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ABSTRACT Control of microtubule abundance, stability, and length is crucial to regulate intracellular transport as well as
cell polarity and division. How microtubule stability depends on tubulin addition or removal at the dynamic ends is well studied.
However, microtubule rescue, the event when a microtubule switches from shrinking to growing, occurs at tubulin exchange
sites along the shaft. Molecular motors have recently been shown to promote such exchanges. Using a stochastic theoretical
description, we study how microtubule stability and length depends on motor-induced tubulin exchange and thus rescue. Our
theoretical description matches our in vitro experiments on microtubule dynamics in presence of kinesin-1 molecular motors.
Although the average microtubule dynamics can be captured by an effective rescue rate, the dynamics of individual microtubules
differs dramatically when rescue occurs only at exchange sites. Furthermore, we study in detail a transition from bounded to
unbounded microtubule growth. Our results provide novel insights into how molecular motors imprint information of microtubule
stability on the microtubule network.

SIGNIFICANCE The microtubule network is essential for vital cellular processes like the organization of intracellular
transport and division. Although microtubule assembly occurs at its tips, it has recently been reported that tubulin is
exchanged along the microtubule shaft. Tubulin exchange plays an essential role in regulating microtubule dynamics and
can be induced by molecular motors. Here, we provide the first systematic study of the impact of shaft dynamics on the
regulation of rescue events, where a microtubule switches from shrinking to growing. Our results illustrate how the usage of
microtubules as tracks for intracellular transport regulates the microtubule network and thus offers a novel perspective on
intracellular organization.

INTRODUCTION
In cells, the microtubule network underlies intracellular transport, segregates chromosomes during division, and is involved in
establishing as well as maintaining cell polarity (1). To accomplish these diverse biological functions, dynamic properties
of single microtubules within the network are tightly regulated determining their stability, length and local abundance (2).
Microtubules grow by addition of tubulin bound to Guanosine-triphosphate (GTP) at their ends. The GTP is subsequently
hydrolyzed to GDP, which affects tubulin affinity for microtubule binding and drives microtubule dynamics out of thermodynamic
equilibrium (3). With GDP-tubulin at the tip, microtubules stop growing and start to shrink by tubulin removal from the tip, an
event called catastrophe (4). Conversely, microtubules can stop shrinking and re-grow in a so-called rescue event (4).

Growth, shrinkage, and catastrophes can be regulated at the plus end. For example, the microtubule polymerase XMAP125 ac-
celerates growth (5–7). This can also be achieved by theCytoplasmic Linker Protein of 170 kDa (CLIP-170), which simultaneously
enriches GTP-tubulin at the growing tip by binding to end-binding proteins 1 and 3 (EB1 and EB3) (8). Furthermore, interaction
of EB1 and EB3 with the growing microtubule tip increases the catastrophe rate (9, 10). As a last example, the rate of tubulin
removal at the tip can be affected by depolymerizingmolecular motors like kinesin-8 (11), kinesin-13 (MCAK) (12), or kinesin-14
(Kar3p) (13). Since the abundance of molecular motors on a microtubule increases towards the tip, the regulation of tubulin
removal by molecular motors can lead to an effectively length-dependent disassembly rate (14). Similarly, modifications along
the microtubule shaft have been shown to induce a length-dependent depolymerization rate (15–17). Theoretical studies have

Manuscript submitted to Biophysical Journal 1

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 5, 2022. ; https://doi.org/10.1101/2022.05.04.490659doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.04.490659
http://creativecommons.org/licenses/by-nc-nd/4.0/


Schaer et al

analyzed in detail the implications of a length-dependent depolymerization rate on the microtubule length distribution (18–23).
Let us also note that in addition to microtubule length regulation at the tip, severing provides a versatile mechanism to regulate
microtubule length (24, 25).

The impact of rescue on microtubule dynamics is much less studied, because the underlying mechanism was unknown
for a long time. Only recently it has been discovered that tubulin can exchange all along the microtubule shaft (26) leading
to ’GTP-tubulin islands’ (27). The molecular mechanism responsible for island formation is not yet understood (28), but
mechanical forces and severing enzymes like spastin and katanin can enhance tubulin exchange (26, 29–31). Microtubules stop
shrinking and resume growth preferentially at such islands (29, 30, 32, 33). It was found that the molecular motor kinesin-1 can
damage the microtubule shaft and thus induce incorporation of GTP-tubulin (34–36). Through this process, kinesin-1 motors
walking along microtubules increase the probability of rescue events and thus microtubule stability (35).

In the present work, we study theoretically how molecular motors increase microtubule length by regulating rescue events.
To this end, we use stochastic simulations and theory and compare our results to in vitro experiments. We find that beyond a
critical motor concentration, microtubule growth is unbounded (37, 38). Furthermore, we show that although effective rescue
rates (37) capture well the average microtubule length in presence of molecular motors, the dynamics of individual microtubules
changes significantly if tubulin exchange along the shaft is considered. In particular, subsequent growth and shrinkage phases
are highly correlated in the entire regime of bounded growth. By including the effects of molecular motors on the shaft our
model allows to study novel mechanisms of microtubule length regulation.

MATERIALS AND METHODS
Theoretical description of microtubule assembly kinetics
We represent a microtubule as a polar dynamic linear lattice, where the sites represent tubulin dimers, see Fig. 1. Each site is in
one of three possible states, respectively denoted as T, D, and Tx, which correspond to GTP- and GDP-bound tubulin and to
GTP-bound tubulin after exchanging GDP for GTP. A T-state switches to D at rate khyd and D turns into Tx at rate k×. The
first of these transitions reflects spontaneous hydrolysis of a GTP bound to tubulin. The second transition accounts for the
complex process of spontaneously replacing a GDP-tubulin from the microtubule lattice by incorporation of a GTP-tubulin. In
our simulations, we refrain from describing this process in molecular detail. This is appropriate, because, in our experiments,
we cannot resolve tubulin exchange on molecular time and length scales. Finally, Tx switches to D at a rate khydX, which is in
general different from khyd.

The lattice as a whole can be in two dynamics states, namely, growing and shrinking. In the growing state, GTP sites are
added at rate ka at the plus end. In contrast, the minus end, is dynamically inert. This property reflects the use of stabilized
microtubule seeds in our in vitro experiments. In the shrinking state, sites are removed from the plus end at rate kd one by one.
The transition of the lattice from the growing to the shrinking state corresponds to a catastrophe and occurs at rate kcat. In our in
vitro experiments, we do not have access to the state of individual tubulin dimers. Consequently, in our description we take
catastrophes to occur independently of the state of the site at the plus end. This is different from other theoretical studies, in
which catastrophes are tightly linked to the loss of GTP-tubulin at the tip (39). Transitions from a shrinking to a growing lattice
correspond to a microtubule rescue event. This event occurs with a probability pres if the new site at the plus end is in state Tx,
after removal of the preceding site.

We represent kinesin-1 molecular motors as particles hopping directionally on the lattice: at rate khop, a particle moves to the
neighboring site towards the plus end if this neighboring site is empty. This exclusion property accounts for steric interactions
between molecular motors. We assume that detached motors form a reservoir such that particles attach to empty sites on the
lattice at a constant rate kmot,a. In our experiments, this rate can be changed by changing the concentration of kinesin-1 in the
buffer. In the simulations, we use kmot,a = k (0)

mot,aCm/C
(0)
m , where Cm is the motor concentration and k (0)

mot,a the motor attachment
rate at Cm = C (0)

m . We take C (0)
m = 0.4 nM, which was the smallest kinesin-1 concentration used in our experiments. Particles

detach from the lattice at rate kmot,d.
Motor-induced exchange of GDP-tubulin for GTP-tubulin is captured by a probability p× at which a site in state D is

switched to Tx as a motor particle leaves the site by hopping. Similarly to the spontaneous exchange of a GDP-tubulin for a
GTP-tubulin, this is an effective description of the potentially much more involved molecular process underlying motor-induced
exchange of a GDP-tubulin for a GTP-tubulin.

Stochastic simulations
Simulations of the model with Rescue at Exchange Sites (RES-model) introduced above were carried out using a variant
of the Gillespie algorithm, where initially the total rate ktot of all possible processes is determined. After the time to the
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following event has been drawn from an exponential distribution with the characteristic time k−1
tot , the identity of this event is

determined according to the relative contribution of all possible events to the total rate. The simulations were performed using a
custom-made c++ program.

Unless stated otherwise, the parameter values used in the simulations are listed in Table 1. We inferred the parameters
directly from our in vitro experiments (35) whenever possible. To convert the observed microtubule growth velocity vg into an
attachment rate of the sites, we used the length of a single tubulin dimer, i.e., d = 8 nm, such that ka = vg/d. In line with the
literature, we chose khyd = 0.125 s−1 (40). Small changes of khyd didn’t substantially change the simulation results. We were
left with 3 free parameters, khydX, pres, and p× that could not be obtained directly from our experiments or the literature. We
determined their values by fitting the values of the rescue rate at 0 nM and at 0.4 nM kinesin-1 concentration to our experimental
results.

Meanfield equations
We introduce the mean values ti , di , and t×,i for site i = 1, 2, . . . being in state T, D, or Tx, respectively. These values range
between 0 and 1 and we will refer to them as the probabilities of site i being in the respective states. Note that Fi ≡

[
ti + di + t×,i

]
is the probability of having a lattice with a length of at least i sites. We also introduce the mean values gi and si for the growing
and the shrinking lattice tips, respectively, to be at position i = 1, 2, . . . Finally, the mean value of having a motor particle at site
i is denoted by mi .

Using a meanfield approximation, where correlations are expressed in terms of the mean values, the dynamic equations for

ka

kd

khydkX

khydXkcat

pres

ka

kmot,a

kmot,d

khop

pX

... ...

A

B

growing

growing

shrinking

growing

i=1

Figure 1: Schematic illustrations of theory and experiment. A) Microtubules are represented as linear polar lattices. Sites are in
3 different states: T (magenta), D (blue), Tx (green) corresponding to tubulin bound to GTP, GDP or to GTP after an exchange
of GDP for GTP. Sites change form state T to D at rate khyd, from D to Tx at rate k×, and from Tx to D at rate khydX. The white
site represents the inert seed. The lattice can be in a growing state, in which subunits in the T-state are added at rate ka, or in a
shrinking state, in which subunits are removed at rate kd. The lattice switches from the growing to the shrinking state at rate
kcat and rescues with probability pres if the site at the tip is in state Tx. B) Molecular motors are represented as particles. They
attach to a free site at rate kmot,a and detach from a site at rate kmot,d. Particles hop to an empty neighboring site towards the
dynamic lattice end at rate khop. If the particle leaves a D site, this site turns to the Tx-state with a probability p×.
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Parameter Value
ka 2 s−1

kd 27 s−1

kcat 0.005 s−1

pres 0.15
khyd 0.125 s−1

khydX 0.125 · 10−3 s−1

k× 1 · 10−5 s−1

kmot,a,0 3.3 · 10−5 s−1

kmot,d 0.09 s−1

khop 16 s−1

p× 0.0018
Table 1: Parameter values used in the simulations.

the probabilities of the tip being at position i are

d
dt
gi = −kcatgi + kagi−1 − kagi + preskdsi+1

t×,i

Fi
(1)

d
dt

si = kcatgi + kdsi+1 − kdsi − preskdsi+1
t×,i

Fi
. (2)

The first terms on the right hand sides account for catastrophes, the second and third terms for transitions due to addition or
removal of a site. The final terms capture rescues, where t×,i/Fi is the fraction of sites i that are in the Tx state.

The dynamic equation for the probability being in state T is

d
dt

ti = −khydti + kagi−1 − kdsi
ti
Fi

. (3)

The term proportional to khyd represents the loss of a T-state by hydrolysis. The second term captures the addition of a T-state
by polymerization at the growing tip, whereas the last term describes the loss of a T-state by site removal from the shrinking tip.
Analogously, we have for the probability being in state D

d
dt

di = khydti + khydXt×,i − k×di − kdsi
di

Fi
− p×khopmi (1 − mi+1)

di

Fi
Fi+1, (4)

where the terms have an analogous meaning to those in Eq. (3). In addition, the terms proportional to khop account for transitions
due to motor hopping. The dynamic equations for the probability being in state Tx follow the same logic. Explicitly, we have

d
dt

t×,i = −khydXt×,i + k×di − kdsi
t×,i

Fi
+ p×khopmi (1 − mi+1)

di

Fi
Fi+1. (5)

The dynamic equations are complemented by the boundary conditions

d
dt
g1 = −kcatg1 + kds1 − kag1 + preskdS1

t×,1

F1
(6)

d
dt

t1 = −khydt1 + ksd1 − kds1
t1

F1
(7)

for Eqs. (1) and (3), whereas Eqs. (2), (4) and (5) hold also for i = 1.
Finally, we give the equation governing the evolution of the probability to find a motor at site i = 2, 3, . . .:

d
dt

mi = kmot,a(1 − mi)Fi − kmot,dmi − kdsimi − khopmi (gi + si) − khopmi (1 − mi+1)Fi+1 + khopmi−1(1 − mi)Fi (8)

In this expression, the terms proportional to kmot,a and kmot,d, respectively, account for motor attachment to and detachment
from the lattice. The terms proportional to khop describe motor hopping towards the plus-end onto the neighboring site or off
the lattice if at the tip. Finally, the term proportional to kd captures motor loss due to depolymerization at the shrinking tip. The
evolution of m1 is obtained from the above by setting m0 = 0.
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Distributions close to the seed
In case the lattice is very long, it is possible to simplify Eqs. (3)-(8) close to the seed by neglecting the tip dynamics. Explicitly,
for sufficiently small values of i, we set gi = 0 and si = 0, which implies Fi = 1. Furthermore, the probability to be in state T
close to the seed is negligibly small and we set ti = 0. In the continuum limit we then have

∂

∂t
d = khydX(1 − d) − k×d − p×m

(
khop − khopm − v

∂

∂x
m − D

∂2

∂x2 m
)

d (9)

∂

∂t
m = kmot,a(1 − m) − kmot,dm − v

∂

∂x
m + D

∂2

∂x2 m, (10)

where we have used t× = 1 − d. Furthermore, v = akhop and D = a2khop/2 with a = 8.2 nm being the length of a lattice site
corresponding to the length of a tubulin dimer.

Microtubule assembly assay
Microtubules were polymerized using purified and labeled brain tubulin. Microtubules were polymerized in an assembled flow
chamber and visualized under a TIRF microscope with a temperature stage controller stable at 37°C. A step-by-step protocol
can be found in Ref. (35).

For microtubule dynamic assays and kymograph representations, microtubules were polymerized inside the flow chamber
for 10 min at 37°C with 8 µM tubulin (20 % ATTO-565-labeled) in BRB80 1x containing anti-bleaching buffer (0.3 mg/ml
glucose, 0.1 mg/ml glucose oxidase, 0.02 mg/ml catalase, 10 mM DTT, 0.125 % methyl cellulose, 1 mM GTP), 0.2 % BSA
and 41.6 mM KCl. We injected to the polymerized microtubules either 0, 1 or 2 nM K430-GFP (kinesin-1) in presence of 8
µM tubulin (20 % ATTO-565-labeled) in BRB80 1x supplemented with anti-bleaching buffer, the chamber was sealed for
imaging. Images were recorded every 3 to 4 seconds with the lowest laser power that allows microtubule visualization with
reduced phototoxicity. To measure microtubule dynamics, kymographs were built with MultipleKymograph in ImageJ. We only
analyzed isolated microtubules that did not bundle or cross with other microtubules.

For microtubule length studies, 8 µM tubulin (20 % labeled) and 0, 1 or 2 nM K430-GFP in BRB80 1x containing
anti-bleaching buffer, 0.2 % BSA and 41.6 mMKCl were perfused inside the flow chamber and directly imaged at the microscope.
Images from different positions were taken every minute for 45 min. We imaged only the microtubule channel to prevent as
much as possible phototoxicity. Microtubule length was manually measured using ImageJ.

RESULTS AND DISCUSSION
Microtubule length distribution in vitro
We reconstituted in vitro microtubule growth in absence and in presence of the molecular motor kinesin-1. We limited our
experiments to 45 min, because protein degradation started to affect microtubule dynamics after 45 min, and only considered
isolated microtubules. In absence of kinesin-1, microtubules grew from stabilized seeds and showed dynamic instability with
constant growth and shrinkage velocities, Fig. 2A. Once a microtubule started shrinking, we rarely observed rescue events, such
that a microtubule typically disassembled completely to the stabilized seed. Note that we do not consider regrowth from the
seed to be a rescue event, but to be the nucleation of a new microtubule. The average microtubule length increased linearly, then
slowed down and eventually saturated, Fig. S1A. In steady state, the average microtubule length is 7.3 ± 5.1 µm (mean±std.
dev), Figs. 2D, S1A,D.

Upon addition of kinesin-1 to our assay, the rescue frequency increased with the motor concentration, while the growth
and shrinkage velocities as well as the catastrophe frequency of individual microtubules remained unaffected, Fig. 2B,C,E in
Ref. (35). Simultaneously, we observed the average microtubule length after 45 min to increase with the kinesin-1 concentration,
13.5 ± 8.1 µm for 1 nM and 19.0 ± 11.6 µm for 2 nM, Figs. 2A-F, S1B-D. For 2 nM kinesin-1 and higher motor concentrations,
we did not observe saturation of the average microtubule length within the experimental timeframe of 45 min, Fig. S1C. Note that
the standard deviation of the microtubule length distribution at 45 min also increased with the kinesin-1 concentration, Fig. S1D.
We hypothesize, that microtubule growth transitions form bounded to unbounded growth (37) at a critical concentration of ≈2
nM kinesin-1. An experimental study of the putative transition would require observation times much longer than 45 min.

The model for rescue at exchange sites reproduces in vitro data
In order to theoretically study microtubule length dynamics in presence of molecular motors, we employed stochastic simulations
of the model with Rescue at Exchange Sites (RES-model), Fig. 1, Methods. Most of the parameter values used in our simulations
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were determined from our in vitro system, Table 1. All simulations started with a single site from which lattices grew, Fig. 2G-I,
S2, and S3. Along the lattice, sites in state D could spontaneously change into state Tx and motor particles could further
induce such changes, which represent tubulin exchange along a microtubule shaft. A shrinking lattice rescued at Tx sites with a
probability p×. For each condition, we performed N = 104 simulations. To compare our simulation results to our experiments,
we first determined the lattice length after 45 min simulated time, Figs. 2J-L.

Kymographs obtained from our simulations resembled those from our experiments, Figs. 2G-I, S2, S3. Note that different
kymographs for the same conditions varied substantially, Fig. S3. At motor concentration Cm = 0 nM, we observed few rescue
events, which occurred at a rate kres = 0.5 µm/min, Figs. 2G. This is the same rate as in the experiments. Since growth and
shrinkage velocities as well as catastrophe and rescue rates are the same in our experiments and simulations, we expected to

Figure 2: Measured and simulated microtubule dynamics in the presence of motors. A-C) Experimental kymographs for 0 (A),
1 (B), and 2 nM kinesin-1 (C). D-F) Experimental lengths distributions for 0 (D), 1 (E), and 2 nM kinesin-1 (F) at 45 minutes.
The bar plots were obtained with a binning size of 300 nm. G-I) Simulated kymographs for Cm = 0 (G), 1 (H), and 2 nM (F)
showing D (blue), T (red), Tx (green) sites and motor particles (yellow). Each kymograph is accompanied by a zoom on one of
its region delimited by the black rectangles. The size of a point is larger than the size of a subunit, so that single sites appear
larger than they are. J-L) Simulation lengths distributions for Cm = 0 (J), 1 (K), and 2 nM (L) at 45 minutes. Insets: log-scale
plots of the distribution.
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obtain the same average lengths. In contrast to our expectation, the experimental average length was larger than the value we
obtained in the simulations, Fig. S1A,D. This difference is partly due to the fact that it is difficult to detect microtubules below
∼ 1 µm in our experiments, Fig. 2D, which leads to an overestimation of the experimental average length. However, this does
not fully explain the differences between the experimental and theoretical distributions for microtubule lengths lower than 5µm.
Additional factors could include molecular processes that we do not account for in our model.

With increasing values of Cm, in our simulations, the number of observed rescue events increased, which was also the
case in our experiments up to a motor concentration of 2 nM, Figs. 2H,I, S3C-F. Consequently, also the average length
increased, Figs. S1B-D. As before, the experimental values were larger than those obtained from the simulations. Concluding,
our stochastic simulations reproduce salient features of microtubule growth and length distribution in absence and in presence
of motors.

Average lattice length at steady state

With our simulations we can study the lattice length distribution at steady state. To ensure to reach steady state, we simulated
up to 3000 hr, depending on the condition. In line with our results from 45 min simulated time, in steady state, the standard
deviation was equal to the average length, Fig. S4. The average lattice length at steady state and the time needed to reach this
value increased monotonically with the motor concentration Cm, Fig. 3A-C. As the growth and shrinkage velocities and the
catastrophe rate were not changed, this increase of the average length was due to a decrease in the fraction of shrinkage periods,
Fig. 3D and S5. For Cm &2.1 nM, the simulations did not reach a steady state.
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Figure 3: Simulated steady-state average lattice length exhibits a transition. A) Average lattice length as a function of simulation
time obtained from 104 repetitions. Inset: complete curve for Cm = 3 nM. B) Average length in steady state as a function of
motor concentration. For Cm > 2.1 nM (red dashed line) no steady state was obtained. C) Simulation time needed to reach
steady state. The time was recorded when the average length was within one standard deviation from its steady-state value.
Inset: zoom for Cm ≤ 1 nM. (D) Long-term length vs time for Cm = 0, 1.5 and 3 nM.
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Unbounded lattice growth

In our simulations, for Cm ≥ 2.1 nM, the probability of complete depolymerization Pcd vanished, because all shrinking lattices
rescued, Fig. 4A. As a result, the average lattice length increased at constant velocity and without a bound, Fig. 3A, which
was compatible with our experimental data at 2 nM kinesin-1. Indeed, at this kinesin-1 concentration, we could not detect a
decrease in the growth velocity of the average microtubule length towards the end of our experiments, Fig. S1C. Together,
our experimental and theoretical results indicate that microtubule dynamics exhibits a transition from bounded to unbounded
growth at a critical motor concentration of Cm ≈ 2.1 nM. Obviously, in any experiment, microtubule growth would eventually
come to a halt, when the tubulin concentration is below the critical concentration of polymerization.

To study the transition from bounded to unbounded growth, we defined the correlation Cgs between the length added during
a growth phase and the length removed during the subsequent shrinkage phase. Explicitly, if gi denotes the length added during
the ith growth phase and si the length removed during the following shrinkage phase, then the correlation Cgs is given by

Cgs =
1

σgσs

N∑
i

(gi − 〈g〉)(si − 〈s〉). (11)

Here, 〈g〉 and 〈s〉 denote the respective average lengths added to or removed from the lattice. Furthermore,σg =

√∑N
i=1(gi − 〈g〉)2

is the standard deviation of the length in the growth phases and, analogously, σs for the shrinkage phases. Finally, N is the
number of observed pairs of growth and shrinkage phases. The correlation function decreases monotonically with increasing
motor concentration Cm, Fig. 4B. The correlation function did not exhibit a clear sign of the transition at the critical motor
concentration. Below, we come back to this surprising finding.
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Figure 5: Distribution of states and motors along the lattices. A-C) Average probability distribution of T- (magenta), D- (blue),
and Tx-states (green) along the lattice for Cm = 0 (A), 2 (B), and 3 nM (C). Inset: zoom on the Tx-state probability distribution.
D-F) Average probability distribution of motors along the lattice Cm = 1 (D), 2 (E) and 3 nM (F). Inset: zoom on the distribution
close to the seed. The binning size for the distributions is 10−2 (A,D,E) and 10−3 (B,C,F).

Distribution of exchange sites
In our model, rescue can only occur at exchange sites (Tx-state). We thus studied the distribution of the nucleotide states
D, T and Tx along the lattice at steady state. For Cm = 0, the probability distribution of T-states, t, increased exponentially
towards the growing end, whereas the probability distribution of D-states, d, showed the opposite behavior, Fig. 5A. The
characteristic length of these exponential distributions is essentially given by vg/khyd. The probability to find a site in the
Tx-state, t×, was smaller than one percent and decreased linearly over a region that extended from close to the lattice seed to
the tip. The non-exponential character of the Tx distribution is a consequence of the spontaneous exchange of D for Tx, the
hydrolysis of Tx, and lattice depolymerization.

In the presence of motors, the distribution t was not altered, Fig. 5B,C. In contrast, the steady-state distribution d was
reduced in the bulk of the lattice compared to the boundaries, Fig. 5B. Since motors were homogenously distributed sufficiently
far away from the lattice seed, Fig. 5D,E, one can attribute this decrease of d to an effective increase of the exchange rate.
Accordingly, the decrease in d was compensated by an increase of t×. We note that although the probability to find a motor on a
given site is very small, < 0.001, the probability t× increases by a factor of ∼ 40 for Cm = 2 nM compared to Cm = 0 nM. In
the unbounded growth regime and relative to the lattice length, the regions of the exponential decay of t and the corresponding
increase of d asymptotically shrank to zero and we neglect it in the following discussion. The distribution d decreased from the
growing end towards a plateau value that is given by

dbulk =

{
1 + α× + p×

αhαm

(1 + αm)2

}−1
, (12)

where α× = k×/khydX, αh = khop/khydX, and αm = kmot,d/kmot,a, see below. Since on most sites t ≈ 0, we have t× = 1 − d.
In summary, in the absence of motors, the probability that a site is in the Tx-state increases with the time the site has spent

in the lattice, Fig. 5A. Since shrinking lattices can rescue at exchange sites, the probability to rescue is thus position-dependent.
With increasing motor concentration, this probability approaches a constant value along the lattice and rescues occur at a
constant rate.
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Effective rescue rate
As a consequence of the position-dependent rescue rate, the distribution of lengths removed between a catastrophe and a rescue
event was not exponential, Fig. 6A. Let us recall that we do not consider regrowth from the seed to be a rescue event. With
increasing motor concentration Cm, we observed a decrease of the typical rescue length relative to the lattice length, Fig. 6A.

Within our in vitro experiments it was not possible to measure the position-dependent rescue rate. Instead, we measured an
effective position-independent rescue rate to quantitatively characterize the microtubule dynamics in presence of kinesin-1 (35).
To this end, the total number of rescue events was divided by the total time spent in the shrinking state for all microtubules
observed under one condition. In our experiments, this effective rescue rate increased with the kinesin-1 concentration, Fig. 6B,
inset.

We obtained the effective rescue rate also from our simulation data for all motor concentrations. For Cm ≤ 1 nM, the
effective rates from our simulations are close to the experimentally measured values. For larger values of Cm, the experimental
effective rescue rates are smaller than those from the simulations at steady state. Since we know that in our simulations the
steady state is not reached after 45 min simulated time for Cm > 1 nM, we also measured the effective rescue rate from
simulations of 45 min simulated time. In that case, we obtained a good match between our experimental and our simulation rates,
Fig. 6B, inset. At steady state the effective rescue rate increased with Cm, Fig. 6B. As a function of the motor concentration Cm

the effective rescue rate increased exponentially from Cm = 0 to the critical motor concentration, kres ∝ exp
[
Cm/Cm,c

]
with

Cm,c = 1.209± 0.004 nM. Beyond this concentration the function increased linearly with a slope s = 0.175± 0.001 min−1nM−1.
The transition from exponential to linear increase occurred at the same value of Cm as the transition from bounded to unbounded
lattice growth, Fig. 4A.

The transition between bounded and unbounded growth can also be induced by increasing the spontaneous exchange rate
k×, Fig. S6. Independently of whether the transition was induced by increasing the motor concentration or the spontaneous
exchange rate, it exhibited the same features. The only notable difference is the distribution of Tx close to the seed, Fig. S7,
which has an impact on the average lattice length in steady state.
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The average microtubule dynamics is captured by the effective rescue rate
Having introduced the effective rescue rate, we wondered how the lattice dynamics changes if rescue events occur at a constant
effective rate kres, instead of being limited to exchanged sites. This dynamics was studied by Dogterom and Leibler (37) and we
will refer to it as the DL-model. In addition to kres, the DL-model depends only on the growth velocity vg ≡ aka, the shrinkage
velocity vs ≡ akd , and the catastrophe rate kcat.

As long as vgkres < vskcat, the system reaches a steady state with an average length 〈L〉DL, which is given explicitly by (37)

〈L〉DL =
vg

kcat

1
1 − r

. (13)

Here r = vgkres/(vskcat), which is the only independent control parameter in the DL-model. In the unbounded growth regime,
the average growth velocity 〈vg〉DL is given by (37)

〈vg〉DL = (r − 1)
vskcat

kcat + kres
. (14)

In the DL-model, the critical value of the control parameter is r∗ = 1. For the values of the parameters ka, kd , and kcat used
in our simulations, we obtain k∗res ≈ 4.05 min−1. Remarkably, this value matches the effective rescue rate at the transition from
bounded to unbounded growth in our model – independently of whether the transition was induced by changing the motor
concentration Cm or the spontaneous exchange rate k×, Fig. 6B, S6D.

Above, we have characterized the transition to unbounded growth by the probability for complete depolymerization, Pcd. In
the following, we compute this value for the DL-model. In the bounded growth regime, this probability can be written as

Pcd =

∫ ∞

0
dlPL (l)Ps (l |l), (15)

where PL is probability distribution of the lattice length and Ps (s |l) the probability distribution that a lattice shrinks by a length
s, when it had a length l at the catastrophe event. In the DL-model, we have

PL (l) =
1
〈L〉DL

e−l/〈L〉DL (16)

Ps (s |l) =
kres

vs
e−s

kres
vs H (l − s) + δ(l − s)e−s

kres
vs . (17)

Here, δ denotes Dirac’s δ-distribution with δ(x) = 0 for x , 0 and
∫

dx δ(x) = 1, andH denotes the Heaviside step function
withH (x) = 1 for x > 0 andH (x) = 0 for x ≤ 0. Calculating the integrals in Eq. (15) yields

Pcd,DL = 1 − r . (18)

Note that this expression was obtained for the steady state and thus only valid for r ≤ 1.
In the unbounded growth regime, the lattice grows indefinitely. Therefore, PL (l, t) tends to zero for finite l and t → ∞.

Consequently, Pcd = 0. Our analytical result agrees with simulations of the DL-model, Fig. 7A. For the RES-model, which
accounts for spontaneous and motor-induced exchange, Eq. (18) also describes Pcd if we use the effective rate kres to calculate r ,
Figs. 6B, 7A, S6D. In the unbounded growth regime, the average growth velocity vg, Eq. (14), yields the corresponding value
for the RES-model, if r is again obtained from the effective rate kres, Fig. 7B.

In the bounded growth regime, after computing r as before, Eq. (13) gives the average lattice length for the RES-model
accounting only for spontaneous exchange, Fig. 7C. If also motor-induced exchanges are considered, we find that Eq. (13)
underestimates the average length obtained from the simulations, Fig. 7C. This difference can be explained as follows: adjacent
to the seed, the probability to find Tx sites is significantly smaller than in case of a constant (effective) spontaneous exchange
rate, Figs. 5B and S7B. Consequently, the lattice needs to be longer to achieve the same effective rescue rate. We conclude that
the average behavior of the RES-model is captured by the DL-model if the control parameter r is computed using the effective
rescue rate kres, Figs. 6B and S6D.

In striking contrast, as a function of r, the correlation Cgs differs strongly between the models, Fig. 7D. Whereas the
correlation function for the DL-model drops to zero at the transition, it stays finite for the RES-model. Still, as a function of r ,
Cgs displays a clear sign of the transition, which is not the case if considered as a function of Cm or k×, Figs. 4B and S6B. Also,
the functional dependence of Cgs on r is the same for the cases with and without motors.
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We can calculate the correlation function for the DL-model in the bounded growth regime. To this end we write the
correlation function as

Cgs =
1

σgσs

∫ ∞

0
dg

∫ ∞

0
ds (g − 〈g〉) (s − 〈s〉) P(g, s). (19)

Here, 〈g〉 = vg/kcat and 〈s〉 = vg/kcat are the expectation values of the growth and shrinkage lengths, σg = 〈g〉 and σs = 〈s〉
the corresponding standard deviations, and P(g, s) is the probability distribution for observing growth by a length g and a
subsequent shrinkage by a length s. It can be written as

P(g, s) =
∫ ∞

0
dl ′

∫ ∞

0
ds′PL (l ′)Ps (s′ |l ′)Pg (g)Ps (s |l ′ − s′ + g). (20)

Here, Pg is the probability distribution for the length of a growth phase. Explicitly,

Pg (g) =
kcat

vg
e−g

kcat
vg . (21)

Injecting Eqs. (16), (17), (20) and (21) into Eq. (19) yields

Cgs =
1 − r
1 + r

. (22)

In the limiting cases r = 0 and r = 1, we have Cgs(r = 0) = 1 and Cgs(r = 1) = 0 as expected. In the unbounded growth
regime, r ≥ 1, the growth and shrinkage phases are independent of each other and Cgs = 0. The simulation results match
Eq. (22), Fig. 7D.
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Figure 7: Comparison of our RES-model to the DL-model. A) Probability of complete depolymerization Pcd as a function of
r = kakres/kdkcat with kres from Fig. 6B. B) The average growth velocity in the unbounded growth regime as a function of r . C)
Average length in the steady state of the bounded growth regime as a function of r . D) The correlation Cgs as a function of r .
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Meanfield analysis
We study the lattice dynamics using a meanfield approach by expressing all correlation functions in terms of products of mean
values, Eqs. (1)-(5), Methods. We obtained the steady-state solutions of these equations by using an explicit Euler scheme for
the time evolution, Fig. 8. In absence of motor particles and for sufficiently small values of the spontaneous exchange rate k×,
the meanfield solutions agreed well with our simulation results, Figs. 8A-D, S8A-D. Only the distribution of Tx-states differed
significantly between these two approaches, Figs. 8C, S8C. This difference increased with increasing k×, Fig. S8E-H, and was
due to the tight link between rescue events and the presence of sites in the Tx-state.

For Cm , 0, the effects of these correlations were stronger than for Cm = 0, increasing the difference between the simulations
and the meanfield equations, Fig. 8E-H. Similarly, the motor distributions from the simulations and the meanfield equations
differed sufficiently far away from the seed, Fig. 8I. For Cm = 3.0 nM, our stochastic simulations differed qualitatively from
the meanfield equations as the former was in the unbounded regime, whereas it was still in the bounded regime for the latter,
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Figure 8: Meanfield solutions for different motor concentrations Cm. Distributions of T- (A, E, J,O), D- (B, F, K, P), Tx-states
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Fig. 8J-N. Indeed, the critical value of Cm for the transition from bounded to unbounded growth was Cm ≈ 2.1 nM in the
stochastic simulations and Cm ≈ 4.5 nM in the meanfield approach. Let us also note that the transition to unbounded growth
occurred at different values of the spontaneous exchange rate k× in the stochastic simulations and the meanfield equations. In
this case, the transition occurred for smaller values in the meanfield approach, Fig. S8I-L. For Cm = 5.0 nM, simulations and
meanfield equations yielded unbounded growth and the distributions were in perfect agreement, Fig. 8O-S. The same was true
in the unbounded regime, when motor particles were absent, Fig. S8M-O.

In the unbounded growth regime, we could compute the various distributions analytically by assuming that the lattice is
infinitely long. In that case, we took the continuum limit, Methods, and solved Eqs. (9)-(10). Explicitly, we found for the steady
state:

m =
1

1 + αm

[
1 −

1
1 + αad

exp
{(

1 −
√

1 + 2αad

) x
a

}]
(23)

d =
[
1 + α× + αhp×m

(
1 − m − am′ −

a2

2
m′′

)]−1

, (24)

where αad = (kmot,a + kmot,d)/khop, and t× = 1 − d, Methods. This solution exactly matched the distribution close to the seed
obtained from our simulations, Fig. 8J-S, S8M-O.

Finally, we note that it follows from Eqs. (9) and (24) that the effect of the motors on the distribution can be exactly mapped
to a position-dependent exchange rate

k×,eff = k× + p×m
(
khop − khopm − vm′ − Dm′′

)
. (25)

CONCLUSION
Our analysis shows that molecular motors can significantly change the average length of microtubules by inducing tubulin
exchange along the shaft. This observation holds true even if motors are small in number and when only a small fraction of
motor steps leads to tubulin exchanges. As a consequence, in cells, microtubules used for transport are stabilized such that
transport can lead to microtubule network reorganization. This mechanism offers a direct link between local extracellular stimuli
and cell polarization.

Remarkably, although the average effects of molecular motors on microtubule dynamics can be captured by an effective
rescue rate, the dynamics of individual microtubules differs dramatically if rescues are governed by an effective rate or occur
only at tubulin exchange sites. This is evident when considering the correlation between growth and subsequent shrinkage
lengths. Future work will address possible implications for cellular processes and microtubule network organization.

Our simulations focus on the study of microtubule length dynamics in presence of motor-induced tubulin exchange. For this
reason it neglects salient aspects of the microtubule tip dynamics, in particular, the link between the ’GTP-cap’, a region of
GTP tubulin at a growing microtubule end, and catastrophes. It will be interesting to see, how the detailed tip dynamics affects
the correlation between growth and shrinkage lengths. Furthermore, we assume a reservoir of tubulin dimers. Future studies
will address the question how a limited pool of tubulin dimers impacts on the behavior of the system.
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Figure S1: Average length form experiment (red) and simulations (black). A-C) Average length as a function of time for motor
concentrations Cm = 0 nM (A), Cm = 1 nM (B), and Cm = 2 nM (C). D) Average microtubule length at 45 min as a function of
Cm.
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Figure S2: Site state dependent rescue and motor induced exchange. Kymographs of simulated microtubules for 45 min with
Cm = 1 (A) and 2 nM (B) showing D (blue), T (magenta), Tx (green) sites and motor particles (yellow). Each kymograph is
accompanied by successive zooms (black rectangle) exhibiting a rescue event (A) and motor induced exchange (B).
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Figure S3: Fluctuations in individual simulated microtubule trajectories during 45 min. Kymographs of simulated microtubules
with Cm = 0 (A-B), 1 (C-D), and 2 nM (E-F) showing D (blue), T (magenta), Tx (green) sites and motor particles (yellow).
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Figure S4: Standard deviation of the length as function of the simulated time for Cm = 0, 1, 1.5, 2 and 3 nM. In the bounded
growth regime, Cm = 0, 1, 1.5 and 2 nM, the standard deviation is equal to its average, indicating an exponential distribution. In
the unbounded growth regime, Cm = 3 nM, the standard deviation is not equal to the average
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Figure S5: Average length of the shrinkage epsiodes as a function of the motors concentration. Error bars represent standard
deviation. In the bounded growth regime, up to Cm = 2.1 nM, the average length of the shrinkage phases stays constant. In the
unbounded growth regime, Cm > 2.1 nM, the average shrinkage length decreases with the motor concentration.

A Probability of complete depolymerization

Pcd

10
5
*kX (1/s)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5  5  5.5  6  6.5  7

B Correlation function

Cgs

10
5
*kX (1/s)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5  5  5.5  6  6.5  7

C

Seed Tip

Rescue length distribution

Pres

i / L

kX = 1*10
−5

 s
−1

2*10
−5

 s
−1

3*10
−5

 s
−1

5*10
−5

 s
−1

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0  0.2  0.4  0.6  0.8  1

 0

 0.2

 0.4

 0.6

 0.95  0.96  0.97  0.98  0.99  1

D Effective rescue rate

kres 

 (min
−1

)

10
5
*kX (s

−1
)

 0

 1

 2

 3

 4

 5

 0  1  2  3  4  5  6  7

Figure S6: Dependence on the spontaneous exchange rate k×. A) Probability of complete depolymerization Pcd. Data points for
the bounded growth regime were measured in the steady state. B) Correlation Cgs between the length of a growth phase and
of the subsequent shrinkage phase. In the unbounded growth regime error bars are larger due to fewer data. C) Probability
distributions of the shrinkage length relative to the microtubule length prior to depolymerization. For 5 × 10−5 s−1 the peak
shifts towards the tip as the simulation time increases. Inset: zoom for 5 × 10−5 s−1. D) The effective rescue rate kres.
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Figure S7: Distribution of subunit types in presence of spontaneous exchanges only. Average probability distribution of T-
(magenta), D- (blue), and Tx-subunits (green) along the microtubule for k× = 1 × 10−5 (A), 3 × 10−5 (B), and 5 × 10−5 s−1 (C).
The inset in (A) is a zoom on the Tx probability distribution.
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Figure S8: Meanfield solutions for different spontaneous exchange rates k×. Distributions of T- (A, E, I, M), D- (B, F, J, N),
Tx-states (C, G, K,O), lattice lengths (D, H, L), with respect to the lattice seed for k× = 1 × 10−5 (A-D), 2 × 10−5 (E-H),
3 × 10−5 (I-L), and 5 × 10−5 s−1 (M-O). Black crosses: simulation results; dark blue, light green, orange, and magenta lines:
numerical solutions to the meanfield equations; light blue and yellow lines: analytical solutions to the meanfield equations.
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