factor D is known as the dilution fac-180

tor and is the ratio of the total biomass at the end of181

the previous growth cycle and the total biomass at the182

beginning of the next growth cycle [7].183

In principle the dilution factor D and the bottleneck184

biomass concentration N0 can vary over each growth cy-185

cle, depending on how we perform the transfers. Let186

superscript n refer to the dynamics during the nth batch187

growth cycle over a series of dilutions and transfers. The188

biomass at the beginning of the (n+ 1)th cycle, N
(n+1)
0 ,189

equals the biomass at the end of the previous cycle n190

divided by the dilution factor D(n) for that cycle:191

N
(n+1)
0 =

1

D(n)

(

N
(n)
wt (tsat) +N

(n)
mut(tsat)

)

, (S14)

where tsat is the saturation time of the growth cycle. To192

determine the relationship with the bottleneck size of the193

previous growth cycle, we use the relationship between194

resource and biomass concentrations (Eq. (S12)) to show195

that at the end of the growth cycle, R(tsat) = 0, and so196

R(n)(tsat) = 0

= R0 +
N

(n)
0

Ȳ (n)
−

N
(n)
wt (tsat)

Ywt
−

N
(n)
mut(tsat)

Ymut
.

(S15)

Using this, we can insert the identity to obtain197

N
(n+1)
0 =

1

D(n)

(

N
(n)
wt (tsat) +N

(n)
mut(tsat)

)

=
1

D(n)





R0 +
N

(n)
0

Ȳ (n)

N
(n)
wt (tsat)
Ywt

+
N

(n)
mut(tsat)
Ymut





·
(

N
(n)
wt (tsat) +N

(n)
mut(tsat)

)

=
1

D(n)

(

R0 +
N

(n)
0

Ȳ (n)

)

(

1− x(n+1)

Ywt
+

x(n+1)

Ymut

)−1

(S16)

where we have used the fact that the frequencies of each198

strain at the end of the nth cycle equal their frequencies199

at the beginning of the (n+ 1)th cycle:200

N
(n)
mut(tsat)

N
(n)
wt (tsat) +N

(n)
mut(tsat)

= x(n+1). (S17)

Using the equation for the effective yield (Table S2), we201

obtain202

N
(n+1)
0 =

1

D(n)

(

R0 +
N

(n)
0

Ȳ (n)

)

Ȳ (n+1). (S18)

This establishes the general relationship between the bot-203

tleneck size and the dilution factor.204

Under fixed-bottleneck batch dynamics (Fig. 4B, top205

panel), N
(n)
0 is a constant value N0, and so we can re-206

arrange Eq. (S18) to determine how the dilution factor207

varies at each cycle:208

D(n) =
R0Ȳ

(n+1)

N0
+

Ȳ (n+1)

Ȳ (n)
. (S19)

This shows that the dilution factor changes only if the209

strains have different yields, such that the effective yields210

Ȳ (n) change over cycles as the strain frequencies change.211

On the other hand, under fixed-dilution batch dynam-212

ics (Fig. 4B, bottom panel), D(n) is a constant D, and213

Eq. (S18) simplifies to214

N
(n+1)
0 =

1

D

(

R0 +
N

(n)
0

Ȳ (n)

)

Ȳ (n+1). (S20)

Under both serial transfer regimes, the steady state oc-215

curs when D(n+1) = D(n), N
(n+1)
0 = N

(n)
0 , and Ȳ (n+1) =216

Ȳ (n), which implies217

D =
R0Ȳ

N0
+ 1. (S21)

This steady state occurs if 1) all strains have the same218

yields, such that the effective yield is constant; 2) one219

strain goes extinct; or 3) the two strains stably coexist.220

S4. NUMERICAL METHODS FOR BATCH221

DYNAMICS222

It is not possible to analytically solve the ordinary dif-223

ferential equations for batch dynamics (Eq. S11). To ob-224

tain explicit solutions to this model, we therefore numeri-225

cally integrate the equations using the Scipy package [24].226

We use the default Runge-Kutta algorithm “RK45” in227

the function solve ivp. This interpolates the differential228
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equation in fourth-order expansion over a short step size229

δt. The step size is automatically adjusted by solve ivp230

to keep the error of integration below a threshold fixed231

by the user through the parameters atol and rtol. Our232

choices of atol = 10−12 and rtol = 10−8 are more re-233

strictive than the default setting and ensure low errors234

on the state variables Nwt, Nmut, and R.235

The population dynamics in Eq. S11 reach the final236

equilibrium when all resources have been converted into237

biomass. This final equilibrium is the only attractor since238

the resources are finite and biomass is strictly increasing239

(no cell death within a batch growth cycle); in particular,240

this system does not allow for limit cycles. However, the241

time to reach this equilibrium is infinite for all growth242

models in Table S1 (including the Monod model) except243

for the constant growth rate model. This is because the244

smooth decline of growth rate prevents full depletion of245

resources and allows populations to grow indefinitely at246

infinitesimal but strictly positive growth rates. (The con-247

stant growth rate model allows for the same growth rate248

at arbitrarily low resource concentrations, which means249

the resources deplete to zero in finite time [5–7].)250

For numerical calculations we must therefore set a fi-251

nite saturation time tsat such that the population dy-252

namics are sufficiently close to their equilibrium state.253

We choose this time using the selection coefficient, which254

quantifies the relative change in the strain frequencies.255

Define the cumulative selection coefficient up to time t256

for a batch growth cycle as257

st = log

(

Nmut(t)

Nwt(t)

)

− log

(

Nmut(0)

Nwt(0)

)

. (S22)

(We further motivate this definition of selection in258

Sec. S6.) The total selection coefficient for the batch259

cycle is the cumulative selection coefficient in the limit260

of infinite time:261

s = lim
t→∞

st. (S23)

We want to define the saturation time tsat as the time262

where the difference between the cumulative selection up263

to that time and the total selection is less than some tol-264

erance. We can do this by determining an upper bound265

on the difference between total selection s and the selec-266

tion at finite time t. As the population continues to grow267

after time t, the change in frequencies is bounded by the268

remaining available resources R(t). The two possible ex-269

tremes are if all remaining resources go to the wild-type,270

in which case the biomass of the wild-type increases by271

R(t)Ywt and the mutant biomass remains constant, or if272

all remaining resources go to the mutant, in which case273

the biomass of the mutant increases by R(t)Ymut and the274

wild-type remains constant. Therefore the largest possi-275

ble change in selection occurs in one of these two scenar-276

ios, and so the deviation in selection at time t from its277

equilibrium value is bounded by278

|st − s| ≤ max
{

log

(

1 +
R(t)Ymut

Nmut(t)

)

,

log

(

1 +
R(t)Ywt

Nwt(t)

)

}

.

(S24)

We define the saturation time tsat as the shortest time279

(infimum) such that the difference between the cumu-280

lative selection at that time and the total selection is281

smaller than a given error tolerance ε > 0:282

tsat = inf
{

t > 0 : |st − s| < ε
}

. (S25)

We implement this algorithmically by evaluating the sim-283

ulation up to an initial time t, then evaluating the max-284

imum future error on the selection coefficient from the285

right hand side of Eq. (S24), and then extending the sim-286

ulation to t + 10 if the error exceeds a defined tolerance287

ε = 10−8. We iterate this process until the error is less288

than the threshold.289

S5. MODEL OF CHEMOSTAT POPULATION290

DYNAMICS291

Similar to the batch model of Eq. (S11), the dynamics292

of biomass and resource concentrations under continuous293

culture (chemostat) are294

1

Nwt

dNwt

dt
= gwt(R)− d, Nwt(0) = (1− x)N0,

1

Nmut

dNmut

dt
= gmut(R)− d, Nmut(0) = xN0,

dR

dt
= −gwt(R)

Nwt(t)

Ywt
− gmut(R)

Nmut(t)

Ymut

+ d(Rsource −R(t)),

R(0) = R0,

(S26)

295

296

where Rsource is the concentration of the resource in the297

source media fed into the culture. In a laboratory chemo-298

stat, the dilution rate is d = ω/V , where ω is the outflow299

rate (volume per time) and V is the volume of the culture300

vessel [25].301

In the SSWM regime where mutations arise only rarely302

(Sec. S11), we can assume that the mutant arises on303

the background of the wild-type at steady-state growth.304

Let N∗
wt be the steady-state concentration of wild-type305

biomass and R∗ be the steady-state concentration of the306

resource. Note that R∗ here is the chemostat-specific re-307

alization of the ecological concept of a minimum resource308

concentration required for positive net growth, as used309

in resource-ratio theory [26, 27]. Since dNwt/dt = 0 in310

steady state, the resource concentration R∗ must satisfy311
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gwt(R
∗) = d. (S27)

For the Monod model, we can solve this explicitly for R∗
312

to obtain313

R∗ = Kwt
d

gmax
wt − d

. (S28)

Note that this concentration R∗ is independent of the314

source concentration Rsource. Using the steady-state con-315

dition for the resource dR/dt = 0, we can then obtain the316

steady-state biomass concentration317

N∗
wt = (Rsource −R∗)Ywt. (S29)

This establishes a feasibility condition for steady state:318

the dilution rate d must be less than the growth rate at319

the source concentration gwt(Rsource), which is the max-320

imum that the culture can realize for the given resource321

supply. This criterion has been used by Jannasch [28, 29]322

to define a minimum resource threshold required for pop-323

ulation growth at a given dilution factor d. This mini-324

mum resource threshold corresponds to the steady-state325

concentration R∗, which is related to the parameter K326

but also depends on d.327

S6. DEFINITION OF SELECTION328

COEFFICIENT329

The instantaneous selection coefficient σ(t) measures330

the rate of change in the logarithm of relative mutant331

frequency:332

σ(t) =
d

dt
log

(

Nmut(t)

Nwt(t)

)

. (S30)

This is a sufficient statistic for frequency change in the333

sense that knowledge of the instantaneous selection co-334

efficient and the current mutant frequency is sufficient335

to predict the future mutant frequency over a short time336

horizon.337

For population growth under batch dynamics, the re-338

peated bottlenecks between growth cycles introduce ran-339

domness in the frequency trajectory of a mutant. We340

assume that this stochastic sampling at transfer domi-341

nates over the random fluctuations in individual birth342

rates within the growth cycle. Thus, the genetic drift343

in our model of serial transfer evolution occurs at the344

timescale of one growth cycle. To compare the strength345

of drift and selection on the same timescale, we integrate346

the instantaneous selection coefficient (Eq. (S30)) over347

time348

s =
1

∆t

∫ ∆t

0

σ(t) dt, (S31)

where ∆t is the length of the growth cycle. Note that349

the selection coefficient s is still defined as a rate per350

unit time and in the limit ∆t → 0 exactly matches the351

instantaneous selection coefficient (Eq. (S30)).352

For batch dynamics the selection coefficient s deter-
mines the change of frequency over multiple growth cy-
cles. At the beginning of the nth cycle, the initial mutant
frequency x(n) is given by

x(n) =
N

(n)
mut(0)

N
(n)
mut(0) +N

(n)
wt (0)

, (S32)

where N
(n)
wt and N

(n)
mut refer to the biomass of wild-type

and mutant strains. The population grows to saturation
and possibly experiences some frequency change, which
sets the mutant frequency x(n+1) of the next cycle. This
change is summarized by the selection coefficient

s(n) = log

(

x(n+1)

1− x(n+1)

)

− log

(

x(n)

1− x(n)

)

, (S33)

which we compute from the integral definition
(Eq. (S31)) using a timescale of ∆t = 1 (per growth
cycle). Knowledge of s(n) is sufficient to predict the
initial mutant frequency in the next cycle

x(n+1) =
x(n) exp(s(n))

1 + x(n)
[

exp(s(n))− 1
] , (S34)

neglecting the stochastic effects of the dilution. Thus,353

given the starting mutant frequency x(1) and the selec-354

tion coefficients for each growth cycle s(n), the recursion355

in Eq. (S34) allows us to predict the mutant frequency356

trajectory without simulating the population dynamics357

within each growth cycle.358

S7. DERIVATION OF THE SELECTION359

COEFFICIENT FOR BATCH DYNAMICS360

For populations growing in batch culture, the selection
coefficient reduces to the cumulative difference of growth
rates:

s =

∫ ∞

0

[gmut(R(t))− gwt(R(t))] dt, (S35)

where we have inserted the equations for mutant and361

wild-type growth from our model of populations dynam-362

ics (Eq. S11) into the definition of s from Eq. (S31). The363

integral extends to infinite time for the growth dynamics364

to reach equilibrium (Sec. S4) so we therefore do not nor-365

malize by the time scale as in Eq. (S31); rather we leave366

it as understood that the selection coefficient is defined367

per growth cycle. We can change variables of the integral368

in Eq. (S35) from time t to resource concentration R:369

s =

∫ 0

R0

[gmut(R)− gwt(R)] ·
1

dR/ dt
dR, (S36)
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where we have used the fact that R ranges from R0 at370

the beginning of the growth cycle to 0 at the end of the371

growth cycle, and that R depends monotonically on t so372

that dt/dR = (dR/dt)−1.373

To compute this integral, we need to express the tran-
sient resource consumption rate dR/dt as an explicit
function of current resource concentration R. As a first
step, we rewrite the differential equation for resources
(Eq. S11) into the product form

d

dt
R(t) = −

Nwt(t) +Nmut(t)

Ȳ
(S37)

·

[

1− x(t)

Ywt/Ȳ
gwt(R) +

x(t)

Ymut/Ȳ
gmut(R)

]

,

where we use the shorthand Ȳ for the effective biomass374

yield (Table S2). This product separates into the joint375

biomass Nwt(t) +Nmut(t) and a new parameter, that we376

term the effective growth rate:377

ḡ(t, R) =
1− x(t)

Ywt/Ȳ
gwt(R) +

x(t)

Ymut/Ȳ
gmut(R). (S38)

Equation (S37) suggests that this mean of wild-type378

and mutant growth rates acts as the effective growth rate379

of the joint population Nwt(t) + Nmut(t). This effective380

growth rate is time-dependent due to the underlying fre-381

quency change x(t). Using this equation for the joint382

biomass (derived from Eq. (S12))383

Nwt(t) +Nmut(t) =

(

R0 −R(t) +
N0

Ȳ

)

Ȳ (t), (S39)

we insert this and the equation for mean growth rate384

(Eq. (S38)) into Eq. (S36) for the selection coefficient:385

s =

∫ R0

0

(

gmut(R)− gwt(R)

ḡ(t(R), R)

)

·

(

1

N0/Ȳ +R0 −R

)

dR. (S40)

Equation (S40) is an exact expression but requires full386

knowledge of the resource trajectory R(t) and its inverse387

t(R) to calculate the mean growth rate ḡ(t(R), R) in the388

denominator. For a constant growth rate model (Ta-389

ble S1), this exact expression can be computed [5, 6].390

However, for general growth models g(R) and the Monod391

model in particular, the integral Eq. (S40) can only be392

solved under an approximation. Previous work invoked393

the assumption of small initial mutant frequency x $ 1394

to replace mean growth rate and effective biomass yield395

by the wild-type traits [20, 21], but here we introduce396

a novel approximation that holds for all initial mutant397

frequencies.398

We assume that the frequency change over the growth
cycle is small, such that the mean growth rate only de-
pends on the resource concentration

ḡ(R) ≈
1− x

Ywt/Ȳ
gwt(R) +

x

Ymut/Ȳ
gmut(R), (S41)

but not otherwise on time t. That is, we neglect the time
dependence of the mutant frequency x(t). Thus, we get
the explicit integral formula for the selection coefficient:

s ≈

∫ R0

0

(

gmut(R)− gwt(R)

ḡ(R)

)

·

(

1

N0/Ȳ +R0 −R

)

dR. (S42)

This equation neglects the frequency change x(t) within399

the growth cycle but still includes dependence on the400

initial mutant frequency x. One can show that the ap-401

proximate integral in Eq. (S42) corresponds to a first-402

order expansion of the exact integral (Eq. (S40) in terms403

of transient selection coefficients inside the growth cycle,404

meaning that it is equivalent to a weak-selection approx-405

imation. We numerically evaluate the accuracy of this406

approximation in the case of the Monod model in the407

next section (Sec. S8).408

The exact selection coefficient in its integral form409

(Eq. (S40)) reveals generic properties of batch-culture410

competition. First, there is no direct selection for cell411

yield. A mutant with higher efficiency Ymut but equal412

growth response is neutral. Thus, with an uncorrelated413

mutation supply, we expect cell yield to evolve neu-414

trally [7, 30]. Second, the selection on the growth rate415

function g(R) is distributed unequally across concentra-416

tions. In the integrand of Eq. (S40), the difference in417

growth rates at each resource concentration R is weighted418

by the fold-change spectrum 1/(N0/Ȳ + R0 − R). This419

weight peaks at the initial resource concentration R0420

(see Fig. S13A) and is independent of the growth rate421

model g(R). For growth cycles with large fold-change422

(R0Y/N0 ! 1), the selection coefficient s roughly cor-423

responds to the growth rate difference at initial concen-424

trations because most generations occur at near-constant425

concentrations close to R0 (compare Fig. S13B).426

A third important property holds only approximately427

in Eq. (S42), where we see that selection only acts on428

ratios of growth rates, since the growth rates appear in429

both the numerator and denominator of the integrand.430

The dependence on growth rate ratios means that alter-431

native growth models can still lead to equivalent selection432

on traits. For example, if we take any growth rate model433

from Table S1 where the mutant and wild-type differ only434

in their maximum growth rates gmax (but not other pa-435

rameters such as K), then their selection coefficients will436

depend only on the ratio gmax
mut /g

max
mut and not other details437

of the specific model.438
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S8. CALCULATION OF THE SELECTION439

COEFFICIENT FOR THE MONOD MODEL440

In this section, we apply the integral formula Eq. (S42)
to calculate the selection coefficient for a wild-type and
mutant strain competing under the Monod model. Let

∆gmax = gmax
mut − gmax

wt , ∆K = Kmut −Kwt (S43)

denote the absolute trait differences in maximum growth
rate and half-saturation concentration between the two
strains. First, we rewrite the relative growth rate differ-
ence

gmut(R)− gwt(R)

ḡ(R)
=
∆gmax

ḡmax
(S44)

−
∆K

R+ Z
·
gmax
wt gmax

mut

ḡmaxḡmax
,

using the effective maximum growth rate

ḡmax =
1− x

Ywt/Ȳ
· gmax

wt +
x

Ymut/Ȳ
· gmax

mut (S45)

and the critical resource concentration

Z = KwtKmut ·
[gmax

wt /ḡmax

Ywt/Ȳ
·
1− x

Kwt
(S46)

+
gmax
mut /ḡ

max

Ymut/Ȳ
·

x

Kmut

]

as effective traits of the joint population to simplify the441

notation (Table S2). Equation (S44) consists of two442

terms, one proportional to the difference in maximum443

growth rates ∆gmax and the other proportional to the444

difference in half-saturation concentrations ∆K. There-445

fore after substituting this expression into Eq. (S42) and446

carrying out the integral over R, we obtain a selection447

coefficient consisting of two distinct components:448

s ≈shigh + slow (S47a)

where

shigh =
∆gmax

ḡmax
log

(

1 +
R0Ȳ

N0

)

(S47b)

slow =−
∆K

R0 +N0/Ȳ + Z

(

gmax
wt

ḡmax

gmax
mut

ḡmax

)

(S47c)

· log

((

1 +
R0Ȳ

N0

)(

1 +
R0

Z

))

.

This is the basis for Eq. (2) in the main text under batch449

dynamics.450

The formula for the selection coefficient in Eq. (S42) is451

based on an approximation of small frequency change. In452

Fig. S14 we compare the approximate selection coefficient453

against the exact selection coefficient obtained from nu-454

merically solving the differential equations for batch dy-455

namics (Eq. S11). The simulations show that the approx-456

imate selection coefficient is accurate up to large values457

of order s ≈ 1. This means that, while we mainly con-458

sider the scenario of weak selection (|s| < 1), the approx-459

imation is excellent even when selection is strong. Intu-460

itively, the approximation should break down because of461

wrongly estimating the mean resource consumption rate,462

which we expect to occur when the yields and realized463

growth rates differ strongly between the two strains. In464

Fig. S15 we also show a phase diagram of this selection465

coefficient as a function of the mutant’s traits gmax and466

K relative to their wild-type values.467

The decomposition in Eq. (S47) is useful because the468

terms correspond to components of selection on distinct469

phases of growth. The first component, shigh, measures470

selection on growth at high resource concentrations, and471

is therefore proportional to the mutational change ∆gmax
472

in the trait gmax. This mutational effect is weighed by the473

logarithm of the total fold-change of growth, which equals474

the dilution factor D = R0Y/N0 +1 (Eq. (S21)). An im-475

portant feature of selection shigh is that it depends on476

the nominal maximum growth rate gmax, which is always477

greater than the realized maximum growth rate g(R0)478

that actually occurs at the beginning of growth. There-479

fore the calculation of selection from actual growth data480

requires an inference of these nominal rates, since the re-481

alized rates measured at the beginning of growth curves482

could produce misleading results if growth begins at low483

resource concentrations [31].484

The second component of selection, slow, corresponds485

to growth at low resource concentrations, and is propor-486

tional to the mutant’s change ∆K of the half-saturation487

K. There is a negative sign in slow since selection488

is positive for mutations that decrease K (∆K < 0).489

For the hypothetical mutant and wild-type in Figs. 1490

and 4A,B, shigh = 0 since the mutant does not change491

gmax, while slow ≈ 0.516, since the mutant has a signifi-492

cantly lower half-saturation concentration K. In Fig. S16493

we show a more complex pair of strains with a gleaner-494

opportunist tradeoff (one strain has higher gmax but495

also higher K), where both components of selection are496

nonzero [20, 21, 27, 32].497

We also briefly discuss an interpretation for the pa-
rameter Z. The instantaneous selection coefficient
(Eq. (S30)) within the batch culture growth cycle

σ(t) = gmut(R(t))− gwt(R(t)) (S48)

can be decomposed into two components

σ = σmax + σlin, (S49a)

where

σmax =∆gmax R

R+Kwt

R

R+Kmut
, (S49b)

σlin =∆a ·R
Kwt

R+Kwt

Kmut

R+Kmut
. (S49c)
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Here a = gmax/K is the specific affinity, and∆a is the dif-498

ference in specific affinities between the mutant and the499

wild-type. The first component σmax quantifies growth500

rate difference at excess conditions, where both strains501

grow close to their maximum growth rates. The sec-502

ond component σlin measures growth rate differences in503

the opposite regime, where both strains grow below their504

half-saturation concentration. The relative size of the505

two components varies shifts with resource concentration506

and also depends on the mutation effect on maximum507

growth rate and specific affinity.508

The effective parameter Z acts as an intrinsic scale509

in the resource dependence. Normalizing for different510

relative mutation effects, both components contribute511

equally to growth rate difference exactly at external con-512

centration R = Z such that513

σmax(Z)

∆gmax/ḡmax
=

σlin(Z)

∆a/ā
, (S50)

where the effective specific affinity ā is defined (in anal-514

ogy with the effective maximum growth rate defined in515

Eq. (S45)) as516

ā =
1− x

Ywt/Ȳ
·
gmax
wt

Kwt
+

x

Ymut/Ȳ
·
gmax
mut

Kmut
. (S51)

This means, at concentration Z both components of the517

growth rate difference in Eq. (S49) receive equal selection518

pressure.519

The decomposition in Eq. (S49) more generally sug-520

gests an alternative parametrization of the Monod model521

and its selection coefficient. We can replace the half-522

saturation concentration K by the specific affinity a =523

gmax/K. This alternative trait corresponds to the growth524

rate in the limit of low resource concentrations where the525

Monod model behaves linearly (see Sec. S2). The selec-526

tion coefficient in Eq. (S47) can be rewritten as527

s ≈ smax + slin, (S52a)

where

smax =
∆gmax

ḡmax
(S52b)

·
[ R0 +N0/Ȳ

R0 +N0/Ȳ + Z
· log

(

1 +
R0Ȳ

N0

)

−
Z

R0 +N0/Ȳ + Z
· log

(

1 +
R0

Z

)

]

,

slin =
∆a

ā
·
[ Z

R0 +N0/Ȳ + Z
(S52c)

· log

(

1 +
R0Ȳ

N0

)(

1 +
R0

Z

)

]

.

The selection coefficient maps the life-history traits528

to relative fitness, and the parametrization in a is well-529

suited to study the structure of this map under environ-530

mental variation. In the limit of high nutrient concen-531

trations, the total resources are large compared to the532

critical concentration Z. The selection coefficient then533

reduces to the component of maximum growth:534

s ≈ smax as R0 → ∞. (S53)

In the opposite limit, the selection coefficient only acts
on the growth rate at low concentrations. In this sense,
the selection coefficient recovers the limiting behaviour
of the underlying growth response:

s ≈ slin as R0 → 0. (S54)

This means that gmax and a are the marginal traits that535

exclusively control growth in the limiting environments.536

The selection coefficient reduces to one component or the537

other. For the parametrization based on K given below,538

this is not true — both gmax and K contribute at low539

concentrations.540

S9. DERIVATION OF THE SELECTION541

COEFFICIENT FOR CHEMOSTAT DYNAMICS542

For a population in chemostat conditions (Eq. (S26)),543

the instantaneous selection coefficient σ(t) (Eq. (S30))544

only depends on the difference in growth rates. At a given545

resource concentration R(t), this growth rate difference546

can be decomposed in to two trait components547

σ ≈ σhigh + σlow, (S55a)

where

σhigh =
∆gmax

ḡmax
ḡ(R), (S55b)

σlow = −
∆K

R+ Z

gmax
wt

ḡmax

gmax
mut

ḡmax
ḡ(R). (S55c)

We can derive this by multiplying Eq. (S44) with the
mean growth rate for the Monod model

ḡ(R) =ḡmax R

R+Kwt

R

R+Kmut

+ āR
Kwt

R+Kwt

Kmut

R+Kmut
.

(S56)

The two components σhigh and σlow are consistent with548

our results for batch culture conditions (Eq. (S47). By549

integrating the instantaneous component σhigh over the550

growth cycle, we recover the component shigh for batch-551

culture growth.552

We assume a specific scenario for selection in chemo-
stat populations, where mutants arise at small frequency

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 18, 2022. ; https://doi.org/10.1101/2022.05.04.490627doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.04.490627


10

x on top of a wild-type population. This is plausible if
mutations occur not too frequently, such that the chemo-
stat population is replaced by a mutant and reaches the
new steady state before the next mutation arises. The
wild-type population under steady-state chemostat con-
ditions has a resource concentration given by (Eq. S28)

R∗ = Kwt
d

gmax
wt − d

, (S57)

where growth rate matches the dilution factor gwt(R
∗) =553

d (Eq. S27). After the mutant appears, the resource554

concentration R(t) ≈ R∗ remains constant over a short555

timespan while the mutant still has low frequency x $ 1.556

In this time window, the mean growth rate Eq. (S56) is557

set by the wild-type only and thus equals the dilution558

rate:559

ḡ(R∗) ≈ d. (S58)

We insert Eq. (S57) and Eq. (S58) into Eq. (S55) to560

calculate the selection coefficient at invasion with small561

mutant frequency x $ 1:562

σhigh =
∆gmax

gmax
wt

d (S59a)

σlow =−
−∆K

−d∆K +Kmutgmax
wt

gmax
mut

gmax
wt

(S59b)

· (gmax
wt − d)d.

Note that if we express this selection coefficient in terms563

of the relative mutation effect ∆K/Kwt, then the selec-564

tion coefficient is independent of the wild-type trait Kwt565

(compare to Fig. S20 for batch culture, where the se-566

lection coefficient increases with Kwt for fixed relative567

mutation effect). This has been observed independently568

in calculations by Dykhuizen et al. [33], who similarly569

decompose the growth rate difference in chemostats. As570

in the case of batch dynamics, the chemostat selection571

coefficient in Eq. (S59) can also be rewritten in terms572

of the specific affinity a = gmax/K instead of the half-573

saturation concentration K.574

S10. DEPENDENCE OF SELECTION ON575

RESOURCE CONCENTRATION576

In this section, we use the explicit formula for s in
batch culture (Eq. (S47)) to describe how selection varies
with the initial resource concentration R0 of the growth
cycle. For fixed initial biomass N0, there is an opti-
mum concentration that maximizes selection on the half-
saturation concentration K. Figure S17A shows non-
monotonic behavior of slow with initial resource concen-
tration R0 for an example mutation with beneficial effects
on both the maximum growth rate gmax and the half-
saturation K. In particular, this optimum does not rely

on a tradeoff between the two traits. Instead, Fig. S17B
demonstrates that slow is the product of two opposing
forces: the overall budget for selection in the growth cycle
(equivalent to number of generations) increases with R0,
but the relative selection pressure on the half-saturation
concentration decreases. We can identify these two fac-
tors from Eq. (S47c) for slow on the half-saturation con-
centration: the selection coefficient is the product of a
trait term

slow ∝ −
∆K

R0 +N0/Ȳ + Z

gmax
wt

ḡmax

gmax
mut

ḡmax
, (S60)

which decreases (in magnitude) with R0, and a logarith-
mic term

slow ∝ log

((

1 +
R0Ȳ

N0

)(

1 +
R0

Z

))

, (S61)

which increases with R0 via the number of generations577

in the growth cycle. The optimum concentration, in gen-578

eral, is determined by the wild-type half-saturation con-579

centration (compare Fig. S17C). Figure S17D shows how580

this causes the distribution of fitness effects to vary in581

width non-monotonically with the resource concentration582

as well; the width of this distribution is generally propor-583

tional to the speed of adaptation [34], which thus also584

displays a local maximum and minimum over resource585

concentrations.586

These effects are not observed in batch dynamics587

with fixed-dilution factor, where selection slow decreases588

strictly monotonically with resource concentration. The589

same example mutation in Fig. S18 reaches peak selec-590

tion at the lowest nutrient concentration R0. Intuitively,591

the fixed dilution factor D means the total budget for592

selection (number of generations) is independent of the593

initial concentration R0 and low concentrations mean a594

larger fraction of time spent in deceleration, but not fewer595

generations.596

S11. MODEL OF EVOLUTIONARY DYNAMICS597

UNDER STRONG-SELECTION598

WEAK-MUTATION599

We can map the dynamics of the mutant frequency600

over batch growth cycles to the Wright-Fisher model of601

population genetics, where each batch growth cycle cor-602

responds to a discrete time step [5, 35]. First, we assume603

the mutation arises only at the beginning of the growth604

cycle at frequency 1/N0, where N0 is the bottleneck pop-605

ulation size measured in number of cells. Let s(x) be the606

selection coefficient for the mutant over a whole batch607

growth cycle, with explicit dependence on the frequency608

x of the mutant at the beginning of the cycle. In the609

limit of large population size (N0 ! 1) and weak selec-610

tion (|s(x)| $ 1), the fixation probability for the mutant611

is [36]612
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p(s) =

∫ 1/N0

0
exp

(

−2N0

∫ x

0
s(y) dy

)

dx
∫ 1

0
exp

(

−2N0

∫ x

0
s(y) dy

)

dx
. (S62)

However, if the selection coefficient s(x) is approximately613

constant over mutant frequencies x, we can simplify this614

to615

p(s) =
1− e−2s

1− e−2N0s
. (S63)

We briefly describe the scheme for simulating trait
evolution. In general, a mutation can change both growth
traits

gmax
mut = (1 + γ) · gmax, (S64)

Kmut = (1 + κ) ·K, (S65)

where γ is the mutation effect on the wild-type maximum616

growth rate gmax and κ is the relative effect on the half-617

saturation concentration K. Given the absence of corre-618

lation between gmax and K for autotrophs on phosphate,619

nitrate and ammonium (Figs. 3C–D, S10E) and for het-620

erotrophs on glucose (Figs. 3F, S10G), we assume that621

mutations affect K independently of maximum growth622

rate (γ = 0). We simulate evolutionary trajectories of623

the half-saturation concentration K by first randomly624

sampling a mutation effect κ from a uniform distribu-625

tion on the interval (−0.1, 0.1). We then calculate the626

selection coefficient of this mutation using Eq. (S47) and627

the fixation probability according to Eq. (S63). We ran-628

domly accept or reject the mutation according to this629

probability, and then the cycle repeats with a new muta-630

tion (Fig. S19). We also test the effect of frequency-631

dependence selection using the fixation probability of632

Eq. (S62), but Fig. S22D-F shows that it does not no-633

ticeably affect evolution of the half-saturation concentra-634

tion.635

S12. DERIVATION OF SELECTION-DRIFT636

BALANCE CONDITION637

In the limit of weak selection (s $ 1), we can expand638

Eq. (S63) to leading order in s:639

p(s) ≈
1

N0
+

(

1−
1

N0

)

s, (S66)

where the first term captures the probability of fixation640

due purely to demographic fluctuations (genetic drift),641

while the second term captures the correction due to se-642

lection. The balance between selection and drift therefore643

occurs when these two contributions are approximately644

equal, which gives us s ≈ 1/N0 (Eq. (3) from the main645

text) under the additional assumption that N0 is large.646

Now we consider the effect of a mutation arising at647

some intermediate time t during a growth cycle. Since at648

this time there are Nwt(t) wild-type cells, the initial fre-649

quency of the mutant is 1/Nwt(t), and the amount of re-650

maining resources is R(t) = R0− (Nwt(t)−Nwt(0))/Ywt.651

Therefore the frequency of the mutant at the end of this652

cycle is653

x(t) =
es(t)

es(t) +Nwt(t)− 1
, (S67)

where s(t) is the selection coefficient for this mutant aris-654

ing at time t, assuming a growth cycle that starts when655

the mutation arises (so we use R(t) as the initial amount656

of resources and Nwt(t) as the initial population size).657

Let p(t) be the probability that this mutant ultimately658

fixes. This is the probability that n mutant cells survive659

the transfer, multiplied by the probability those mutants660

fix, averaged over all possible n:661

p(t) =

N0
∑

n=0

(

N0

n

)

(x(t))
n
(1− x(t))

N0−n

(

1− e−2ns(0)

1− e−2N0s(0)

)

≈

N0
∑

n=0

(

N0

n

)

(x(t))
n
(1− x(t))

N0−n

·

(

n

N0
+ n

(

1−
n

N0

)

s(0)

)

=x(t) [1 + (N0 − 1)s(0)(1− x(t))]

≈
1

Nwt(t)
+

(

N0 − 1

Nwt(t)

)(

Nwt(t)− 1

Nwt(t)

)

s(0)

+

(

Nwt(t)− 1

[Nwt(t)]
2

)

s(t),

(S68)

where we have invoked the weak-selection approxima-662

tion to the fixation probability (Eq. (S66)) on the sec-663

ond line, evaluated moments of the binomial distribution664

on the third line, and then expanded the frequency x(t)665

(Eq. (S67)) to leading order in s(t) on the last line. By666

neglecting terms that are higher-order in 1/Nwt(t) and667

s(t), we obtain668

p(t) ≈
1

Nwt(t)
+

(

N0 − 1

Nwt(t)

)

s(0). (S69)

Note that this only depends on the selection coefficient669

of the mutant starting at the beginning of the cycle; to670

leading order there is no dependence on the selection co-671

efficient during that first cycle s(t). If we calculate the672

condition for selection-drift balance as before, we obtain673

s(0) ≈ 1/N0 as before. That is, the dependence on the674

wild-type population size at which the mutant first arises675

Nwt(t) is irrelevant to the selection-drift balance. There-676

fore mutations arising during growth cycles have no effect677

on the selection-drift balance condition to leading order.678
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S13. THE EVOLVED HALF-SATURATION679

CONCENTRATION AT SELECTION-DRIFT680

BALANCE681

In this section, we calculate the evolved half-saturation
concentration Kevo as a function of environmental con-
centration R0 and effective population size Ne. We as-
sume mutations have a maximum relative effect |κmax| =
|∆K/Kwt| on the half-saturation concentration, but no
effect on maximum growth rate or biomass yield. There-
fore the maximum possible selection coefficient for any
mutant on the background of a wild-type trait K is thus

slow =|κmax|

(

K
R0

(1 + κmax)
K
R0

+ 1 + N0

R0Y

)

(S70)

· log

[

(

1 +
R0Y

N0

)

(

1 +
1

(1 + κmax)
K
R0

)]

,

where we have rewritten the selection coefficient682

(Eq. (S47)) in terms of the ratio K/R0 between the683

wild-type half-saturation concentration and the initial re-684

source concentration. Note that we write Y for the wild-685

type biomass yield, which remains unchanged throughout686

evolution.687

To simplify Eq. (S70), we assume that the maximum688

mutation effect is small (|κmax| $ 1), the value of the689

half-saturation concentration K relative the initial re-690

source concentration is small (K/R0 $ 1), and the fold-691

change over the growth cycle is large (R0Y/N0 ! 1).692

This is true for growth cycles in typical laboratory evo-693

lution experiments, with typical dilution factors between694

D = 100 [37] and D = 1500 [38]. We therefore approx-695

imate the selection coefficient in Eq. (S70) by keeping696

only leading-order terms in these parameters:697

slow ≈ |κmax|
K

R0
log

(

R0Y/N0

K/R0

)

. (S71)

The evolved half-saturation concentration Kevo is de-698

fined as the value of the half-saturation K such that the699

selection coefficient for a mutation on this half-saturation700

equals the fixation probability of a neutral mutation. We701

must therefore also assume that the maximum strength702

of selection, which occurs for large K, is greater than703

the neutral fixation probability (Fig. S20A). In the limit704

of small |κmax| and large R0Y/N0, the maximum selec-705

tion coefficient is |κmax| log(R0Y/N0), and so this must706

be greater than 1/Ne. To solve for Kevo, we then set the707

selection coefficient in Eq. (S71) equal to 1/Ne (using708

Eq. (3)) and solve to obtain709

Kevo ≈ −
R0

Ne|κmax|W−1

(

− 1
Ne|κmax|R0Y/N0

) , (S72)

where W−1(z) is the −1 branch of the Lambert W func-710

tion, defined as the solution of the equation yey = z for711

−e−1 ≤ z < 0 [39]. The latter condition is met since the712

argument of the W function, −1/(Ne|κmax|R0Y/N0) is713

certainly less than zero, but also714

−
1

Ne|κmax|R0Y/N0
≥−

1

Ne|κmax|e log (R0Y/N0)

>−
1

e
,

(S73)

where on the first line we have used the fact that715

e log(R0Y/N0) ≤ R0Y/N0 and on the second line we have716

used Ne|κmax| log(R0Y/N0) > 1 from our previous as-717

sumption that the maximum strength of selection is big-718

ger than genetic drift. We can further simplify Eq. (S72)719

using the approximation W−1(z) ≈ log(−z) for |z| $ 1,720

which gives us Eq. (4) in the main text.721

We note that this calculation does not work for the722

chemostat selection coefficient (Eq. (S59)) since it does723

not depend on the wild-type trait Kwt outside of the724

relative mutation effect ∆K/Kwt. Therefore the selec-725

tion coefficient does not decrease as K evolves lower, and726

there is no selection-drift balance.727

S14. EVOLUTION TO SELECTION-DRIFT728

BALANCE FOR THE SPECIFIC AFFINITY729

In this section we repeat our evolutionary analysis us-730

ing the specific affinity a = gmax/K, instead of the half-731

saturation concentration K, as the focal trait for muta-732

tion and selection. First we simulate evolution in the733

SSWM regime, then we predict the evolved trait from a734

selection-drift balance condition and derive a scaling re-735

lationship with resource concentration R0 and effective736

population size Ne. In combination with the maximum737

growth rate gmax, the specific affinity a gives an alter-738

native parametrization of the Monod model of growth.739

Equation (S52) decomposes the total selection coefficient740

s in batch culture, where the component slin captures the741

trait differences in the specific affinity a = gmax/K.742

We assume mutations have a relative effect α on the
specific affinity

amut = a · (1 + α), (S74)

but leave the maximum growth rate gmax and biomass743

yield Y unchanged. The effect size α is sampled at ran-744

dom from a uniform distribution, with maximum value745

αmax > 0. This means a single mutation can increase the746

specific affinity at most by a fixed fraction αmax. This747

set of assumptions mirrors the evolutionary simulations748

carried out for the half-saturation K. We simulate the749

trait evolution over long times, where each new muta-750

tion either fixes or goes extinct before the next mutation751

arises.752

Figure S23 shows that evolution of the specific affin-
ity a = gmax/K leads to behavior that is analogous to
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when mutations target the half-saturation concentration
K: the specific affinity a evolves upwards over succes-
sive mutations, improving the growth rate at low con-
centration, but eventually the trait a stalls in adaptation
around an upper limit. The limiting value depends on
the effective population size Ne between transfers (com-
pare panels in Fig. S23). Following the same reasoning as
in Sec. S13, we define the evolved trait aevo as the trait
value where selection-drift balance is achieved:

slin =
1

Ne
. (S75)

Figure S23 shows that the simulated trajectories are pre-753

dicted well by Eq. (S75), which we solve numerically for754

specific affinity aevo at selection-drift balance.755

We follow the same steps as in Sec. S13 to derive a
similar scaling relationship for aevo as a function of the
resource concentration R0 and the effective population
size Ne. The maximum possible selection coefficient for
any mutation on the background of a wild-type trait a is

slin =αmax





gmax

aR0

(1 + αmax)
(

1 + N0

R0Y

)

+ gmax

aR0



 (S76)

· log

[(

1 +
R0Y

N0

)(

1 +
aR0

gmax
(1 + αmax)

)]

,

where we have rewritten the selection component
(Eq. (S52c)) in terms of the ratio gmax/(aR0) = K/R0

between the wild-type traits and the initial resource con-
centration. To simplify Eq. (S76), we assume that the
maximum mutation effect is small (αmax $ 1), the fold-
change over the growth cycle is large (R0Y/N0 ! 1), and
the evolved value of the specific affinity a is large relative
to the initial resource concentration (gmax/(aR0) $ 1).
This last assumption is equivalent to assuming a highly-
adapted half-saturation concentration (K/R0 $ 1), just
as we did in Sec. S13. We thus approximate the selection
coefficient in Eq. (S76) by keeping only the leading-order
terms in these parameters:

slin ≈ αmax
gmax

aR0
log

(

R0Y/N0

gmax/(aR0)

)

. (S77)

The evolved specific affinity aevo is defined as the value
of the specific affinity such that the selection coefficient
for a mutation on this trait value equals the fixation prob-
ability of a neutral mutation. Again, we must assume
that the maximum strength of selection, which occurs for
small a, is greater than the neutral fixation probability
(Fig. S20B). In the limit of small αmax and large R0Y/N0,
the maximum selection coefficient is αmax log(R0Y/N0)
so this must be greater than 1/Ne. To calculate aevo,
we then set the selection coefficient in Eq. (S77) equal to
1/Ne and solve to obtain

aevo ≈ −gmaxNeαmax

R0

·W−1

(

−
1

NeαmaxR0Y/N0

)

, (S78)

where W−1(z) is the −1 branch of the Lambert W func-
tion, introduced above in Eq. (S72). Just as before, we
confirm that the evolved trait aevo is confined to this
solution branch and use the approximation W−1(z) ≈
log(−z) to arrive at the final scaling relationship

aevo ≈ gmaxNeαmax

R0
log

(

Neαmax
R0Y

N0

)

, (S79)

which is the analogous result to Eq. (4) in the main text.756

How does the evolved specific affinity aevo (Eq. (S78))757

compare to the evolved half-saturation concentration758

Kevo (Eq. (S72))? They are mathematically equivalent759

if the mutation effects sizes αmax and |κmax| are equal,760

which holds in the limit where they are both small. That761

is, if we express the relation amut = a(1 + αmax) for the762

mutation effect on a as gmax
mut /Kmut = (gmax

wt /Kwt)(1 +763

αmax), and then use the fact that gmax is unchanged by764

the mutation (gmax
mut = gmax

wt ), we then get765

Kmut =
Kwt

1 + αmax

≈ Kwt(1− αmax),

(S80)

which, compared with the definition of κ = (Kmut −766

Kwt)/Kwt, shows that αmax = |κmax| when both are767

small.768

Altogether this shows that focusing on specific affin-769

ity a leads to equivalent evolutionary outcomes as fo-770

cusing on the half-saturation concentration K, including771

the dependence on the resource concentration R0 and772

the mode of population dynamics (fixed-bottleneck or773

fixed-dilution batch dynamics, or chemostat dynamics).774

This makes sense since mutations that affect a but leave775

gmax constant must therefore only affect K, and thus the776

only difference between these approaches is the choice of777

mathematical parameterization. We can also speculate778

what would happen if mutations affect both the maxi-779

mum growth rate gmax and the specific affinity a simul-780

taneously (but assuming no correlation in effects). We781

expect that the maximum growth rate will evolve to the782

highest physiologically-feasible value, which will serve as783

the effective maximum growth rate to convert between784

a and K. Intuitively, this would still lead to identical785

selection-drift balance for the half-saturation concentra-786

tion K and the specific affinity a.787

S15. EFFECT OF EVOLVED788

HALF-SATURATION CONCENTRATION789

VALUES ON MEASUREMENT APPROACHES790

In the main text we present a survey of empirical values791

for the half-saturation concentrationK, as well as an evo-792

lutionary model suggesting that K should generally be793

much smaller than the concentration of the correspond-794

ing resource in the evolutionary environment. Here we795

explore what these values ofK mean for three approaches796

to measuring K under laboratory conditions.797
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A. Inferring half-saturation concentrations under798

chemostat growth799

Arguably the most direct approach to measuring K is800

to use a chemostat (Sec. S5). This setup takes an inverse801

approach to the Monod model relation in Eq. (1): instead802

of varying the resource concentration R and measuring803

the growth rate g, as suggested by the functional form804

of the model, we vary the growth rate (by controlling805

the dilution rate d, which must equal the growth rate g806

in steady state) and measure the corresponding resource807

concentration R. We first identify the maximum growth808

rate gmax by gradually increasing the dilution rate d until809

the population collapses; the maximum dilution rate that810

the population can sustain equals the maximum growth811

rate gmax. Then we set the dilution rate to half the maxi-812

mum growth rate (d = gmax/2) and measure the resource813

concentration at this state, which by definition of the814

Monod model (Eq. (1)) must equal the half-saturation815

concentration K.816

In light of what we know about typical values of the817

half-saturation concentration K, what challenges does818

this pose for such measurements? We must either di-819

rectly measure resource concentrations in the medium820

around the value K (which may be difficult depending821

on the sensitivity of such a measurement), or infer the822

resource concentration from the biomass concentration823

N∗ = (Rsource −K)Y (Eq. (S29)) In the latter case, we824

would also need to know the source concentration Rsource825

we are supplying to the culture as well as the yield Y .826

However, we are not limited by low biomass concentra-827

tions in the chemostat, as we can arbitrarily increase the828

biomass concentration by increasing the source concen-829

tration Rsource. For example, for E. coli on glucose, the830

half-saturation concentration is K ∼ 10 µM (Fig. 2B),831

the yield is Y = 3.3 × 108 cells/µmol [30], and a typical832

laboratory concentration of glucose to provide could be833

Rsource = 11000 µM (0.2% w/v). In this case the concen-834

tration of E. coli would be 3.6 × 109 cells/mL, which is835

high enough to easily measure through different standard836

techniques. For example, this cell density corresponds to837

an optical density (OD) of approximately 3.6 (using 1 OD838

= 109 cells/mL, for wavelengths of 600 nm and a path839

length of 1 cm), which is easily measured in a standard840

spectrophotometer.841

B. Inferring half-saturation concentrations under842

batch growth using the initial growth rate843

A second approach uses cultures under batch growth.844

This takes a direct approach to the Monod model com-845

pared to the chemostat: we vary the initial concentration846

of the resource over some range around the concentration847

K and measure the initial growth rate of the biomass as848

a function of these concentrations. We then fit this data849

to the Monod model (Eq. (1)) and infer the concentra-850

tion K. Note that this assumes that the population can851

rapidly adjust its growth rate to the external resource852

concentration, so that the measurement is not biased by853

the previous state of the culture (e.g., under starvation).854

Therefore we need to perform this experiment with ini-855

tial resource concentrations R0 that are around the value856

of K. The total biomass concentration at the end of such857

a batch growth cycle would be KY +N0, where N0 is the858

initial biomass concentration. Using the previous exam-859

ple of E. coli on glucose, the biomass concentration KY860

is approximately 3.3 × 106 cells/mL, which corresponds861

to an OD of 3.3×10−3. However, to measure growth, we862

must start at a concentration at least 10–100 times lower863

than this to have a sufficiently large dynamic range of864

the biomass to accurately measure the growth rate. This865

range of concentrations is too low to be detected on typi-866

cal spectrophotometers, which usually have a lower limit867

of 10−3 to 10−2 OD, so only methods with greater sen-868

sitivity to low concentrations (e.g., colony counting on869

plates or luminescence) would be suitable. In this case,870

note that the difficulty with measuring K this way is not871

due to its magnitude relative to a typical glucose concen-872

tration R, but that the biomass produced by this resource873

concentration (KY ) is low compared to the lower limit874

of typical detection methods.875

C. Inferring half-saturation concentrations under876

batch dynamics using the deceleration into877

starvation878

The third approach also uses batch cultures, but in-879

stead of considering how the initial growth rate varies880

with initial resource concentration, we use a fixed initial881

resource concentration R0 and infer K from how growth882

rate spontaneously decelerates into starvation at the end883

of the growth cycle. Equation S11 defines the ODEs for884

batch growth with a wild-type and mutant strain. If we885

simplify this to a single strain, insert the Monod model886

for growth rate (Eq. (1)), and integrate the resource con-887

sumption equation (to express resource R(t) in terms of888

biomass N(t), as in Eq. (S12)), we obtain a single non-889

linear ODE for the biomass concentration:890

d

dt
N(t) = gmax R0 −N(t)/Y

R0 −N(t)/Y +K
N(t). (S81)

In principle we can fit this ODE to time-series data for891

the biomass concentration N(t) (the growth curve) and892

infer the half-saturation concentration K.893

Intuitively, though, this only works if the growth curve894

has enough data during the deceleration phase of growth895

where the half-saturation K is relevant; see Fig. S24 for896

a schematic example. Previous work has studied this897

as a problem of statistical estimation, calculating pa-898

rameter sensitivities to identify the optimum measure-899

ment concentration and discussing variable transforma-900

tions to simplify the regression (see Robinson [40] for an901
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overview). The basic conclusion is that the initial re-902

source concentration R0 must be near the value of the903

half-saturation concentration K itself for the fit to work904

robustly.905

We can justify the intuition for this conclusion as fol-906

lows. If the initial resource concentration R0 is instead907

much greater than the half-saturation concentration K,908

then the fold-change during deceleration will be too small909

to provide sufficient dynamic range for a fit. That is, de-910

celeration approximately begins at the time tdecel when911

R(tdecel) = K, so that the biomass concentration is912

N(tdecel) = N0 + (R0 − K)Y . Since the final biomass913

concentration at saturation is N(tsat) = N0 + R0Y , the914

fold-change during deceleration is therefore915

N(tsat)

N(tdecel)
=

N0 +R0Y

N0 + (R0 −K)Y

= 1 +
K
R0

1− K
R0

+ N0

R0Y

.

(S82)

However, if R0 is much larger than K, then this fold-916

change is approximately 1 + K/R0, meaning that it is917

very close to 1 (corresponding to no growth during decel-918

eration). Visually, this appears as a growth curve with an919

abrupt transition from the maximum growth rate gmax to920

zero growth (inset of Fig. 4). Since typical concentrations921

of many resources (such as glucose) used in the labora-922

tory are indeed much larger than the K half-saturation923

concentrations, this is why these growth curves usually924

do not contain useful data on the half-saturations K.925

On the other hand, if R0 is much less than K, then the926

growth dynamics are approximately logistic:927

d

dt
N(t) ≈ gmaxR0

K
N(t)

(

1−
N(t)

R0Y

)

, (S83)

which we obtain similarly with Eq. (S81) but in the limit928

R0 $ K. In this case, one can only infer the combined929

parameter gmaxR0/K from the growth curve and not the930

half-saturation concentration K by itself. Therefore the931

half-saturation K can only be inferred from the growth932

curve if the initial concentration R0 is around the value933

of K itself. However, this is the same parameter regime934

as needed for the previous method of inferring K from935

the initial growth rates, and thus it poses the same prac-936

tical challenges, such as sensitivity to very low biomass937

concentrations.938
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