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Figures 

 
Figure 1. Overview of the SmartScope framework. A. Workflow for unsupervised grid 
navigation and imaging. SmartScope handles specimen exchange, atlas acquisition, 
ROI identification, classification, and selection. It then visits the selected regions and 
identifies and selects TOIs which are acquired at higher magnification and 
preprocessed. B. Detailed steps in ROI selection. After detection and classification, 
ROIs are also clustered into groups. In the example is a clustering by size. Then, from 
the ROIs are queried based on their class and ROIs from different clusters are selected. 
C. Detailed steps in TOI selection. Shown here is the hole detection followed by a 
median intensity clustering. Then, holes are grouped by image-shift radius and groups 
from each cluster are selected for imaging.  
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Figure 2. Deep-learning-based feature recognition for autonomous grid 
navigation. Sample images show the performance of the square (A) and hole (B) 
detectors applied to gold (left) and carbon (right) grids. A. Automatic detection of 
squares and classification into six different classes: small, cracked, dry, contaminated, 
good and partial. Representative examples of squares assigned to each class and 
corresponding detection precision values are shown (bottom panel). B. Hole detection 
performance on representative square images extracted from gold and carbon grids. 
The hole detector implements a classification step to filter out contaminants (shown in 
yellow) and increase hole detection precision (shown as pink circles).  
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Figure 3. SmartScope’s screening mode statistics. Screening rates with and without 
beam-image shift (BIS) were 1.0 and 0.7 holes per minute respectively (RANSAC 
regression). The red arrow indicates the time of specimen loading and start of atlas 
acquisition. Dashed blue line represents the median session duration (21.6 min) and the 
median number of high-magnification images (9.0) obtained per specimen during 
screening mode. 
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Figure 4. Acquisition of POLG2 dataset using SmartScope. A. Atlas of the specimen 
(left), typical micrograph (center) with some particles picked (purple circles) and 2D 
classes of POLG2 (right). B. Resulting map of POLG2 colored by local resolution (left) 
and example of an alpha helix with atomic model fit into the density (left). C. Fourier-
shell correlation curve between half-maps showing a resolution of 3.4 Å. 
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