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Abstract 

Neuronal responses during behavior are diverse, ranging from highly reliable ‘classical’ responses 

to irregular or seemingly-random ‘non-classically responsive’ firing. While a continuum of response 

properties is frequently observed across neural systems, little is known about the synaptic origins 

and contributions of diverse response profiles to network function, perception, and behavior. Here 

we use a task-performing, spiking recurrent neural network model incorporating spike-timing-

dependent plasticity that captures heterogeneous responses measured from auditory cortex of 

behaving rodents. Classically responsive and non-classically responsive model units contributed to 

task performance via output and recurrent connections, respectively. Excitatory and inhibitory 

plasticity independently shaped spiking responses and task performance. Local patterns of synaptic 

inputs predicted spiking response properties of network units as well as the responses of auditory 

cortical neurons from in vivo whole-cell recordings during behavior. Thus a diversity of neural 

response profiles emerges from synaptic plasticity rules with distinctly important functions for 

network performance.  
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Introduction 

Neuronal spiking patterns and responses to sensory input can be remarkably diverse, ranging from 

completely silent or firing a single action potential to prolonged burst firing or complex sequence 

generation. Various spiking patterns have been documented throughout brain regions in response to 

different sensory inputs, in relation to decision making, motor actions, or other task-related signals. The 

extent of spiking and receptive field heterogeneity is vast, with numerous types of neuronal responses 

found in many brain areas including visual cortex1–4, auditory cortex5–11, somatosensory cortex12, parietal 

cortex3,13,14, frontal cortex14–18, hypothalamus19–21, hippocampus22–24, and the ventral tegmental area25,26 

correlated with sensory, motor, choice, and other task-related signals1,3,10,13–15,27,28. These neurons are 

often described as tuned, untuned, classically responsive, non-classically responsive, mixed selective, or 

category-free13,15,17,29.  

 

Recently we showed that classically responsive neurons (e.g., pure tone frequency tuning in auditory 

cortex) and non-classically responsive neurons (i.e., nominally “non-responsive” neurons) both contained 

significant information about sensory stimuli and behavioral decisions. This finding suggests that non-

classically responsive cells play important yet generally underappreciated roles in perception and 

behavior15. This work is consistent with other recent findings demonstrating that neurons in rat primary 

visual and parietal cortex can encode sensory and non-sensory factors related to movement, reward 

history, and decision making3. Similarly, a recent study on sequential memory in humans found that both 

strongly-tuned and weakly-tuned neurons recorded from the medial temporal lobe participated in theta-

phase-locked encoding of sequence stimuli30. A previous study on working memory in primate prefrontal 

cortex also revealed that non-selective neurons can contribute to optimal ensemble encoding18, consistent 

with our own finding that mixed ensembles of classically and non-classically responsive cells improved 
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encoding of task variables15. Studies of deep neural networks trained to perform a visual recognition task 

showed that regularizing networks to increase the fraction of ‘non-selective’ units improved network 

performance relative to those with greater numbers of ‘selective’ units31. These findings suggest that a 

diversity of neuronal response types (including neurons nominally thought to be non-responsive) may be 

a general property of neural networks, and that heterogeneity may be a key feature of the circuit dynamics 

important for network performance and behavior.  

 

Here we now examine the synaptic basis for various types of spiking response profiles, and how synaptic 

plasticity learning rules were important for shaping synaptic inputs for spike output and network 

performance. We leveraged cell-attached, extracellular, and whole-cell recordings from behaving animals 

alongside recurrent network modeling to explore the synaptic origins and functional contribution of 

heterogeneous response profiles. Recent advancements using recurrent neural networks (RNN) with 

spiking units have shown that experimentally-derived synaptic plasticity mechanisms can support stable 

neuronal assemblies32 and coordinate memory formation and retrieval33. Related work has also shown that 

spiking RNNs can be trained to perform tasks using general-purpose methods similar to those employed 

in rate-based networks such as first-order reduced and controlled error (FORCE) training34,35 but these 

methods have only been employed as perturbation of networks with static synaptic weights. We combined 

FORCE training with a dynamic network to create a novel RNN with spiking units and multiple spike-

timing-dependent plasticity (STDP) rules to solve a stimulus classification task similar to that of trained 

rats and mice. Our goal was to determine whether and how classically and non-classically responsive units 

contribute to task performance, how local synaptic structure (e.g. monosynaptic and disynaptic 

connections) constrains single-unit response profiles, and if the relationships observed for units in our 

network model could be applied to neurons in vivo during behavior. 
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Results 

Diverse cortical responses measured during behavior in freely-moving rats and head-fixed mice 

We recorded from the rodent auditory cortex as animals performed a task requiring them to classify 

specific tone frequencies. We first trained rats to perform a go/no-go auditory frequency recognition task 

(Fig. 1a) requiring them to behaviorally respond with a nosepoke to a single target tone (4 kHz) for food 

reward and to withhold responses on non-target tones (0.5, 1, 2, 8, 16, 32 kHz). Rats learned this task 

within a few weeks of training performing with high d’ values (Fig. 1b; d’ = 2.8±0.1, p<10-4, N = 15, 

Wilcoxon two-sided test). We previously showed that auditory cortex is required for this task6,15. After 

rats reached behavioral criteria (percent correct: ≥70%, d’: ≥1.5), tetrodes were implanted in the right 

auditory cortex and we recorded from populations of single-units in non-head-fixed animals as they 

performed this go/no-go task (Fig. 1c). Single-unit responses were quite diverse across the population, 

spanning a range of response types from ‘classically responsive’ cells that were highly modulated relative 

to pre-trial baselines during the task to ‘non-classically responsive’ cells with relatively unmodulated 

firing rates throughout task performance including cue presentation and behavioral choice.  

 

To capture the continuum of response types, we calculated a ‘firing rate modulation index’ comparing 

neural responses during the stimulus and choice periods to baseline values where either positive or 

negative changes in spike number increase the modulation index (in units of spikes per second). A low 

value of firing rate modulation index (near 0 spikes/s) corresponds to neurons that were unmodulated 

relative to baseline (‘non-classically responsive’) and larger values (≳	2	spikes/s) correspond to neurons 

that were highly modulated (‘classically responsive’). The modulation was calculated from the firing rates 

during the stimulus and choice periods (‘stimulus/choice FR’) and baseline firing rate (‘baseline FR’) as  

 (1)  
<latexit sha1_base64="jtJWte/quDYxBWR9TWnvBnkvPWY="></latexit>

modulation =
p

(stimulus FR� baseline FR)2 + (choice FR� baseline FR)2.
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Most single-units recorded during behavior were generally non-classically responsive, with a minority of 

cells having more ‘classical’ responses, e.g., to tone presentation (Fig. 1d,e; median firing rate modulation 

= 0.78 spikes/s, interquartile range = 0.47 – 1.50 spikes/s). 

 

We observed a similar range of neuronal response profiles in cell-attached recordings from the auditory 

cortex of head-fixed mice trained on an analogous go/no-go auditory frequency recognition task (Fig. 1f). 

Mice were trained to respond to a single target tone (11.2 kHz) by licking for a water reward, and to 

withhold their response to a single non-target tone (5.6 kHz). Mice learned this task within a few weeks 

performing at high d’ values (Fig. 1g; d’ = 2.5±0.1, p = 0.016, N = 7 mice, Wilcoxon two-sided test). 

After reaching behavioral criteria (percent correct ≥70% and d’: ≥1.5), animals were implanted with a 

cranial window that included a small hole for pipette access, and cell-attached recordings were made to 

measure spike firing during behavior (Fig. 1h). We found that neuronal responses in mice were also 

heterogeneous, including non-classically responsive cells with low firing rate modulation as well as 

classically-responsive cells that were highly modulated during the task (Fig. 1i,j; median firing rate 

modulation = 2.26, interquartile range = 1.73 – 3.61 spikes/s). These data then led us to wonder how local 

patterns of single-neuron excitatory and inhibitory inputs related to spike firing and behavioral 

performance (Fig. 1k).  
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Figure 1. Diverse single-unit responses measured in rodent auditory cortex during behavior. a, 
Schematic of behavior and extracellular tetrode recordings from auditory cortex of rat performing 
frequency recognition go/no-go task. b, Asymptotic behavioral performance for all rats (d’ = 2.8±0.1, 
p<10-4, N = 15, Wilcoxon two-sided test). c, Example single-unit recording from rat auditory cortex during 
behavior. d, Rasters and peri-stimulus time histograms (PSTHs) for four cortical neurons exemplifying 
the range from non-classically responsive (red, NCR) to classically responsive (gray, CR). Lines in PSTH, 
mean firing rate; shading, S.E.M. Horizontal bar, tone duration. e, Summary of firing rate modulation for 
all cortical neurons recorded during behavior (n=103). Outlined circles, units from d. Median firing rate 
modulation = 0.78 spikes/s (inter-quartile range 0.47 – 1.50 spikes/s). f, Cell-attached recordings from 
auditory cortex of mouse performing frequency recognition go/no-go task. g, Asymptotic behavioral 
performance for all mice (d’ = 2.45±0.11, p = 0.016, N = 7 mice, Wilcoxon two-sided test). h, Example 
cell-attached recording from mouse auditory cortex during behavior. i, Rasters and PSTHs for four 
example recordings. j, Firing rate modulation for all cell-attached recordings (n=26) from mouse auditory 
cortex during behavior (median firing rate modulation = 2.26, interquartile range = 1.73 - 3.61 spikes/s). 
k, Diagram of relationship between local synaptic structure, synaptic inputs, spiking outputs, and 
behavior.   
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A spiking RNN model incorporating STDP rules captures in vivo cortical dynamics 

To relate inputs and outputs over the response-type continuum, we developed a spiking RNN model 

trained to perform a similar go/no-go stimulus classification task as behaving animals (Fig. 2a-c; d’ = 

4.6±0.1, p=0.0078, N = 8 networks, Wilcoxon two-sided test). All networks contained 1000 units (200 

inhibitory, 800 excitatory); 200 excitatory units received inputs and the remaining 600 excitatory units 

projected onto the readout node. The activity of this node is the dynamic signal which represents the 

response of our network to the incoming stimuli: ‘go’ is represented by an increase in node activity during 

the choice period, and ‘no-go’ is represented by node activity that remains at pre-trial baseline. All units 

were recurrently connected with a 5% random connection probability. The network was trained to perform 

the task via a version of FORCE designed for spiking networks34,35 (i.e., least-squares modification of the 

output weights with feedback) combined with STDP synaptic plasticity learning rules acting on the 

recurrent weights (Fig. 2a, Extended Data Fig. 1a-d). The network was trained to use the minimal amount 

of external stimulus input while being able to perform the task to mirror the behavioral errors seen during 

animal performance (Extended Data Fig. 1e).  

 

Our model included biologically-motivated and experimentally-constrained excitatory and inhibitory 

synaptic STDP. Excitatory-to-excitatory synapses were modified by classic pairwise Hebbian 

homosynaptic plasticity36,37, and inhibitory-to-excitatory synapses were modified by a homosynaptic rule 

which strengthens synapses when units fire synchronously regardless of order38–41. Excitatory-to-

excitatory and inhibitory-to-excitatory synapses were also adjusted by homeostatic mechanisms of 

heterosynaptic plasticity which prevented any one presynaptic connection from dominating 

(heterosynaptic balancing, β) or postsynaptic connection from dropping out (heterosynaptic enhancement, 

δ). These heterosynaptic changes occurred simultaneously with homosynaptic mechanisms and thus were 
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qualitatively distinct from other types of homeostatic regulation of input weight distributions such as 

synaptic scaling.  

 

While FORCE was originally designed to construct networks that can solve tasks without modification of 

the underlying recurrent synapses, in our network, STDP constrains FORCE to find solutions consistent 

with biological plasticity rules. FORCE and STDP can operate in parallel because each mechanism can 

be targeted to a different set of connections in the model: STDP modifies the recurrent synapses while 

FORCE modifies the connections to the readout node. In this way, STDP directly shaped the inherent 

recurrent dynamics of our network while FORCE determined how those dynamics were harnessed to 

perform the task. Since FORCE was originally designed to operate in networks with fixed recurrent 

weights and in our network these evolve, gross changes induced by STDP must be complete before 

FORCE can adapt to smaller synaptic changes. To ensure this, STDP was first activated without FORCE 

to allow for initial major synaptic restructuring to occur before FORCE training began and the two 

mechanisms continued in parallel (see Methods). The particular mechanisms and parameters chosen for 

STDP in this model were not optimized for the task a priori, and as such STDP should not have trivially 

improved performance. In general, we found that by using this procedure FORCE was compatible with 

STDP over a wide range of STDP parameters (Extended Data Fig. 1f-h). All networks without STDP 

active were trained with FORCE for the same number of trials as those with STDP. 

 

We found that with STDP the spiking responses of individual network units closely approximated the 

distribution of firing rate modulations observed experimentally in the auditory cortex in vivo (Fig. 2e; p = 

0.27, Kolmogorov-Smirnov test). Using a statistical threshold to identify non-classically responsive units 

as previously described15 (firing rate change from baseline < 0.2 spikes/s during stimulus and choice 
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periods, see Methods), we found the relative fractions of classically and non-classically responsive units 

were also comparable to experimental measurements (Extended Data Fig. 2a-c; ~40-50% non-classically 

responsive, 50-60% classically responsive). Using a single-trial, interspike interval (ISI)-based, Bayesian 

decoder we recently described15, we found that task information was encoded in the activity of both 

classically and non-classically responsive RNN units (Fig. 2f).   

 

To assess whether STDP altered response profile distributions, we compared the distribution of units 

before STDP was applied (pre-STDP) to those after (post-STDP). In pre-STDP networks, the recurrent 

weights were fixed during FORCE training whereas in post-STDP networks the recurrent weights evolved 

according to the STDP rules described above. Pre- and post-STDP networks were constructed in pairs 

with the same set of initial recurrent weights so that pre-STDP networks represent the behavior of the 

network with FORCE alone before STDP was active. The post-STDP response profile distribution 

differed substantially from pre-STDP networks, such that post-STDP networks exhibited more non-

classically responsive units than pre-STDP networks (Fig. 2g; median post-STDP modulation = 1.52 

spikes/s vs. pre-STDP modulation = 2.25 spikes/s, p < 10-5, Mann-Whitney two-sided U-test with 

Bonferroni correction). To understand how the synaptic changes induced by STDP resulted in this shift, 

we created two control networks with engineered weight matrices based on the full post-STDP weights. 

To determine whether the post-STDP response profile distribution resulted from a shift in mean weight 

strength, we first created networks with weights generated as in the pre-STDP condition but with mean 

values matched to those found post-STDP (Fig. 2g; ‘Mean-match’, weights drawn from uniform 

distribution from 0 to 2x mean, median post-STDP modulation = 1.52 vs. mean-match modulation = 1.46, 

p<10-4, N = 8 networks; Extended Data Fig. 3a). Second, we created networks in which inhibitory-to-

excitatory and excitatory-to-excitatory synaptic weights were shuffled at random to new pre- and 
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postsynaptic target units to preserve the full weight distribution created by STDP but remove any synaptic 

correlations (Fig. 2g, ‘Shuffle’, median post-STDP modulation = 1.52 vs. shuffle modulation = 1.48, 

p=0.0017, N = 8 networks, Extended Data Fig. 3a). Both control conditions were retrained with FORCE 

after weight matrices were altered. For both the ‘mean-match’ and ‘shuffle’ controls, the distributions of 

responses closely followed the post-STDP distribution; however, the proportion of inactive units (firing 

rate < 1 spike/trial on average) significantly increased to ~5% of the full network (Fig. 2h; comparisons 

to post-STDP p = 0.001, Mann-Whitney two-sided U test with Bonferroni correction). These results show 

that the overall synaptic weight changes induced by STDP could account for the increase in the fraction 

of non-classically responsive units. However, the synaptic correlations induced by STDP were required 

to facilitate full network engagement (i.e., no inactive units).  

 

To determine how STDP shaped synaptic weight strengths and structure (i.e., network topology), we 

compared the synaptic weight strengths pre-STDP to post-STDP. Over the course of training, we found 

that STDP mechanisms made significant modifications to both the excitatory-to-excitatory and inhibitory-

to-excitatory synaptic weight distributions and topologies. Median weights shifted relative to pre-STDP 

initial values for both types of synapses and the distributions of synaptic weights became skewed 

(Extended Data Fig. 3b), as has been observed as has been observed in rat visual cortex42. We asked if 

selective weight rescaling by STDP preserved the random structure of the initial pre-STDP network or 

created systematic patterns of synaptic connectivity (i.e., “small-world” network topology) as previously 

described in rat somatosensory cortex43,44. We compared the topology of the synaptic weight matrix post- 

and pre-STDP and found that STDP generated a more clustered network structure consistent with both 

experimental observations44 and computational studies32,33 (Extended Data Fig. 3c).   
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Figure 2. A spiking RNN model incorporating STDP rules recapitulating in vivo cortical neuronal 

dynamics. a, Schematic of spiking RNN model trained to complete go/no-go stimulus recognition task. 

Networks consisted of 80% excitatory and 20% inhibitory units. 25% of excitatory units received direct 

current as the stimulus (1 target stimulus, 6 non-target stimuli) and remaining 75% were output units 

which project to the readout node (maroon) and received feedback from readout node. Weights to the 

readout node trained were via FORCE. Excitatory-to-excitatory and inhibitory-to-excitatory synapses 

were modified by separate STDP mechanisms. b, Example network outputs on ‘go’ trial (in response to 
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‘target’ stimulus) and ‘no-go’ trial (in response to ‘non-target’ stimulus). White, pre-trial baseline; gray, 

stimulus period; green, choice period. c, Asymptotic task performance (d’ = 4.6±0.1, p=0.0078, N = 8 

networks, Wilcoxon two-sided test) d, Top left, example voltage traces from two trials of a classically 

responsive unit. Top right, corresponding spike rasters across trials and PSTHs to target (red) and non-

target stimuli (blue). Bottom left, two example voltage traces from a non-classically responsive unit. 

Bottom right, corresponding spike rasters across trials and PSTHs. e, Cumulative distribution of single-

unit firing rate modulation for spiking RNN model (dotted) and experimental data (solid). Small values 

of the firing rate modulation correspond to non-classical response (NCR) profiles; high values correspond 

to classical response (CR) profiles. Difference between simulated and experimental distributions were not 

statistically significant (p = 0.27, Kolmogorov-Smirnov test). f, Decoding performance for single units in 

one network (n=1000) for classically responsive units (CR, grey, left) and non-classically responsive units 

(NCR, red, right). Circle and line represent median and interquartile range respectively. g, Probability 

density of firing rate modulation for individual units. Gray, pre-STDP; purple, post-STDP; dotted light 

purple, mean-matched control; solid light purple, shuffle control. Summary circles and bars above 

distributions represent median and interquartile range, respectively (median post-STDP modulation = 1.52 

vs. pre-SDTP modulation = 2.25, p < 10-5, vs. mean-match modulation = 1.46, p<10-4, 52 vs. shuffle 

modulation = 1.48, p=0.0017, N = 8 networks in all groups, Mann-Whitney two-sided U-test with 

Bonferroni correction). h, Percent of inactive units for pre-STDP, post-STDP, and controls (defined as 

firing rate <1 spikes/s, all comparisons to post-STDP, p = 0.001, Mann-Whitney two-sided U test with 

Bonferroni correction). i, Task performance for pre-STDP, post-STDP, and controls (Mean shifts relative 

to pre-STDP, post-STDP: Δd’ = 0.97, p = 0.0014, mean-match: Δd’ = 0.44, p = 0.04, shuffle: Δd’ = 0.15, 

p = 0.74, N = 8 networks in all groups, Wilcoxon two-sided test with Bonferroni correction). 

  

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 5, 2022. ; https://doi.org/10.1101/2022.05.04.490676doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.04.490676


The modifications to the weight matrix made by STDP improved task performance (Fig. 2i; median pre-

SDTP d’ = 3.52 vs. post-STDP d’ = 4.49, p = 0.0014, N= 8 networks, Wilcoxon two-sided test with 

Bonferroni correction). This increase in performance was not observed in either the mean-matched or 

shuffled control conditions, demonstrating that the detailed connectivity structure of synaptic weights 

created by STDP were required to improve performance (Fig. 2i; mean pre-STDP d’ = 3.52 vs. mean-

match d’ = 3.96, p = 0.04, and shuffle d’ = 3.67, p = 0.74, N = 8 networks in all groups, Wilcoxon two-

sided test with Bonferroni correction). These results show that STDP shifts the weight matrix into a regime 

leading to improved task performance while maintaining a consistent level of network unit engagement.  

 

Classically and non-classically responsive RNN units contribute to task performance via distinct 

mechanisms 

Given that STDP increased both the prevalence of non-classically responsive units as well as network task 

performance, we next explored how classically responsive and non-classically responsive units 

contributed directly to task performance. We first evaluated the output connections to the readout node 

and recurrent weights between units to determine whether there were systematic differences between these 

response profiles. Both classically and non-classically responsive units spanned a similar range of values, 

however classically responsive units had larger weights onto the readout node than non-classically 

responsive units (Fig. 3a; p < 10-5, Levene’s test). This suggests that both classes contribute directly to 

task performance by driving the network output, but classically responsive units may affect performance 

specifically via their effect on the readout node. In contrast, non-classically responsive units had stronger 

recurrent projections than classically responsive units to both subpopulations (Fig. 3b; p < 10-5, for all 

comparisons between NCR and CR, Mann-Whitney U test two-sided with Bonferroni-correction). This 

result, coupled with the observation that non-classically responsive units generally had higher firing rates 
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(Fig. 3c; median NCR = 19.1 spikes/s vs. median CR = 16.5 spikes/s, p < 10-5, Mann-Whitney two-sided 

U test) suggests non-classically responsive units may play a privileged role in generating task-related 

dynamics through their effect on recurrent network activity.   

 

To test this hypothesis, we transiently inactivated classically and/or non-classically responsive units 

during task performance. Inactivation of non-classically responsive units targeted the least modulated 

units in the network first while inactivation of classically responsive units targeted the most modulated 

units. During inactivation, we silenced output connections and replaced recurrent activity with average-

firing-rate-matched Poisson noise to control for changes in the overall level of recurrent synaptic current. 

Completely inactivating either subpopulation impaired task performance suggesting that both 

subpopulations are important for network dynamics. Inactivating a relatively small number of highly non-

classically responsive units (60 units, top 10% most non-classically responsive) had a significantly larger 

effect on performance than inactivating classically responsive units (Fig. 3d, Extended Data Fig. 4a; 

inactivating 10% most non-classically responsive Δd’ = -1.6 vs. inactivating 10% most classically 

responsive Δd’ = -0.9, p < 10-4, Mann-Whitney two-sided U test with Bonferroni-correction). As the 

number of inactivated units increased, however, task performance continued to degrade and eventually 

the effects of inactivating 300 units (i.e., 50%) of units from either subpopulation were comparable (Fig. 

3d; inactivating 50% most non-classically responsive Δd’ = -2.3 vs. inactivating 50% most classically 

responsive Δd’ = -2.6, p = 0.06, Mann-Whitney two-sided U test with Bonferroni correction).   

 

The types of errors produced (‘false alarms’ on non-target trials and ‘misses’ on target trials) did not differ 

when inactivating either classically or non-classically responsive units (Fig. 3e; false alarms vs. misses 

inactivating 50% most classically responsive, p = 0.26, inactivating 50% most non-classically responsive, 
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p = 0.21, Mann-Whitney two-sided U test with Bonferroni correction). However, we observed a 

qualitative difference in the network dynamics that produced these errors depending on which 

subpopulation was inactivated. Inactivating classically responsive units let to greater variability in the 

readout node activity during the choice period (Fig. 3f; root mean squared error during response period at 

50% inactivation of most classically responsive = 0.48, 50% most non-classically responsive = 0.44, p < 

10-5, Mann-Whitney two-sided U test with Bonferroni correction); however, inactivating non-classically 

responsive units caused a greater shift in readout node baseline activity (Fig. 3g; mean shift in baseline 

activity at 50% inactivation of most classically responsive = -0.25 vs. 50% most non-classically responsive 

= 0.47, p < 10-5, Mann-Whitney two-sided U test with Bonferroni correction). This suggests that while 

both response types are essential for proper network function, non-classically responsive units served to 

set boundaries which constrain overall network dynamics to the task-relevant subspace (i.e. readout node 

activity close to 0 except during ‘go’ responses) whereas classically responsive units affected dynamics 

within those boundaries.  

 

We asked if these impairments resulted from silencing output connections or interfering with recurrent 

activity by either selectively inactivating output connections or recurrent connectivity. Inactivation of the 

output connections alone in either subpopulation impaired performance. Removing output connections 

from 10% of non-classically responsive units led to a significant decrease in task performance (Extended 

Data Fig. 4b; removing output connections from 10% most non-classically responsive Δd’ = -1.2 vs. 10% 

most classically responsive Δd’ = -0.6, p < 10-5, Mann-Whitney two-sided U test with Bonferroni 

correction). For greater than 20% inactivation, silencing output connections from classically responsive 

units resulted in a stronger decrease in performance (Extended Data Fig. 4b; p < 0.05, Mann-Whitney 

two-sided U test with Bonferroni correction). This indicates that while classically responsive units 
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contributed more to task performance via their output connections overall, a small fraction of highly non-

classically responsive units were also critical for high levels of performance via their output projections. 

In contrast to silencing output connections, disabling the recurrent contributions of non-classically 

responsive units (by replacing units with firing-rate-matched Poisson noise) resulted in a larger 

impairment in performance than classically responsive units for all numbers of units inactivated 

(Extended Data Fig. 4c; disabling 10% most non-classically responsive output units Δd’ = -0.7 vs. 10% 

most classically responsive units Δd’ = -0.4, p=0.016, Mann-Whitney U two-sided with Bonferroni-

correction). Taken together, these selective inactivation experiments show that classically responsive 

neurons contribute more to task performance through their output projections while non-classically 

responsive neurons contribute primarily through their recurrent activity. 
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Figure 3.  Classically and non-classically responsive units contribute to task performance and these 

response profiles shaped by excitatory and inhibitory STDP. a, Probability density function for output 

weights from non-classically responsive units (red, NCR) and classically responsive units (grey, CR). N=8 

networks, n=4,800 units, p<10-5, Levene’s test. b, Outgoing recurrent synaptic weights from non-

classically responsive units (left) and classically responsive units (right). Circles and lines represent 

median and interquartile range, respectively. Synaptic weights from NCRs were greater overall and when 

conditioned on target subpopulation (NCR, CR). p < 10-5 for all comparisons between NCR and CR, 

Mann-Whitney U test two-sided with Bonferonni-correction. c, Average firing rates of non-classically 

responsive units (red, NCR) were higher than those of classically responsive cells (grey, CR). Circles and 
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lines represent median and interquartile range, respectively. Median NCR = 19.1 spikes/s vs. median CR 

= 16.5 spikes/s, p < 10-5, Mann-Whitney two-sided U test d, Task performance as a function of output 

units inactivated for non-classically responsive units only (red, NCR), classically responsive units only 

(grey, CR). Points and bars represent mean and S.E.M., respectively. Inactivating 60 units i.e. 10% most 

non-classically responsive Δd’ = -1.58 vs. inactivating 10% most classically responsive Δd’ = -0.92, p < 

10-4; inactivating 300 units i.e. 50% most non-classically responsive Δd’ = -2.27 vs. inactivating 50% 

most classically responsive Δd’ = -2.61, p = 0.061, Mann-Whitney two-sided U test with Bonferroni 

correction. e, Error rates for misses (solid) and false alarms (dotted) as a function of output units 

inactivated for non-classically responsive units only (red, NCR) and classically responsive units only 

(grey, CR). Lines and shaded areas represent means and S.E.M.. False alarms vs. misses inactivating 50% 

most classically responsive, p = 0.26, inactivating 50% most non-classically responsive, p = 0.21, Mann-

Whitney two-sided U test with Bonferroni correction. f, mean squared error for readout node activity 

during choice period as a function of output units inactivated for non-classically responsive units only 

(red, NCR) and classically responsive units only (grey, CR). Dots and vertical lines represent means and 

S.E.M.. At 10% and 50% inactivation, p < 10-5, Mann-Whitney two-sided U test with Bonferroni 

correction g, mean readout node activity during baseline pre-stimulus as a function of output units 

inactivated for non-classically responsive units only (red, NCR) and classically responsive units only 

(grey, CR). At 10% and 50% inactivation, p < 10-5, Mann-Whitney two-sided U test with Bonferroni 

correction. h, Asymptotic task performance for networks without STDP (pre-STDP), with only inhibitory-

to-excitatory STDP (IE only), with only excitatory-to-excitatory STDP (EE only), or all STDP rules (post-

STDP). N = 8 matched networks per group each seeded with identical initial weights. Circles represent 

individual networks and bars represent means. Increase in performance relative to pre-STDP with IE only, 

Δd’ = 1.43±0.09, p = 0.0014, EE only STDP: Δd’ = 0.59±0.18, p = 0.011, both forms of STDP: Δd’ = 

1.05±0.19, p = 0.0014, Wilcoxon two-sided test with Bonferroni correction). i, Probability density of firing 

rate modulation for individual output units for networks without STDP (pre-STDP, light purple solid), 

with only inhibitory-to-excitatory STDP (IE only, light purple dot dashed), with only excitatory-to-

excitatory STDP (EE only, purple dashed), or all STDP rules (post-STDP, purple). Summary circles and 

bars above distributions represent median and interquartile range, respectively. Median shift in firing rate 

modulation relative to pre-STDP, Post-STDP: Δmodulation = -0.95 spikes/s, IE only: Δmodulation =  -

1.13 spikes/s, EE only: Δmodulation =  -0.79 spikes/s,  p < 10-5 for all comparisons, Mann-Whitney U test 

two-sided Bonferroni-correction. Inactive units excluded and percentage shown in j.  
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Effect of network parameters on ensemble diversity  

Three of the main parameters in the network model are network size, fraction of inhibitory units, and 

connection probability. We systematically varied each of those parameters (leaving other parameters 

fixed) to assess their effect on the distribution of classically responsive and non-classically responsive 

network unit response profiles. Increasing network size while keeping the average number of connections 

per unit constant increased the proportion of classically responsive units (Extended Data Fig. 5a, left; p 

< 10-5 for 2000 units vs 1000 and 500, Mann-Whitney two-sided U test with Bonferroni correction) which 

was primarily a result of higher variability in the choice-related responses of network units (Extended 

Data Fig. 5a, middle, right; p < 10-5 all comparisons, Levene’s test with Bonferroni-correction). 

Increasing the fraction of inhibitory units reduced the overall responsiveness (Extended Data Fig. 5b, 

left; p < 10-5 all comparisons, Mann-Whitney two-sided U test with Bonferroni correction) by decreasing 

the magnitude of both stimulus and choice-related activity (Extended Data Fig. 5b, middle, right; 

stimulus, p < 10-5 all comparisons, Mann-Whitney two-sided U test with Bonferroni correction; choice, p 

< 10-5 all comparisons, Levene’s test with Bonferroni-correction). Finally, increasing the connection 

density of the network increased responsiveness (Extended Data Fig. 5c, left; p < 10-5 all comparisons, 

Mann-Whitney two-sided U test with Bonferroni correction) despite the fact that connection weights were 

scaled down as connection probability increased. This increase was driven by an increase in stimulus-

related activity (Extended Data Fig. 5c, middle, right; p < 10-5 all comparisons, Mann-Whitney two-

sided U test with Bonferroni correction).  

 

Synaptic mechanisms shape response profile distributions and task performance  

Our exploration of network parameters indicated that by changing connectivity statistics –  perhaps 

simulating the effects of synaptic plasticity mechanisms – networks can adjust the relative fraction of 
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classically responsive and non-classically responsive units. Therefore, we next examined the sensitivity 

of response profiles to the details of STDP in the model. To further understand how STDP improved task 

performance and determine the specific role of inhibitory and excitatory STDP mechanisms, we 

selectively included either only excitatory-to-excitatory or inhibitory-to-excitatory plasticity mechanisms 

during training and evaluated the effect on task performance and response profile distributions.  

 

Selectively enabling either only inhibitory-to-excitatory or excitatory-to-excitatory plasticity boosted task 

performance relative to pre-STDP networks. However, including only inhibitory-to-excitatory plasticity 

produced performance gains comparable to the post-STDP condition where both rules were active (Fig. 

3h; increase in task performance relative to pre-STDP with only inhibitory-to-excitatory STDP, Δd’ = 

1.4±0.1, p = 0.0014, increase in performance with only excitatory-to-excitatory STDP: Δd’ = 0.6±0.2, p = 

0.011, increase in performance with both forms of STDP: Δd’ = 1.1±0.2, p = 0.0014, Wilcoxon two-sided 

test with Bonferroni correction). Plasticity in excitatory-to-excitatory and inhibitory-to-excitatory 

synapses were both sufficient to shift the response profile distribution towards non-classically responsive 

activity and create a distribution similar to that observed in the full post-STDP model (Fig. 3i; median 

shift in firing rate modulation relative to pre-STDP, Post-STDP: Δmodulation = -0.95 spikes/s, IE only: 

Δmodulation = -1.13 spikes/s, EE only: Δmodulation = -0.79 spikes/s, p < 10-5 for all comparisons, Mann-

Whitney U test two-sided Bonferroni-correction). Notably, including inhibitory-to-excitatory plasticity 

alone produced a larger number of inactive units (Fig. 3j, ‘IE only’; firing rate < 1 spike/trial on average). 

While inhibitory-to-excitatory synaptic plasticity was sufficient to improve performance to post-STDP 

levels, it decoupled a large fraction of network units in the process; however, in tandem with excitatory-

to-excitatory plasticity performance gains can occur while all units remained engaged during task 

performance.   
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These plasticity mechanisms differed in how they shifted response profiles into a non-classically 

responsive regime. While both inhibitory-to-excitatory and excitatory-to-excitatory plasticity reduced 

firing rate modulation during the stimulus period (Extended Data Fig. 6a, left; median shift relative to 

pre-STDP, post-STDP: Δstimulus =  -0.52 spikes/s, IE only: Δstimulus =  -0.70 spikes/s, EE only: 

Δstimulus =  -0.67 spikes/s,  p < 10-5 for all comparisons to pre-STDP, Mann-Whitney U test two-sided 

Bonferroni-correction), only excitatory-to-excitatory plasticity shifted choice modulation towards post-

STDP values (Extended Data Fig. 6a, right; median shift relative to pre-STDP, post-STDP: Δchoice =  

-0.95 spikes/s, p < 10-5, IE only: Δchoice =  -0.07 spikes/s, p = 0.078, EE only: Δchoice =  -0.97 spikes/s, 

p<10-5, Mann-Whitney U test two-sided Bonferroni-correction). Furthermore, the range of both stimulus 

and choice related modulation values decreased when inhibitory-to-excitatory mechanisms were included 

regardless of whether excitatory-to-excitatory mechanisms were present (Extended Data Fig. 6a; IE only 

vs. Pre-STDP and Post-STDP vs. EE only, p<10-3, Levene’s test with Bonferroni-correction). This 

suggests that excitatory-to-excitatory plasticity shifts response profiles toward non-classically responsive 

activity by shifting median responses closer to zero modulation while inhibitory-to-excitatory plasticity 

also constrains the range of modulation observed during each trial period.  

 

We next sought to understand how the three forms of plasticity (homosynaptic STDP, heterosynaptic 

balancing β, and heterosynaptic enhancement δ) adjusted the population of unitary response profiles. To 

do this, we selectively increased or decreased the strength of each type of plasticity relative to default 

values for either excitatory-to-excitatory synapses or inhibitory-to-excitatory synapses. Altering the 

strength of excitatory STDP did not change the response profile distribution (Extended Data Fig. 6b, 

left); however, excitatory heterosynaptic mechanisms significantly modified response properties 
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(Extended Data Fig. 6b, center, right). Strengthening excitatory heterosynaptic balancing (ꞵ) increased 

the firing rate modulation of network units (Extended Data Fig. 6b, center; p < 10-5 for 2x vs 0.5x 

strength, Kolmogorov-Smirnov test with Bonferroni-correction), whereas strengthening heterosynaptic 

enhancement (δ) decreased modulation (Extended Data Fig. 6b, right; p < 10-5 for 2x to 0.5x strength, 

Kolmogorov-Smirnov test Bonferroni-correction). For inhibitory plasticity, heterosynaptic enhancement 

(δ) increased the modulation of network units in opposition to excitatory-to-excitatory heterosynaptic 

enhancement (Extended Data Fig. 6c, right; p < 10-5 for 2x vs 0.5x strength, Kolmogorov-Smirnov test 

with Bonferroni-correction). Similarly, inhibitory homosynaptic terms also increased the strength of 

classical responses (Extended Data Fig. 6c, left; p < 10-5 for 2x vs 0.5x strength, Kolmogorov-Smirnov 

test with Bonferroni-correction). Strengthening inhibitory heterosynaptic balancing, β, had the effect of 

expanding the dynamic range of response profiles without shifting the median, resulting in a greater 

diversity of response types (Extended Data Fig. 6c, center; p < 10-5 for 2x vs 0.5x strength, Kolmogorov-

Smirnov test with Bonferroni-correction). These results suggest that while excitatory-to-excitatory 

homosynaptic plasticity has minimal effect on response types, each other synaptic mechanism provides 

complementary constraints on the range and median of the response profile distribution.  

 

Specific local synaptic patterns predict response properties of diverse units  

As STDP of excitation and inhibition shaped response profiles across the network, we next determined 

how individual classically and non-classically responsive units were embedded in the network by 

examining their synaptic input and output patterns. We analyzed the responses of the group of excitatory 

units which projected to the readout node since these neurons were not trivially stimulus responsive (via 

direct stimulus inputs) and displayed the greatest range of stimulus and choice modulation (‘output units’; 

Extended Data Fig. 2c, center).   
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Although the strengths of direct (i.e., monosynaptic) inputs onto a given unit should predominantly 

determine the response profiles of individual units, higher order correlations may also be relevant for 

determining single-unit responses. To assess the contributions of direct and higher-order synaptic 

connections (e.g., disynaptic, trisynaptic, etc.), we adapted a recent approach45 to systematically 

decompose the weight matrix into local patterns of connectivity or “motifs” (Fig. 4a), starting with small 

numbers of synaptic connections (lower-order motifs) and progressing to motifs with larger numbers of 

connections (higher-order motifs). These local patterns have been shown to predict a variety of network 

phenomena including cross-correlations and the dimensionality of network dynamics46. Motifs with larger 

numbers of synaptic connections are only considered present in a network if they are unlikely to occur 

from random combinations of motifs with fewer connections. In previous work45,46, only network-wide 

averages of these synaptic patterns were required, but here we derive motifs for each individual unit which 

sum to produce the full network-wide motif cumulants providing a neuron-by-neuron view of synaptic 

structure.  

 

There are three main classes of synaptic patterns (Fig. 4a): ‘Chain motifs’ represent sequential synaptic 

connections. ‘Convergent motifs’ represent two neurons that project to a common downstream output 

neuron separated by one or many synapses. ‘Divergent motifs’ represent two neurons that share an 

upstream input unit separated by one or many synapses. The simplest motif is a ‘first-order chain motif’ 

which simply represents the average strength of synaptic inputs or outputs of a unit. To explain the 

responsiveness of excitatory output units we considered synaptic patterns shared with all four 

subpopulations in the network: ‘output units’ that project connections to the readout node, ‘target 

responsive input units’ that receive stimulus current on target trials, ‘non-target responsive input units’ 

that receive stimulus current on non-target trials, and ‘inhibitory units’ (Fig. 4b). For example, the first-
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order chain motif from the inhibitory subpopulation are simply the average inhibitory synaptic inputs to a 

unit; the “2nd order divergent motif” between a unit and the inhibitory subpopulation would indicate that 

it receives synaptic inputs from the same units as inhibitory units (beyond what can be explained by 

chance).  

 

Classically and non-classically responsive units demonstrated distinct patterns of connectivity to the four 

subpopulations of the network (output units, target responsive input units, non-target responsive input 

units, and inhibitory units). Examination of the monosynaptic motifs (direct synaptic inputs and outputs 

to the four subpopulations) revealed that non-classically responsive units received weaker inputs than 

classically responsive units overall,  particularly from inhibitory units and target responsive units (Fig. 4c, 

monosynaptic inputs, change in median normalized synaptic weights for non-classically vs. classically 

responsive units = -0.20, p < 10-5, Mann-Whitney U test two-sided; Extended Data Fig. 7a, top, all 

comparisons of NCR vs. CR p < 10-5, Mann-Whitney U test two-sided Bonferroni-correction). Despite 

receiving weaker inputs, non-classically responsive units had stronger recurrent synaptic outputs than 

classically responsive units to all other excitatory subpopulations (Fig. 4c, monosynaptic outputs, change 

in median synaptic input weight for non-classically vs. classically responsive units = 0.13, p < 10-5, Mann-

Whitney U test two-sided; Extended Data Fig. 7a, bottom; all comparisons of NCR vs. CR except 

inhibitory outputs, p < 10-4, inhibitory outputs p > 0.7, Mann-Whitney U test two-sided with Bonferroni-

correction). Comparing disynaptic motifs, we found that only a limited number of disynaptic input motifs 

differed systematically from zero, indicating that most disynaptic connections can be explained by chance 

occurrences of monosynaptic motifs (Extended Data Fig. 7b). When differences were apparent, 

disynaptic input motifs were closer to zero for non-classically responsive units as compared to classically 

responsive units indicating that non-classically responsive units have less correlated synaptic inputs 
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overall (Fig. 4c, disynaptic inputs, change in median synaptic input weight for non-classically vs. 

classically responsive units = -0.36; Extended Data Fig. 7b, inputs p < 0.005 unless labeled n.s., Mann-

Whitney U test two-sided Bonferroni-correction, outputs p < 0.04 unless labeled n.s., Levene’s test with 

Bonferroni-correction).  

 

Can we predict which neurons will become classically or non-classically responsive based on their local 

synaptic structure? To answer this, we formulated a statistical model to predict the firing rate modulation 

of individual units based on its individual synaptic motifs. This statistical model uses the prevalence of 

synaptic motifs for individual units to predict the stimulus and choice modulation of these units via a 

multilinear regression. These predictions are then combined to make a prediction for the overall firing rate 

modulation (Fig. 4d). This model successfully predicted the firing rate modulation of individual output 

neurons across various network types with radically different response profiles (pre-STDP, IE only, EE 

only, post-STDP) demonstrating that the response profile of individual units can be explained by their 

local patterns of synaptic weights independent of the plasticity mechanisms shaping those weights 

(Extended Data Fig 7c; 30-fold cross-validated stimulus mean-squared error = 0.29±0.15 spikes/s, r = 

0.75±0.06, choice mean-squared error = 0.63±0.43 spikes/s, r = 0.87±0.02). Examining the output units as 

a whole, this statistical synaptic motif model captures the observed shift towards non-classically 

responsive activity post-STDP demonstrating that local synaptic plasticity can account for global changes 

in the response profile distribution (Fig. 4e, Extended Data Fig. 7d).   
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Figure 4. Specific local synaptic patterns predict response properties of diverse units. a, All possible 

monosynaptic (first-order) and disynaptic (second-order) motifs. b, Network schematic including 4 

network subpopulations: target input units, non-target input units, output units, and inhibitory units. c, left, 

observed prevalence of all monosynaptic motifs between individual output units and all subpopulations 

for non-classically responsive units (NCR, red) and classically responsive units (CR, grey). Bars and lines 

represent medians and interquartile range, respectively. Right, same as left except for all disynaptic motifs 

between individual output units and all subpopulations. d, Schematic of method for predicting response 

profile from local synaptic structure around a unit. Local structure was decomposed into a set of synaptic 

motifs and these motifs were used to predict the modulation of the unit. e, Probability density of firing 
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rate modulation for individual output units for networks without STDP (pre-STDP, solid light purple) or 

all STDP rules (post-STDP, solid dark purple) along with predictions derived from statistical motif model 

(dotted lines). Small values of the firing rate modulation correspond to non-classical response profiles; 

high values correspond to classical response profiles. Summary circles and bars above distributions 

represent median and interquartile range, respectively. f, Contributions of individual monosynaptic motifs 

to single-unit firing rate modulation2 for classically responsive units (CR, grey) and non-classically 

responsive units (NCR, red). Circles and bars represent median and interquartile range, respectively.  
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Which synaptic motifs are relevant for determining whether a neuron is classically or non-classically 

responsive? We dissected our statistical motif model to determine the contribution of each statistically 

significant monosynaptic and disynaptic motif to the firing rate modulation of classically responsive and 

non-classically responsive units. Monosynaptic motifs were primarily responsible for determining 

response profiles while disynaptic motifs played a smaller, non-systematic role (Fig. 4f, Extended Data 

Fig. 7e,f; all NCR vs. CR comparisons p < 10-5 Mann-Whitney U test two-sided Bonferroni-correction). 

6 out of a possible 8 monosynaptic motifs and 6 out of a possible 16 disynaptic motifs were found to be 

relevant for predicting the modulation of individual units indicating that a specific set of local synaptic 

motifs are relevant for identifying the response properties of network units (Extended Data Fig. 7a,b,e-

h; p < 0.01, Mann-Whitney U test two-sided with Bonferroni-correction). Each of these identified motifs 

was relevant for the response properties of both classically responsive and non-classically responsive 

units. This indicated that both unit types were driven by the same types of connections. Moreover, these 

included connections to all subpopulations (output, target responsive input, non-target responsive input, 

and inhibitory) although higher-order, disynaptic connections to output and inhibitory units were of 

particular importance (Extended Data Fig. 7e,f; output, 3 of 4 possible disynaptic motifs, open red circles; 

inhibitory, 2 of 4 possible disynaptic motifs, open blue circles;). Decreases in monosynaptic inputs to non-

classically responsive units and increases in their monosynaptic outputs (Fig. 4c, Extended Data Fig. 7a) 

all contributed to less modulated firing overall (Fig. 4f, Extended Data Fig. 7e). Moreover, the decrease 

in disynaptic correlations for non-classically responsive units (Fig. 4c, Extended Data Fig. 7b) resulted 

in a smaller disynaptic contribution to the response profiles of non-classically responsive units (Fig. 4f, 

Extended Data Fig. 7f).  
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Examining stimulus and choice related firing rate modulation separately revealed that there were 

distinctions in how each subpopulation affect specific task-related responses (Extended Data Fig. 7g,h). 

Monosynaptic connections to inhibitory and output units play a significant role in both stimulus and 

choice-related responses, however connections to input units only contribute significantly to stimulus 

responses. Furthermore, disynaptic connections play a relatively larger role in choice-related responses 

than stimulus responses indicating that higher-order structure may be more important in transforming 

stimulus-related into choice-related activity. Thus, local synaptic structure predicted the response profile 

of individual units with direct monosynaptic connections having the largest effect. The response properties 

of classically and non-classically responsive units were driven by differences in how they connect to all 

network subpopulations rather than one in isolation (Fig. 4c,f, Extended Data Fig. 7a,b,e,f). Specifically, 

non-classically responsive units resulted from weakened input from all subpopulations and smaller 

disynaptic correlations rather than increased inhibition or weakened inputs from input units. These 

differences were accompanied by an increase in the strength of projections from non-classically 

responsive units to the rest of the network.  

 

Predicting single neuron response profiles recorded in vivo 

Our model makes several predictions about the relationship between synaptic inputs and output spiking 

responses. Specifically, we hypothesized that neuronal response type (i.e., classically responsive or non-

classically responsive) can be determined from average synaptic input strengths (Fig. 4c-f). We made in 

vivo whole-cell voltage-clamp recordings from neurons of the auditory cortex of mice during the go/no-

go frequency recognition task (Fig. 5a; n=12 neurons from N=5 mice). We measured excitatory and 

inhibitory synaptic currents (E/IPSCs) during behavior, and for some cells (n=4 neurons from N=3 mice), 

we were able to record both the spiking activity in cell-attached mode prior to breaking into the cell to 
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record postsynaptic currents (Fig. 5b,c, Extended Data Fig. 8a). For those cells where only synaptic 

currents were recorded, we used a straightforward integrate-and-fire model to simulate their spiking 

activity based on the experimentally-measured currents over individual trials, including during inter-trial 

intervals (Extended Data Fig. 8b). The firing rate modulation of each neuron (and thus degree to which 

each neuron was classically responsive or non-classically responsive) was then calculated by comparing 

baseline spiking activity to activity during stimulus presentation. The parameters chosen for the integrate-

and-fire simulation were based on those neurons where both synaptic input and spiking output data were 

available for the same neuron (Fig. 5b, c right). This simulation accurately captured the firing rate 

modulation of cells where spiking data was available (Fig. 5d; Pearson’s r = 0.85) and reproduced a 

distribution of responses similar to those directly measured from cell-attached recordings (Fig. 5e; 

Kolmogorov-Smirnov test, p = 0.41). These results confirm that our simulations based on recorded input 

currents accurately reproduce the modulation of neurons where spiking outputs were not available.  

 

Our spiking RNN also predicts that non-classically responsive units have weaker average inputs overall. 

We also observed this in our in vivo recordings; non-classically responsive neurons had significantly 

weaker inhibitory and excitatory inputs than classically responsive cells (Fig. 5f, NCR vs CR, ΔExc = -

72%, p = 0.002, ΔInh = - 76%, p = 0.007, Mann-Whitney two-sided U-test). We then used parameters 

derived from our RNN to predict the firing rate modulation of individual units in vivo using only these 

average inhibitory and excitatory conductances. These parameters were derived from a simplified version 

of the same statistical model previously used to predict modulation of units in the RNN using their synaptic 

motifs (Fig. 4; see Methods). The parameters were coefficients representing the relative contribution of 

average inhibitory and excitatory conductance to firing rate modulation during behavior and were 

combined with measured average synaptic conductances from cells in vivo to predict their modulation 
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(Fig. 5g, left). Comparing the modulation inferred directly from the trial-by-trial data with the one 

predicted by our model, we found the statistical model derived from the RNN predicts the firing 

modulation of individual neurons in vivo to a high degree of accuracy for neurons over a range of 

classically responsive and non-classically responsive firing rate modulations (Fig. 5g, right, mean-

squared error = 2.2 spikes/s, Pearson’s r = 0.94).  

 

To test whether the RNN-derived predictions captured detailed aspects of the trial-by-trial dynamics, we 

compared these predictions to modified simulations which kept average conductance values fixed while 

rescaling trial-by-trial conductance dynamics relative to this baseline (peak conductance values were 

rescaled to be closer to the mean value by a factor of 2). This ensured that the RNN-based predictions 

would remain unchanged while simultaneously altering the trial-by-trial currents used for simulation. The 

modulations produced by these rescaled dynamics were systematically lower than the RNN-derived 

predictions indicating that the RNN-derived coefficients capture non-trivial features of the original trial-

by-trial dynamics in vivo (Extended Data Fig. 8c, mean-squared error = 3.1 spikes/s, Pearson’s r = 0.85).  

Next, we checked whether the relationship between synaptic inputs and output modulation derived from 

our model was statistically meaningful by randomly shuffling the modulation values for RNN units and 

deriving coefficients that attempt to predict these random values from the synaptic structure. Using these 

shuffled RNN coefficients on the in vivo data significantly reduced the accuracy of the predicted 

modulations demonstrating that the success of our RNN-derived predictions was not due to chance 

(Extended Data Fig. 8d, mean-squared error = 4.9 spikes/s, Pearson’s r = 0.3). These findings indicate 

that our RNN model successfully recapitulates the connection between synaptic structure and spiking 

response properties observed in vivo.    
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Figure 5. RNN-derived statistical motif model predicts in vivo response profiles. a, Schematic of 

behavioral task and whole-cell recording set-up during behavior. b, An example cell where cell-attached 

recording was used to first measure spiking outputs before breaking into the cell to record synaptic currents 

(E/IPSCs). c, Example recordings from a non-classically responsive neuron (left) and a classically 

responsive neuron (right). For non-classically responsive unit recorded spike times are shown; for 

classically responsive unit simulations are shown. d, Simulated firing rate modulation versus actual 

modulation for 4 neurons where spiking outputs and synaptic inputs were both recorded (Pearson’s r = 

0.85). e, Comparison of cumulative distribution function from cell-attached recordings (black) and leaky-

integrate-and-fire simulation (grey). No significant difference was observed (Kolmogorov-Smirnov test, 

p = 0.41) f, Comparison of average synaptic inputs to non-classically responsive neurons (red) versus 

classically responsive neurons. Bars indicate means and S.E.M. (NCR vs CR, ΔExc = -72%, p = 0.002, 

ΔInh = - 76%, p = 0.007, Mann-Whitney two-sided U-test). g, recorded/simulated modulation was 

compared to predictions based on coefficients from the RNN-derived motif statistical model, neurons from 

c circled in black.  (n=12, mean-squared error = 2.2 spikes/s, Pearson’s r = 0.94).  
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Discussion 

In summary, by leveraging a novel spiking RNN model with in vivo recordings, we have shown that the 

heterogeneous neural response profiles widely observed during behavior are constrained by local synaptic 

structures shaped by spike-timing dependent plasticity mechanisms. Our model sits at the nexus between 

two recent trends in neural network modeling: First, recent work has successfully extended general-

purpose learning algorithms (i.e., FORCE) designed for rate-based networks to networks with spiking 

units35,47–49. Second, there has been renewed interest in using RNNs to understand the role of 

biophysically-motivated synaptic plasticity rules in the formation of stable neural assemblies for memory 

storage and retrieval32,33,50. We have combined these two approaches for the first time to study the synaptic 

architecture of diverse response profiles during behavior by including both experimentally-motivated 

synaptic plasticity mechanisms and a general-purpose learning algorithm (FORCE) to perform a task. 

Considering that the two plasticity mechanisms in our model operate on two distinct sets of network 

elements (output weights vs. recurrent weights), our approach can be generalized to a wide range of 

biophysical plasticity rules and represents a new class of recurrent neural network models for studying 

neural and synaptic dynamics in the context of behavior.  

 

Both classically and non-classically responsive units contribute directly to network task performance via 

distinct mechanisms, however it is unclear how these responses shape the network dynamics underlying 

task performance. We speculate that this heterogeneity is essential to support the dynamics required for 

sensorimotor transformations and adaptive behaviors. As recently suggested, neuronal activity acting on 

various timescales is important for evidence accumulation, decision making, and working memory14, and 

heterogeneous membrane and synaptic timescales facilitate learning in spiking RNNs51. Given the 

extensive diversity observed in neuronal spiking patterns and responses, we propose that this 
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heterogeneity is a hallmark of adaptive systems such as the brain and highlights the importance of 

incorporating the full range of neuronal dynamics into our understanding of biological computation.   
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Methods 

In vivo electrophysiology during behavior 

All animal procedures were performed in accordance with National Institutes of Health standards and 

were conducted under a protocol approved by the New York University School of Medicine Institutional 

Animal Care and Use Committee. For single-unit recordings in freely moving rats, 5 adult male and 6 

adult female Sprague-Dawley rats were trained to perform a go/no-go frequency recognition task as 

previously described15,52,53. Animals were trained to respond via nosepoke to a target tone (4 kHz) for 

food reward and to withhold their response to nontarget tones (0.5,1,2,8,16,32 kHz). The response period 

was 2.5 sec and false alarms resulted in a 7 sec timeout. All pure tones played were 100 ms duration, 3 

ms cosine on/off ramps, at 70dB sound pressure level (SPL). Behavioral events (stimulus delivery, food 

delivery, and nosepoke detection) were monitored and controlled with a custom-programmed 

microcontroller (Med Associates). After animals reached behavioral criteria (percent correct: ≥70%, d’: 

≥1.5), rats were anesthetized with ketamine (40 mg/kg) and dexmedetomidine (0.125 mg/kg) and 

implanted with tetrode microdrive arrays (Versadrive-8 Neuralynx) in right auditory cortex as previously 

described15. Tetrodes were advanced the day prior to recordings, signals were filtered between 250 Hz 

and 5 kHz, digitized at 30 kHz and spikes were sorted using Offline Sorter (Plexon Inc)15,52.  The animals 

and units shown were previously described15. 

 

For cell-attached recordings in head-fixed mice, 4 adult male and 6 adult female C57Bl/6 mice were 

anesthetized with isoflurane (3% during induction, 2% during surgery), and a custom-designed stainless 

steel headpost was affixed to the skull with dental cement (Metabond). Following 7+ days of recovery and 

7+ days of subsequent water-restriction, mice were trained on a go/no-go frequency-recognition task6. 

Animals were trained to respond to the target tone (11.2 kHz) by licking for water reward and to withhold 
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responses to the non-target tone (5.6 kHz). Acoustic stimuli were 100 ms duration, 3 ms cosine on/off 

ramps, at 70dB SPL. Animals had 2.5 seconds to respond and false alarms resulted in a 7 sec timeout. 

Behavioral events (stimulus delivery, water delivery, and lick detection) were monitored and controlled 

by custom-written programs in MATLAB that interfaced with an RZ6 processor (Tucker-Davis 

Technologies). After animals reached behavioral criteria (percent correct: ≥70%, and d’: ≥1.5), mice were 

anesthetized with isoflurane and a 3 mm diameter glass cranial window with a small 200 µm hole to allow 

for pipette access was implanted over auditory cortex (1.75 mm anterior to the lambdoid suture). After 

recovery, in vivo cell-attached or whole-cell recordings were obtained from neurons located 300-900 µm 

below the pial surface during behavior as previously described6. Recordings were made in a sound-

attenuation chamber (Eckel) using a Multiclamp 700B amplifier (Molecular Devices). For voltage-clamp 

experiments, whole-cell pipettes (5-7 MΩ) contained (in mM): 130 Cs-methanesulfonate, 4 TEA-Cl, 4 

MgATP, 10 phosphocreatine, 10 HEPES, 1 QX-314, 0.5 EGTA, 2 CsCl, pH 7.2, Ri = 283 ± 152 MΩ 

(s.d.). Data were filtered at 2 kHz, digitized at 20 kHz, and analyzed with Clampfit 10 (Molecular 

Devices). Cells were held at -70mV to measure EPSCs and above 0 mV for IPSCs.  

 

Characterization of response profiles using a continuous measure 

To comprehensively characterize spiking responses, we used a continuous measure of responsiveness 

which generalizes the binary classification (classically vs. non-classically responsive) we used 

previously15. Our continuous measure of responsiveness quantified the degree to which a cell exhibited 

firing rate changes during both the stimulus and choice periods. For the experimental in vivo data, we 

calculated the trial-averaged change in firing rate for each neuron during stimulus presentation relative to 

intertrial baseline, 𝑅!", using a 150 ms window from stimulus onset to 50 ms post-stimulus to capture 

offset responses. The trial-averaged change in firing rate prior to behavioral choice, 𝑅#$ ,	was calculated 
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using a window spanning the 500 ms prior to behavioral response on ‘go’ trials and 500 ms prior to the 

average behavioral response on ‘no-go’ trials. For spiking RNN units, stimulus modulation was calculated 

using the 100 ms stimulus period and choice modulation was calculated using the 100 ms choice period.  

 

Our overall measure of firing rate modulation, 𝑅, combined these two terms in quadrature so that both 

stimulus- and choice-related firing rate changes must be small for a unit to be characterized as having a 

low firing rate modulation (i.e., have a more non-classically responsive response profile),  

 (2)  

This measure captures the detailed firing rate modulation of individual units during both the stimulus and 

response periods. It provides information about the degree to which a unit is classically responsive such 

that values close to 0 are only possible when a unit is non-classically responsive (e.g., a unit with firing 

rate modulation of 0.1 spikes/s would be classified as a non-classically responsive unit whereas we would 

consider 5 spikes/s as highly classically responsive). 

 

Discrete characterization of classically and non-classically responsive units 

Statistical identification of classically and non-classically responsive units followed our previous 

methods15. We used two positive statistical tests for non-classical responses to establish lack of responses 

during either the stimulus and/or response periods. The test compared the number of spikes during each 

of these windows to inter-trial baseline. Given that spike counts are discrete, bounded, and non-normal, 

we used subsampled bootstrapping to evaluate whether the mean change in spikes during tone presentation 

or the response period was sufficiently close to zero (in our case, 0.2 spikes). We subsampled 90% of the 

spike count changes from baseline, calculated the mean of these values, and repeated this process 5000 

times to construct a distribution of means. If 95% of the subsampled mean values were between -0.2 and 

R2 = R2
st +R2

ch.
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0.2, we considered the cell sensory non-classically responsive (p<0.05). This is a conservative, rigorous 

method for identifying a cell or unit as being ‘non-classically responsive’. This method was previously 

described15. 

 

Spiking recurrent neural network model 

To study the origin and functional contributions of diverse neural response profiles, we simulated a spiking 

neural network of 1,000 sparsely connected (5% connection probability) leaky integrate-and-fire units 

(800 excitatory, 200 inhibitory) with current-based synaptic input. All parameters listed in Extended Data 

Table 1. The temporal evolution of the membrane voltage 𝑉% 	of unit 𝑖 is 

 
(3)  

where 𝜏m = 20 ms	is the membrane time constant, Vr = -65 mV is the resting membrane potential, IEi(t) 

and IEi(t) are the recurrent EPSCs and IPSCs to unit 𝑖 respectively, and 𝐼& is the leak current. Upon reaching 

a threshold value of Vth = -55 mV the unit emits an action potential and its membrane voltage is reset to 

Vr .  

 

EPSCs and IPSCs decay exponentially with time constants of	𝜏E = 20 ms and 𝜏I = 20 ms respectively such 

that if neuron 𝑗 synapses onto neuron 𝑖 with synaptic weights Wij and fires action potentials at times {tjk} 

the excitatory and inhibitory currents are: 

 

(4)  

Where	𝚯	is the Heaviside step function. Non-zero values of the weight matrix Wij were initialized to a 

uniform distribution between 0 and a maximum value. The initial mean value was set differently for each 

connection type in our network (excitatory-to-excitatory, inhibitory-to-excitatory, excitatory-to-
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inhibitory, inhibitory-to-inhibitory) to ensure initial chaotic dynamics amenable to FORCE training (see 

below ‘Task and FORCE training’). Initial output weights scaled by the square root of the average number 

of incoming connections from each subpopulation (excitatory or inhibitory):  

 
(5)  

Excitatory-to-inhibitory and inhibitory-to-inhibitory weights remained fixed throughout simulation. In 

contrast, excitatory-to-excitatory and inhibitory-to-excitatory weights were modified by a form of spike 

timing plasticity (see below ‘Synaptic plasticity mechanisms’).   

 

Task and FORCE training  

The network was trained on a go/no-go stimulus classification  task similar to that used experimentally 

for rats and mice15,52,53. During a 100 ms stimulus period, the network was stimulated with one of seven 

possible inputs (corresponding to frequencies of 0.5, 1, 2, 4, 8, 16, 32 kHz), and trained to produce an 

output during the subsequent 100 ms response period if the input was the 4 kHz target tone, while 

remaining at baseline for all other non-target tones. In between each 200 ms trial were inter-trial intervals 

randomly chosen from a uniform distribution between 100-400 ms.  

 

A subset of excitatory units were designated as input units (Nin = 200) that received additional current 

during the stimulus period. Our stimuli were represented using a place code. For each stimulus s a fixed 

subset of units Gs received an additional fixed current Iin while all other input units received no additional 

current:  

. 
(6)  
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The input current magnitude, Iin, was minimized while ensuring that the network could still perform the 

task. The remaining excitatory units were output units (Nout = 600) which projected an additional set of 

weights, w, to a readout node whose activity, zout(t), represents the response of the network. The activity 

of the readout node is a weighted sum of the activity of all output units smoothed by an exponential kernel 

with time constant 𝜏out = 100 ms. If output unit i fires action potentials at times{tik}, its smoothed output 

is: 

 
(7)  

 

and the readout node activity is calculated as:  

. 
(8)  

 

The network was trained to produce a burst in readout node activity when the target stimulus was presented 

(s = T) and remain at baseline for all other stimuli (s ≠ T) using a version of FORCE training adapted to 

spiking recurrent neural networks34,35. Specifically, zout(t) was trained to approximate:  

. 
(9)  

FORCE training requires that network output units receive feedback from the readout node in the form of 

an additional current. If IFB i(t) is the feedback current to readout node i then  

 (10)  
Where Q is the network-wide feedback strength, ηi is the fixed feedback weight onto output unit i chosen 

from a uniform distribution between -1 and 1.  

 

During FORCE training, the network iteratively modified the output weights 𝑤% to reduce the error 

between the network output and the desired output function: e(t) = fout(t) – zout(t). Updates to the output 
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weights were made at random times with an average interval of TFORCE = 4 ms. Using bold font to denote 

vectors and matrices, the learning rule for a given updated interval of Δt is:  

 
(11)  

where P(t) is the network estimate for the inverse of the correlation matrix and is updated according to:  

. 
(12)  

Initial weights, w(0), were chosen from normally distributed gaussian values with a standard deviation 

of k0 = 0.1 / Nout and P(0) = I where I is the identity matrix and 𝜆 is a model parameter which acts as a 

regularizer such that: 

. 
(13)  

In our network, λ = 1. Once training was complete output weight w remained fixed.  

 

After output weights stabilized and networks reached asymptotic performance (i.e., after 2000 to 5000 

trials), all weights were fixed and additional trials were run to evaluate network performance. Network 

performance was calculated by examining the integrated output activity during the response period (100 

to 200 ms):  

. 
(14)  

An optimal threshold was calculated to distinguish the integrated output on target versus non-target trials 

by regressing the trial type (target vs. non-target) against the integrated output activity, 𝑅, using logistic 

regression. Integrated outputs above/below this threshold were considered go/no-go responses. All d’ were 

calculated using these response designations. 
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Synaptic plasticity mechanisms 

FORCE training modified the output weight vector 𝑤 while the recurrent weight matrix was modified by 

homo- and heterosynaptic forms of STDP. All recurrent inputs to excitatory cells were plastic and we used 

distinct homosynaptic mechanisms for excitatory-to-excitatory synapses and inhibitory-to-excitatory 

synapses. Inputs to inhibitory units remained fixed throughout training and testing.  

 

Homosynaptic excitatory-to-excitatory plasticity  

In our model, homosynaptic excitatory-to-excitatory plasticity follows a standard Hebbian model36,54 in 

that when a presynaptic cell fired before a post synaptic cell, long-term potentiation (LTP) occurred and 

when a postsynaptic cell fired before a presynaptic cell, long-term depression (LTD) occurred. The rule 

can be expressed as   

 
(15) 

Where z+j(t) and z-j(t) are each increased by 1 each time neuron j fires an action potential and 

exponentially decay with a time constant of 𝜏+	=	𝜏-	=	20	ms and A = 0.001 and B = 0.00105 represent 

the strength of LTP and LTD respectively.   

 

Homosynaptic inhibitory-to-excitatory plasticity 

Inhibitory-to-excitatory homosynaptic plasticity was based on experimental38 and theoretical39 work 

demonstrating that synapses between inhibitory and excitatory auditory cortical cells undergo LTP when 

spike timing is synchronous regardless of order and undergo LTD when firing is asynchronous,  

, 
(16) 

where ηI = 0.001 is the overall strength of inhibitory-to-excitatory plasticity, ⍺ represents the strength of 

LTD (see “Training Protocol” for more information). zI j(t) increases by 1 each time neuron j fires an 
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action potential and exponentially decays with a time constant of 𝜏I	=	5	ms. This time constant was set to 

match the crossover time scale of LTP to LTD observed experimentally38.   

 

Heterosynaptic inhibitory-to-excitatory and excitatory-to-excitatory plasticity  

Given the instability of pairwise Hebbian excitatory plasticity32,55, we included two forms of 

heterosynaptic plasticity on excitatory-to-excitatory and inhibitory-to-excitatory synapses based on 

previous spiking RNN studies33 which would (1) systematically weaken all presynaptic weights to prevent 

any one presynaptic connection from dominating (heterosynaptic balancing)  

 (17) 
 

and (2) systematically strengthen postsynaptic weights to prevent a weakened synapse from dropping out 

entirely (heterosynaptic balancing) 

. (18) 
 

 

Training protocol 

In general, networks were trained until output weights, recurrent weights, and network behavior stabilized 

(2000 – 5000 trials). In addition to the dynamic mechanisms listed above the network-wide bias current, 

I0,  was tuned so that inhibitory firing was on average rI ≈ 20 spikes/s across the population. This was 

accomplished via a learning rule which adjusted the bias current after each trial by   

 (19) 

Where ηr = 0.005 is the bias current learning rate and RI is the average firing rate of all inhibitory cells.  
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Given these three plasticity mechanisms (STDP, FORCE, and bias current adjustment) training proceeded 

in a staged manner to ensure learning for each mechanism occurred in a regime where major initial 

changes induced by other mechanisms had subsided and subsequent plasticity could be regarded as quasi-

stable. (1) Initially only bias current adjustment was active in order to set inhibitory rates to their desired 

firing rate prior to activating activity dependent plasticity mechanisms (STDP). (2) After 40 trials, all 

STDP mechanisms were activated, and bias currents were permitted to keep adjusting to maintain 

inhibitory rates near their target value. During this period, inhibitory plasticity adjusted excitatory firing 

rates towards a target value set, rE = 10 spikes/s. This value is determined via the strength of inhibitory-

to-excitatory LTD (Eqn. 15) by the equation39  

. (20) 

(3) After an additional 60 trials (trial 100), FORCE training was activated once inhibitory and excitatory 

rates had reached their target values. STDP and bias current adjustment was maintained. (4) After an 

additional 100 trials (trial 200), bias current adjustment ceased and STDP and FORCE training remained 

active simultaneously for the remainder of the training session. The observed boost in performance 

occurred when STDP and FORCE were simultaneously active for at least ~1000 trials (Extended Data 

Fig. 1d) indicating that the two mechanisms can interact productively.  

Simulation details and code 

All simulations were carried out via an event-based simulator which integrated all dynamical variables 

between spiking events. All simulations were all conducted in Julia. See Brette et al. for a description of 

the method and comparison with other methods56 and Engelken for implementation details57.  
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Single-trial, ISI-based Bayesian decoding  

We applied a single-trial Bayesian ISI-based trial-by-trial decoding algorithm previously described15. In 

brief, using a training set composed of 90% of the data recorded trials the probability density function for 

observing an ISI on target/nontarget trials (or go/no-go trials) was inferred (p(target), p(non-target), p(go), 

and p(no-go)) via kernel density estimation with the bandwidth set by cross-validated maximum likelihood 

estimation. These probability density functions were used to infer the probability of a stimulus and choice 

from the observed ISIs, {ISI} , on a new trial taken from the remaining 10% of test trials via Bayes rule 

(assuming statistical independence between the ISIs observed) 

 

(21) 

 

Small-world path length analysis 

To calculate the shortest path length shown in Extended Data Fig. 3c, we reduced our synaptic connection 

matrix W by setting a weight threshold, culling connections whose weights fall below said threshold and 

using the remaining weights to define the adjacency matrix. To calculate the mean shortest path lengths 

of the network, we performed a breadth-first search from each neuron along its outgoing connections 

modified to also calculate the shortest path from a neuron to itself (either a self-edge or a cycle in the 

network). The mean of all distances across all starting neurons is taken as the mean shortest path length 

for a given culling thresholds. 

 

We compared these results against the same calculation performed on Watts-Strogatz small-world graphs 

which contain a mixture of regular local structure and random global structure. Previous work has 

suggested that cortical neural networks display connection statistics (such as mean path length) more 
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consistent with a small-world network rather than one with purely random global connections42,44. Watts-

Strogatz small-world networks vary parametrically from entirely local structure to entirely global structure 

via a parameter 𝛽 spanning from 0 (completely regular ring-lattice) to 1 (completely random connections 

between vertices). Note that this parameter is unrelated to the heterosynaptic balancing parameter 𝛽. To 

compare the culled adjacency matrix from our model to a Watt-Strogatz small-world network, we match 

the number of edges in the Watts-Strogatz graphs to the number of connections in the culled networks and 

generate the small-world network by first generating a bidirectional regular ring lattice with the same 

number of unidirectional edges as the adjacency matrix derived from our network and assign each 

unidirectional edge to a random endpoint with chance 𝛽.  

 

Inactivation experiments 

Because recurrent and output connections play qualitatively different roles in network dynamics we used 

separate procedures to inactivate each type of connection. Full inactivation of a unit employed output and 

recurrent inactivation procedures simultaneously. To inactivate the output contributions of a neuron, its 

output weight was held at zero so that its activity made no contribution to the activity of the readout node. 

To inactivate a neuron’s recurrent contributions, the neuron was not silenced but rather its effect on 

postsynaptic neurons was replaced by a Poisson process that fired with a fixed rate equivalent to that of 

the neuron that was being replaced. Using this approach, we could be certain that the deficits observed 

were not caused by an overall decrease in network synaptic current (the original unit and Poisson unit 

fired at the same average rate) but could instead be attributed to the removal of all spike timing information 

present in the unit’s firing pattern.  
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Inactivation targeting classical/non-classical subpopulations proceeded by characterizing the firing rate 

modulation (see “Characterization of response profiles using a continuous measure”) and inactivating in 

order from most to least classically/non-classically responsive unit. For example, inactivating 10% of 

output units during the experiment targeting the non-classically responsive subpopulation would 

correspond to inactivating the top 10th percentile of non-classically responsive units. Variability during 

the choice period was evaluated by calculating the root mean squared error between the readout node 

activity and correct output function on each trial.   

 

Synaptic motif cumulant calculations 

Synaptic motif cumulants represent the extent to which a pattern of synaptic connections (e.g., a disynaptic 

chain) between two subpopulations (in our case, input target units, input nontarget units, output units, or 

inhibitory units) are present relative to chance combinations of motifs with fewer synaptic 

connections45,46. Recent work has used calculated average motif cumulants across the network, but here 

we extend this work by examining motif cumulants for each network unit on an individual basis to 

examine how these synaptic patterns relate to the response profiles of individual units.  

 

A synaptic motif is defined as the average product of synaptic weights present in a specified pattern of 

connections.  For example, the n-chain motif, 𝜇'#$,is the average product of synaptic weights in a n-synapse 

chain of unidirectional connections from one unit to another and is calculated using the expression  

. 
(22) 

Where 𝑊 is the synaptic weight matrix, 𝑁 is the number of network units, and ⟨⋅⟩ denotes the average 

over all matrix elements. The two other motifs shown to be significant for network dynamics are the (m,n)-
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diverging and (m,n)-converging motifs, 𝜇(,'*% and 𝜇(,'#+ ,	which describe when two chains (of length 𝑚 and 

𝑛) diverge from the same unit or converge onto the same unit. For 2nd order motifs (disynaptic) these are 

the only other two possible motifs beyond chain motifs and are calculated 

. 

(23) 

 

To decompose these motifs into motif cumulants we introduce  

 

(24) 

and define the n-chain, (m,n)-diverging, and (m,n)-converging motif cumulants as  

. 

(25) 

The motifs can then be decomposed in terms of the motif cumulants as 

 

(26) 
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Nm+n�1

<latexit sha1_base64="F5gdV4G0LiLHW2L0edaYB9jdW7k="></latexit>

µn =
X

{n1,...,nt}2C(n)

 
iY

i=1

ni

!
+ n,

µdi
m,n =

X

{n1,...,nt}2C(n)
{m1,...,ms}2C(m)

 
iY

i=2

mi

!
�
di
m1,n1

+ m1n1

�
 

sY

i=2

nj

!
+ di

m,n,

µco
m,n =

X

{n1,...,mt}2C(n)
{m1,...,ms}2C(m)

 
iY

i=2

mi

!
�
co
m1,n1

+ m1n1

�
 

sY

i=2

nj

!
+ co

m,n

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 5, 2022. ; https://doi.org/10.1101/2022.05.04.490676doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.04.490676


where 𝐶(𝑛) represents all possible sets {𝑛,, … , 𝑛"} of non-zero integers such that ∑ 𝑛%"
%-, = 𝑛 excluding 

the set containing only one element {𝑛}.	The sum represents all possible ways of constructing the motif 

from lower order cumulants so we can interpret the final term on the right hand side as the contribution 

that cannot be attributed to lower order terms.  

 

The equations above can be generalized if the network is composed of 𝑁 units divided into 𝑘 

subpopulations. We specify each subpopulation 𝑃. of size 𝑁. 	(in our case, target input units, non-target-

input units, output units, and inhibitory units) using 𝑢., a column vector of length 1 with equal entries for 

the components corresponding to members of the subpopulation and 0 for all other components. In other 

words, for subpopulation 𝑖 and unit 𝑗 the components of vector 𝑢. are 

. 
(27) 

We then specify the 𝑁 × 𝑘	matrix, 𝑈, as the concatenation of these subpopulation vectors,  

, (28) 

which in component notation is simply 𝑈/. = 𝑢./ . Similarly, we define 𝑈O via  

. 
(29) 

 

We now define a matrix of subpopulation motifs corresponding to the average product of synaptic weights 

present in specified pattern of connections where the first and last units of the motif are in subpopulation 

𝑟 and 𝑞 respectively, 
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(30) 

Where ⟨⋅⟩.0 denotes the average over initial subpopulation 𝑟 and final subpopulation 𝑞. In matrix form 

we write the motifs as 𝑘 × 𝑘 matrices  

 

(31) 

As expected, these subpopulation motifs can be used to calculate the total motifs using a weighted average. 

For example, the n-chain motif is calculated from the subpopulation motifs  

. 
(32) 

As in the single population case, these subpopulation motifs can be broken down into a series of 

subpopulation motif cumulants. To calculate the subpopulation motif cumulants we follow the same 

process as the single population case. Defining  

 

(33) 

The 𝑘 × 𝑘 matrix of average n-chain cumulants between each subpopulation is then calculated as  

 
(34) 

and (m,n)-divergent and (m,n)-convergent motif cumulants are calculated  

 

(35) 
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We extend this previous work by using these expressions to calculate subpopulation motif cumulants for 

each individual network unit. Since the initial and final 𝑈O terms serve to average over the initial and final 

subpopulation respectively, we define the average subpopulation motif cumulants into each unit (a 𝑁 × 𝑘 

matrix) or out of each unit (a 𝑘 × 𝑁matrix) by removing the 𝑈O1 or 𝑈O term. Denoting these individual 

motif cumulant matrices ⋅̂ , we then have  

 

(36) 

where �̂�'#$ represents the n-chain subpopulation motif cumulants terminating in the unit of interest and 

�̂�'#$2 represents n-chain subpopulation motif cumulants originating in the unit of interest. (m,n)-divergent 

and (m,n)-convergent motifs are symmetric so we only require one expression for each 𝑁 × 𝑘 matrix. 

 

(37) 

 

 

Statistical synaptic motif model for output unit modulation 

Cells which project to the output unit receive direct feedback projections, 𝜂, from the output unit, therefore 

we first examined the relationship between the stimulus- or choice-related firing rate modulation and the 

magnitude of feedback received. The output unit’s activity differs systematically on “go” vs. “no-go” 

trials, implying that this relationship should be particularly strong for choice-related activity. This 

prediction is also supported by theoretical work examining the connection between connectivity and 

dynamics in similar networks58. By fitting the models  

 (38) 
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we observed linear correlations between stimulus and choice-related responses and the strength of the 

feedback connections, η, both for networks including and excluding STDP with choice-related activity 

being the most strongly correlated (𝑟!"%(343!5 ≈ 0.4, 𝑟#$+%#65 ≈ 0.8).  However, the precise relationship 

between output feedback and single output unit modulation varies from condition to condition (pre-STDP, 

post-STDP, EE only, IE only) and network to network demonstrating that this relationship is modulated 

by changes to the recurrent connectivity. In other words, the coefficients for this model (slope and y-

intercept) were not universal and varied across and within conditions. In other words, feedback magnitude 

can predict which units will become the most stimulus or choice modulated within a network, but the 

factors that determine the precise relationship between the feedback strength and a unit’s response profile 

are unexplained.  

 

Our goal then was to explain the observed relationship between firing rate modulation and feedback 

strength using only the prevalence of individual subpopulation motif cumulants in a universal model 

which applies across conditions. Such a model provides a detailed understanding of the synaptic features 

relevant for generating a particular response profile as it accounts for the variability using coefficients tied 

to each synaptic motif cumulant that apply across conditions. To accomplish this we included these motifs 

as linear regressors in place of the unknown coefficients from the previous model (equation 37). 

Summarizing the individual subpopulation motif cumulants of order 𝑛! (i.e., 1 is monosynaptic, 2 is 

disynaptic, etc.) from subpopulation 𝑞  (target input units, nontarget input units, output units, inhibitory 

units) as  

 
(39) 

We can then write a model for the stimulus and choice modulation including all subpopulations 𝑞 and 

cumulants up to order 𝑛! as  
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(40) 

Note that in this model each synaptic motif cumulant receives two coefficients: one for the interaction 

with the output feedback and one for feedback independent effect. All coefficients are universal in that 

they are fit across network conditions meaning that they quantify the contribution of each motif to stimulus 

and choice modulation under all observed network conditions. This model was fit using the Python 

statsmodels package with LASSO regularization to remove regressors with small coefficients. All 

calculations were done with 𝑛! = 2 (monosynaptic and disyanptic motif cumulants) because higher-order 

models showed marginal improvement as measured by the AIC criterion.  Once statistically significant 

coefficients were identified (p <0.01 Bonferroni-correction for number of motif cumulants included), we 

refit the model with only significant motif cumulants.  

 

To calculate the overall contribution of a particular motif 𝜅 to either stimulus or choice modulation for a 

unit, 𝑅!"/#$, from Eqn. 39 let 𝛽8
9 be the 𝜂 interaction coefficient for cumulant 𝜅	and 𝛽8 be the independent 

coefficient and define the contribution from each cumulant as  

 (41) 
such that  

 
(42) 

Given the definition of overall firing rate modulation, 𝑅, as 𝑅5 = 𝑅!"5 + 𝑅#$5  we can decompose it into a 

linear combination of motif cumulant related terms  

 

(43) 
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where the contribution of any given cumulant to the overall modulation squared is defined as  

 (44) 
 

 

Spiking simulations using measured synaptic inputs  

For two units, cell-attached spikes were first recorded and then after breaking into the cell, EPSCs and 

IPSCs were also measured for the same neuron. For all other units, spiking activity was simulated trial-

by-trial using the measured excitatory and inhibitory post-synaptic currents (E/IPSCs) via a integrate-and-

fire point neuron simulation based on previously described methods6. The simulation relies on 

conductance-based dynamics  

 
(45) 

  
where 𝑉 is the membrane voltage, 𝑉0 is the resting membrane potential, and 𝜏( = 𝑅(𝐶( is the membrane 

time constant. 𝑉:/; and 𝑔:/;(𝑡) are the excitatory/inhibitory reversal potentials and time based 

conductances, respectively. Spiking threshold was set to 𝑉"$ = −40	𝑚𝑉 and simulated neurons were 

constrained with a refractory period of 5	𝑚𝑠.  

 

Model parameters for individual neurons were derived using a voltage pulse of 𝛥𝑉	 = 	10	𝑚𝑉, the 

membrane capacitance (𝐶), input resistance (𝑅%), and series resistance (𝑅!) were calculated from the 

current, 𝐼(𝑡) via  

 

(46) 
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where 𝐼(0) is the initial current on pulse onset, 𝐼(∞) is the asymptotic current, and 𝜏 is the measured 

exponential decay constant for 𝐼(𝑡).  

 

PSC time courses in individual trials were fit to a standardized parametric form incorporating the 

maximum current (𝐼(<=), the time of max current (𝑡(<=), the rise time to half max (𝑡0%!6), and the fall 

time to half max (𝑡><44) 

 
(47) 

 

where 𝑡& = 𝑡0%!6 `
"!"##
"$%&'?,

a	 is an offset requires so that 𝐼(𝑡(<=) = 𝐼(<= . PSCs were then converted to the 

conductances, 𝑔:/;(𝑡) used in the simulation by calculating the synaptic currents 𝐼!@'(𝑡) = 𝐼(𝑡) 2%(?2&
2&

 

and converting to conductance using the holding potential, 𝑉$, 𝑔(𝑡) = ;&)((")

C*DC$
. The conductance terms used 

in the simulation also incorporated noise set to 10% of the average conductance values.  

 

To generate spiking activity for an individual trial, one EPSC and one IPSC measured during stimulus 

presentation were randomly selected and used to calculate conductance dynamics for simulation. The 

process was repeated for am EPSC and IPSC taken in the 200 ms prior to stimulus onset to determine 

baseline activity. This process was repeated 2000 trials and the firing rate modulation during the stimulus 

period was calculated as the average difference between stimulus-evoked and baseline firing rate.  

 

Predicting in vivo firing rate modulation using motifs from spiking RNN  

To validate our spiking RNN model, we applied the statistical synaptic motif model to predict the response 

profiles of cortical neurons recorded from behaving animals using only measured average synaptic inputs. 

<latexit sha1_base64="TQgG3fpZBlrr3ortcz3+t4kLQjM="></latexit>

I(t) = Imax

✓
1� 2

�(t�tmax�t0)
trise

◆✓
2

�(t�tmax�t0)
tfall

◆

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 5, 2022. ; https://doi.org/10.1101/2022.05.04.490676doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.04.490676


Because the statistical model was trained on a diversity of network structures and response profile 

distributions, the coefficients of our model are applicable even in cases where the overall firing statistics 

differ from that of the full post-STDP network.  

 

To apply our statistical motif model to predict the stimulus-related firing rate modulation of in vivo 

neurons, we first fit a simplified version of our statistical model that only included monosynaptic inputs 

from two subpopulations (inhibition and excitation) using data from RNNs under all STDP conditions. 

This model predicts the stimulus modulation of an individual RNN unit from its average excitatory and 

inhibitory synaptic inputs. We then used this model to predict the stimulus modulation of a cell in vivo by 

dividing the average excitatory/inhibitory conductance values by the average number of inputs from each 

cell type in our model (30 for excitation and 10 for inhibition) as a proxy for that cell’s average 

monosynaptic excitatory and inhibitory inputs. These values were then fed to our statistical model to 

predict the firing rate modulation.  

 

To ensure that these predictions were non-trivial we ran two controls. The ‘rescaled conductance’ control 

preserved the average conductance values for each cell but re-ran simulations using trial-by-trial peak 

conductance that had beet rescaled relative to the mean conductance value for that cell (trial-by-trial peaks 

were brought closer to the mean by a factor of 2). This control preserved the RNN-derived predictions 

while altering the dynamics which produced the simulated results. The ‘shuffled RNN control’ randomly 

shuffled all unit’s modulation values in our RNN before fitting the synaptic motif model to generate the 

coefficients predicted by chance. These coefficients were then used in place of the true coefficients to 

determine if the RNN-derived predictions could be explained by chance. 
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Code availability 

All simulation code for this paper is available on Github at albannalab/InsanallyAlbanna2022.  
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