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Abstract 

Propelled by improvements in hardware for data collection and processing, single 
particle cryo-electron microscopy has rapidly gained relevance in structural biology. Yet, 
finding the conditions to stabilize a macromolecular target for imaging remains the most 
critical barrier to determining its structure. Attaining the optimal specimen requires the 
evaluation of multiple grids in a microscope as conditions are varied. While automation 
has significantly increased the speed of data collection, optimization is still carried out 
manually. This laborious process which is highly dependent on subjective assessments, 
inefficient and prone to error, often determines the success of a project. Here, we 
present SmartScope, the first framework to streamline, standardize, and automate 
specimen evaluation in cryo-electron microscopy. SmartScope employs deep-learning-
based object detection to identify and classify features suitable for imaging, allowing it to 
perform thorough specimen screening in a fully automated manner. A web interface 
provides remote control over the automated operation of the microscope in real time 
and access to images and annotation tools. Manual annotations can be used to re-train 
the feature recognition models, leading to improvements in performance. Our automated 
tool for systematic evaluation of specimens streamlines structure determination and 
lowers the barrier of adoption for cryo-electron microscopy. 

Introduction 

Over the past decade, advances in hardware and software have established single 
particle analysis (SPA) cryo-electron microscopy (cryo-EM) as a method of choice in 
structural biology. The introduction of direct electron detectors combined with advances 
in computational methods led to improvements in speed and automation of data 
collection and processing that unleashed an exponential growth in the number of cryo-
EM structures deposited in the protein databank. However, preparation of specimens 
suitable for high-resolution cryo-EM imaging still remains a significant barrier. 
Consequently, the beginning of each new project is fraught with uncertainty about its 
duration and probability of success. The ideal specimen for solving a structure by SPA is 
a single layer of randomly oriented macromolecular complexes embedded into a thin 
slab of vitreous ice. Current methods for specimen preparation consist in depositing a 
thin layer of solubilized sample over a special electron microscopy grid and plunging it 
into liquid ethane cooled to about 83 K. During this process, macromolecules are 
confined between hydrophobic interfaces with air and other materials composing the 
substrate. The interaction with the air-water interface can lead to protein denaturation or 
trap the molecules in a “preferred orientation”, preventing successful structure 
determination. In addition, these vitrification methods typically yield variations in ice 
thickness across the grid. These artifacts can severely limit the quality of specimens and 
are typically addressed through an optimization process in which several parameters are 
varied to increase the stability and mono-dispersity of the target macromolecule and the 
uniformity of the ice layer. These include changes to buffer composition during 
purification and vitrification, and choice of support material and freezing conditions (e.g., 
temperature, humidity, and blotting paper) (Passmore and Russo, 2016). Testing all 
combinations at once is impractical because their number grows exponentially with the 
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inclusion of each parameter. Moreover, the reproducibility of specimen preparation is low 
and evaluating each combination involves comprehensive sampling of one or more grids 
using a cryo-electron microscope. Instead, an iterative search is performed in which a 
limited number of parameters are changed, and the resulting observations are used to 
determine the ones to be varied in the next cycle.  

Specimen screening involves selecting areas for evaluation, adjusting the positioning 
and optical conditions of the microscope, and recording images at multiple 
magnifications. The lowest magnifications are used to assess the overall quality of the 
vitrification process, the number of potential areas amenable to high-resolution data 
collection and some macroscopic indicators of sample instability such as aggregation. 
Higher magnification images provide direct information about the macromolecules of 
interest, such as particle integrity, distribution, density, heterogeneity and orientation, as 
well as the quality of the ice and the resolution limit of the images. This time-consuming 
screening process provides valuable information for subsequent iterations of 
optimization, and the success of a project often depends on the appropriate sampling 
and interpretation of these results. When performed manually, the implicit subjectivity in 
the selection of areas can lead to suboptimal sampling, which in turn results in missing 
information. The time required to manually evaluate each grid varies depending on 
several factors, but it is estimated to be between 30-60 minutes. The quality of the 
results, the speed of this labor-intensive process and the integrity of the instrument, all 
depend on the experience and skills of the operator. Thus, development of a system 
capable of carrying out these functions automatically in a systematic and unbiased way 
would be an invaluable tool. 

The goal in screening is to gather information from diverse areas of the grid to better 

understand the behavior of the macromolecules of interest. This contrasts with data 

collection where the objective is to record areas corresponding to a set of conditions 

already known to yield the best molecular images. Existing software for automated cryo-

EM is optimized for acquiring a large number of images of a pre-selected set of 

homogeneous targets. Calibrated to allow precise alignment of the different imaging 

modes for efficient navigation at multiple magnifications, these software packages aim to 

automatically collect the highest quality images and to maximize throughput, whether for 

SPA or tomography (Mastronarde, 2005; Suloway et al., 2005). Although semi-

automated functions facilitate the detection of holes within a range of intensities, 

selection and queueing is still performed manually. Following this labor-intensive setup, 

often comprising the first few hours of a microscopy session, selected areas are 

automatically collected with minimal supervision for periods usually longer than 12 

hours. Screening using these programs, however, would involve a lengthy setup phase 

for each specimen only to acquire a few targets with marginal gains in speed.  

Analysis of screening data consists in evaluating not only high magnification images of 

the target but also their context. Although all data collection packages preserve lower 

magnification images and the associated stage positions, they are not designed to 

facilitate virtual navigation of the grid. Exploring the results in an organized way using 

programs like EPU, Latitude and SerialEM requires direct access to the local microscope 

computer, thus limiting their use to times when the instrument is available. A workaround 

solution is to access the data from a different computer running a dummy instance of the 
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microscope control software, although this may be limited by licensing of commercial 

software. Leginon’s companion software, Appion (Lander et al., 2009), is a powerful 

suite for image processing that provides offline access to the results via a web user 

interface (WebUI). However, none of these packages is optimized for screening nor they 

provide a web-based solution for controlling the microscope during specimen evaluation. 

Software and workflows that focus on specimen screening are still needed to streamline 

bookkeeping and ease the evaluation process. 

Here, we present SmartScope, a web-based, highly available expert system capable of 
doing unsupervised screening of specimens and automated data collection for cryo-EM. 
SmartScope uses pretrained generalized deep learning models for feature detection and 
selection to maximize sampling and provide maximal information to guide specimen 
optimization. By combining automation, machine learning and remote control, we aim to 
increase the efficiency of the process, reducing costs and dramatically increasing 
availability. Finally, SmartScope is designed as a modular framework, facilitating the 
addition of new algorithms for area selection and navigation that can further improve 
targeting performance. 

Main 

The complexity of a screening workflow depends on several factors including the 
instrument used and the type of specimen. Here, we describe the extended operation of 
a microscope furnished with an autoloader device and loaded with frozen hydrated 
targets for SPA, which are prepared on a micropatterned holey substrate or continuous 
carbon (Fig. 1 and S1). All the interactions with the software are carried out using the 
SmartScope WebUI which also allows to monitor progress and control the workflow with 
little to no training in cryo-EM. Further, SmartScope permits simultaneous access from 
multiple remote devices, greatly facilitating collaborative work.  

Initialization 

After a cassette is inserted in the autoloader, a session is initialized by providing the list 
of grids to be evaluated along with a series of parameters applicable to all of them 
(Table S1). SmartScope then initiates a connection to SerialEM (Mastronarde, 2005) via 
its python API to issue commands to the microscope. This connection is locked to 
prevent the simultaneous execution of multiple workflows. In instruments equipped with 
automated loading systems, grids are loaded sequentially into the column and subjected 
to the operations described in the sections below. 

Grid analysis 

For each grid loaded, a series of low magnification images are acquired and stitched 
together to generate a grid map or “Atlas” which is analyzed by SmartScope’s deep 
learning (DL) driven window detector and classifier (Fig 1A). Windows deemed 
suboptimal for imaging due to physical damage or heavy contamination are excluded 
from further analysis. The remaining “good” windows are reclassified and clustered 
based on a selectable criterion (e.g., areas suitable for imaging). Representatives of 
each window cluster are added to a list of regions of interest (ROIs) with the goal of 
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adequately sampling the diversity of imageable areas (Fig. 1B). The program then 
proceeds to visit and select imaging targets from the ROIs in this list, which can be 
modified via the WebUI at any time before the grid is completed. 

Selection of targets 

The stage is moved to the next ROI in the list which is brought to eucentric height and 
imaged at a magnification that ensures complete coverage of the area (Fig. 1A). The 
next step is to identify targets of interest (TOIs) based on a programmable criterion that 
depends on the specimen. For example, SmartScope’s DL based hole finder is used to 
detect holes in frozen hydrated SPA specimens. The current algorithm classifies the 
holes based on their average signal intensity (a proxy for ice thickness) and clusters 
them into a selectable number of groups. By default, the group containing the darkest 
targets is rejected as not suitable for imaging. To maximize diversity, holes are selected 
from the different clusters and added to a TOI list (Fig. 1C). As with ROIs, this selection 
can be modified at any time during imaging of the grid. A protocol for selecting negative 
stain TOIs is also available and plug-ins for other types of specimens may be 
incorporated in the future.  

Selected TOIs are visited sequentially by moving the stage to their predicted 
coordinates. A series of images, at a magnification that encompasses the TOI and 
surrounding area, are used to recenter the imaging area on the target (a hole in the 
substrate for SPA). These intermediate resolution images are stored in the database as 
they often provide valuable information about the specimen, such as affinity of the 
macromolecules to the support material, aggregation, denaturation, etc. Autofocus and 
drift stabilization procedures are then performed before acquiring high-magnification 
images of the target. These newly acquired images are processed using the routine 
alignframes in IMOD (Kremer et al., 1996) and the program CTFFIND4 (Rohou and 
Grigorieff, 2015) to facilitate assessment of data quality. This cycle is repeated until all 
TOIs have been imaged, and the workflow then proceeds to the next ROI.  

After all selected ROIs for the grid are finished, SmartScope automatically switches to 
the next grid. This behavior may be modified by selecting the “pause between grids” 
option on the session menu. Pausing allows the selection of additional ROIs at the end 
of the cycle, providing better control of unattended sessions or when evaluating unusual 
specimens where automated sampling may not be satisfactory. 

Accessing and annotating results 

SmartScope systematically documents the results and facilitates their analysis. During 
collection, all images and their related metadata are stored in a consistent data 
structure. To display and interact with these data, SmartScope implements an intuitive 
WebUI that tracks the imaging process in real-time. Moreover, it enables remote 
interaction with a running session, such as modifying area selection, changing labels 
and acquisition parameters, and taking notes about the specimen, all without interrupting 
the acquisition workflow. 

After a session is over, SmartScope can automatically copy the data to long-term or 
object storage. The data remains available through the WebUI and allows users to make 
additional annotations. Other tools, such as micrograph curation and exporting of 
metadata as star files are also available. 

and is also made available for use under a CC0 license. 
was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 

The copyright holder for this preprint (whichthis version posted May 6, 2022. ; https://doi.org/10.1101/2022.05.05.490801doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.05.490801


6 

Tools for exhaustive screening and high-throughput data collection 

SmartScope can also perform high-throughput data collection. A session can be 
initialized in data collection mode or changed from screening to data collection by setting 
the number of TOI to sample to zero. This will have the effect of selecting all the 
available TOIs for imaging.  

To achieve high-throughput, SmartScope makes uses beam-image shift (BIS) for multi-
hole imaging (Cheng et al., 2018). BIS can be used during screening for more 
exhaustive sampling, allowing for exploratory data collections that can provide enough 
images to carry out 2D classification or initial 3D reconstruction. The BIS grouping in 
SmartScope uses an algorithm that groups the holes within a given radius (Fig. S2). 
Only the targets that are labeled as “good” and are in the included clusters are used for 
the grouping. The algorithm attempts to maximize the coverage of targets while 
minimizing the total number of groups. To maximize the speed of data collection, a 
minimal group size can also be specified to prevent the algorithm from assigning small 
groups of holes. 

One way to alleviate the commonly occurring problem of orientation bias in single-
particle cryo-EM is to collect data on a tilted specimen (Tan et al., 2017). SmartScope 
can perform BIS data collection on tilted specimens, where the position and defocus of 
the targets are corrected using geometrical tilt constraints. This allows for data collection 
throughput that is similar to regular non-tilted data collection. Moreover, the tilt angle can 
be seamlessly changed at any point during the acquisition process. Combined with the 
integrated in-line data processing, this allows to adapt the data collection strategy on-
the-fly based on the newly acquired knowledge. 

The combination of automated operations such as feature detection routines, multi-hole 
imaging and tilted data collection capabilities, make SmartScope a powerful tool that can 
accelerate screening of cryo-EM samples and achieve high-throughput data collection. 

Asynchronous imaging and processing 

SmartScope was designed to maximize microscope efficiency and to remove much of 
the idling time in the imaging process. A common source of idling is the processing time 
required for rendering the frame averages or calculating the CTF fits. To minimize the 
impact of this, the microscope’s imaging process and the image processing routines run 
as parallel processes. The newly acquired images or movies are queued up for analysis 
and processed sequentially on a separate thread. For the atlas and windows, processing 
includes detecting, classifying, and selecting targets. For high-magnification TOIs, it 
involves frame alignment and CTF estimation. This allows the microscope to 
immediately acquire the next target while the images are being analyzed (Fig. S1). 

Installation and configuration 

SmartScope bundles a webserver and the main imaging workflow. It also relies on a 
database server to store and query essential metadata (Fig S3). To simplify the 
deployment and orchestration of these services, we created a Singularity container 
image that allows rapid deployment on any Linux system. 
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The application can be installed on a single workstation that will handle the execution of 
all the services. It can also be installed in a master-worker configuration where, for 
example, one computer handles the webserver and the database (master), while the 
main workflow is executed on a workstation that is connected to the microscope network 
(worker). The minimal requirements are that all the systems can access the database 
and have access to the main data storage device. 

A long-term storage area that holds the data from previous sessions can be specified. 
Both mounted network drives and object-stores can be used to store the data. This 
allows to clear data from the main local drives leaving space for the ongoing sessions 
while keeping older data accessible through the WebUI. 

After installation, administrators can login to the WebUI management portal where 
microscope and detector information needs to be added to allow connection to the 
instruments. Multiple microscopes can be installed on a single instance of SmartScope, 
serving as a central hub for microscope access. To access the server, each user has an 
account and groups are created by an administrator. Users can only access the data 
from the groups they belong to. 

In SerialEM, a settings file containing the magnification for low-dose imaging needs to be 
prepared for each microscope and detector. The conditions should be set as follows: Full 
Square image bound to the Search preset; The fine hole re-alignment condition in low 
SA magnification bound to the View preset; the data acquisition conditions bound to the 
Record preset with the acquisition and dose fractionation settings bound to the Preview. 

Automated object detection and classification 

SmartScope identifies and classifies ROIs and TOIs suitable for cryo-EM imaging using 
DL approaches. At the atlas level, areas suitable for imaging appear as “windows”, 
commonly shaped as squares, through the metallic grid in which the support layer is 
intact and not blocked by thick ice or large contaminants. Windows are automatically 
detected and classified using a pretrained Region-based Convolutional Neural Network 
(Girshick, 2015) that identifies the “good” windows with 80% precision (Fig. 2A and S4A, 
Table S2), thus providing information that can effectively guide the instrument to avoid 
undesirable regions of the grid.  

Selected windows are then acquired at a higher magnification where TOIs can take 
various shapes depending on whether the modality is single particle cryo-EM, 
tomography or negative stain. In single particle cryo-EM, these TOIs usually show as 
holes in the substrate and are difficult to detect with traditional image processing tools 
due to the low contrast, especially when carbon mesh grids are used. We implemented a 
robust hole detector for frozen specimens based on the You-Only-Look-Once (Redmon 
et al., 2016) object detection architecture (Fig. 2B and S4B). To prevent the network 
from incorrectly picking dark ice contaminants, we also added a classification step to 
separate holes from contaminants and were able to correctly identify 89% of the holes. 

Screening mode statistics 

In screening mode, the average time required for exchanging specimens and acquiring a 
partial atlas covering at least 25% of the grid surface is 7.8 min (Fig. 3, Table S4 and 
S4). The median sampling time for a specimen is 21 min, yielding a median of 9.0 high-
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magnification images of holes sampled from 3.0 different windows. Each day, our 
screening microscope thoroughly screens an average 16 specimens and performs data 
collection for approximately 16 hours. 

Data collection mode statistics 

SmartScope offers a convenient option to set up, track data collection and to label and 
annotate exposures. In data collection mode, the microscope continuously acquires 
areas and finds targets using operator assistance only to fine tune the selection to 
specific needs, significantly reducing setup time as compared to our manual workflow. 
The median data collection setup time, from specimen loading to the start of high-
magnification acquisition, is 32 min with our K2 detector (Table S5). As an example, we 
used SmartScope to determine a 3.4 Å map of the 110 kDa accessory subunit of the 
human mitochondrial DNA polymerase (Young and Copeland, 2013) (EMD-25764, Fig. 4 
and S5). For this specimen, we collected 4,327 micrographs and seamlessly tilted to 30° 
for the last third of the dataset to improve the angular sampling of the protein. 

Discussion 

SmartScope is the first package specifically designed to assist, document and automate 
specimen evaluation during the process of optimizing samples for cryo-EM. The program 
delivers a unique user experience through a WebUI that provides live remote 
supervision and control of the screening process using a standard web browser. The 
same WebUI facilitates analysis of results at any time during and after a session. 
Multiple users can access the same live or stored session simultaneously and multiple 
instruments can be controlled from the same server. Automated navigation routines 
provide control of the microscope without granting full access to functions that may 
compromise the integrity of the instrument. SmartScope uses fast and robust AI-driven 
feature recognition algorithms to fully automate the cryo-EM imaging workflow. The 
steps of target identification, object classification and clustering offer a powerful way to 
sample a wide variety of areas during screening and help determine the next steps in 
specimen optimization. This enables complete unsupervised execution of a screening 
workflow as well as supervised exploration with minimal user training.  

SmartScope can also collect data in a semi-supervised or fully automated way. The 
areas automatically selected by SmartScope can be modified interactively or 
programmatically without interrupting the process of data collection. This maximizes the 
use of the microscope and offers the possibility of integrating feedback from in-line data 
processing workflows to adaptively improve image quality during acquisition, without 
user intervention. Unsupervised multi-specimen screening and short exploratory data 
collection sessions can be scheduled to run overnight, offering new ways of using the 
microscope. 

SmartScope has a modular design where new object detection and classification 

algorithms can be added as plugins, allowing integration of existing object detection and 

area selection programs for cryo-EM (Fan et al., 2022; Kim et al., 2021; Rheinberger et 

al., 2021; Xu et al., 2020; Yokoyama et al., 2020; Yonekura et al., 2021). Additionally, 

the ability to use multiple feature detection and clustering methods at different 
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magnification levels enables the creation of customized protocols for specific 

applications. This provides flexibility to optimize selection of areas on a wider variety of 

targets in cryo-EM, such as virions, filaments and cells. Finally, as we gather more data 

about difficult specimens and edge cases, we envision the establishment of a globally 

accessible “virtual microscopist” server capable of improving itself through periodic re-

training based on voluntarily submitted labeled datasets. 

SmartScope has proven to be an extremely valuable tool in our facility. It has 
streamlined bookkeeping, which in turn resulted in better decision making for specimen 
optimization. It has also maximized microscope usage by eliminating idling time, 
reducing setup and screening times. SmartScope facilitates data and instrumentation 
access as well as collaboration by easing access to cryo-EM technologies and improving 
the way cryo-EM experiments are carried out. With specimen screening as a primary 
focus, SmartScope addresses an important limiting step in cryo-EM. 

 

Materials and methods 

Cryo-Electron Microscopy 

All the data presented in this study was acquired on a Talos Arctica (Thermo Fisher 
Scientific) operating at 200 kV and equipped with a K2 direct-electron detector (Gatan 
Inc.). SmartScope was also tested on a Ceta CMOS detector and a Titan Krios (Thermo 
Fisher Scientific) equipped with a K3 detector and BioQuantum energy filter (Gatan Inc.). 
The statistics were derived from data acquired exclusively with the K2 detector. For 
microscope and detector control, SmartScope uses SerialEM 4.0 through the python API 
library (Mastronarde, 2005). 

Square Finder 

To localize and classify square windows, a faster R-CNN-based framework (Girshick, 
2015) that uses a ResNet50 architecture as the feature extraction backbone was 
adopted. It incorporates a feature pyramid network for identification of objects at different 
magnification levels. In addition, since most features have approximately equal width 
and height, the bounding boxes were constrained to have aspect ratios within the 0.8 to 
1.2 range. To improve robustness and stability of the model, data augmentation was 
applied to the training data, including zoom-in/zoom-out, rotation, contrast adjustments 
and flipping. The degree of augmentation for the contrast intensity was limited to the 0.8 
and 1.2 range. To compensate for label imbalance, random oversampling was added 
during training. Squares are classified into 6 different classes: good (suitable for 
imaging), small (thick ice), contaminated, cracked, fractioned, and broken. The low-level 
magnification feature detector was trained using a total of 12 atlases from both carbon 
and gold mesh grids. Each atlas contains around 50 to 100 squares on average. The 
original atlases, usually having widths and heights greater than 10,000 pixels were 
downsampled to 2048 x 2048 pixels to reduce memory requirements. The framework is 
implemented using the python library Detectron2 (Wu et al., 2019). Training the detector 
takes around 2 hours when running on a NVIDIA TITAN V GPU card with 32GB of RAM. 
The pre-trained weights are then used for fast real-time square detection during 
screening, which can evaluate each atlas image in under a second. 
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Hole Finder 

To identify holes on all grid types and contrast levels, a deep neural-network architecture 
based on the YOLOv5 model was adopted (Jocher et al., 2020; Redmon et al., 2016). 
We used the Cross Stage Partial Network (CSPNet) (Wang et al., 2019) as the feature 
extraction backbone and standard convolutional layers as detection layers. Since holes 
have circular shapes, the aspect ratios of the bounding boxes were also constrained. To 
further facilitate training, instead of using arbitrary numbers for anchor bounding boxes 
generation, clustering algorithms to the ground truth boxes from the training dataset 
were applied to find the most common occurring sizes and we used these sizes to 
determine the anchor bounding box sizes. Data augmentation was applied during 
training, including: contrast/brightness adjustment, rotation/translation, zoom-in/zoom-
out, and cropping. To deal with small contamination areas that can be incorrectly 
detected as holes, an additional “contaminants” class is used to filter out such areas. 
Training of the hole finder was done using 32 square images and took 1.5 hours when 
running on a NVIDIA TITAN V GPU card with 32GB of RAM and inference takes less 
than a second. For memory efficiency, each square was resized to 1280x1280 pixels.  

POLG2 purification 

Protein was expressed and purified essentially as described (Young et al., 2015) with 
the following exception: Triton-X was removed from all steps following lysis. Following Ni 
purification, pooled protein containing His6-POLG2, as determined by SDS-PAGE, was 
injected onto a monoS column. Protein was eluted from S column in a linear gradient 
from 5% to 50% Buffer B (25 mM HEPES, 1 M NaCl, 10% glycerol, 1 mM EDTA, 1 mM 
TCEP). Peak fractions were eluted around 310 mM NaCl. Fractions were checked for 
purity, combined and concentrated using an Amicon concentrator (Millipore) to 28 µM. 
Protein is flash frozen and stored at -80 °C.  

4.1 µM (monomer) his-tag POLG2 was incubated in a 1:1 molar ratio with FORK1 DNA 
as previously described (6) Oligonucleotides: (i) DCRANDOM- 44 
ACTTGAATGCGGCTTAGTATGCATTGTAAAACGACGGCCAGTGC (2) TSTEM 
GCACTGGCCGTCGTTTTACGGTCGTGACTGGGAAAACCCTGGCG (3) U25 
CGCCAGGGTTTTCCCAGTCACGACC were all purchased from IDT. Protein in a final 
buffer of 20 mM HEPES pH 8, 1.5 mM Tris pH 7.5, 30 mM KCl, 50 mM imidazole pH 8, 
0.3 mM EDTA, 225 mM NaCl, 1.5% glycerol, 1 mM TCEP was incubated on ice for 
approximately 30 minutes before grid application. 

Cryo-EM specimen preparation 

UltraAUfoil R1.2/3 (Quantifoil Micro Tools GmbH) grids were glow-discharged on both 
sides for 30 s at 15 mA using a Pelco Easiglow. 3 µL of the final buffer was deposited on 
the back of the grid and 3 µL of POLG2 sample was deposited on front side of the grid. 
Excess sample was blotted 4 s with blotting force -1, the chamber set at 12 °C and 95% 
humidity using a Vitrobot Mark IV (Thermo Fisher Scientific). 

Data collection of POLG2 with SmartScope 

Data was collected on a Talos Arctica (Thermo Fisher Scientific) operating at 200 kV 
equipped with a Gatan K2 direct electron detector (Gatan Inc.). Data collection was set 
up using SmartScope using a 6x6 tile atlas, image-shift grouping radius of 4 µm and 
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minimum group size of 4 holes, rolling target defocus of –1.2 to –1.8 µm and drift settling 
threshold at 1 Å/s. A total of 4,311 60-frame movies were collected at a 0.932 Å2/pixel 

and total dose of 54 e-/Å2. 3,029 movies were collected at 0° tilt angle and 1,282 movies 

were collected with 30° tilt angle. Data was collected at a rate of 120 movies per hour.  

Cryo-EM data processing and refinement 

The POLG2 dataset was processed using cryoSPARC (Punjani et al., 2017) as detailed 
in Fig. S5C. Final maps were sharpened using DeepEMhancer (Sanchez-Garcia et al., 
2021). An atomic model from PDB ID: 2G4C (Fan et al., 2006) was fit into the map using 
Chimera (Pettersen et al., 2004). 

 

Code availability 

SmartScope is undergoing a closed beta program. For information about enrollment, 
please visit https://docs.smartscope.org/.  
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Figures 

 
Figure 1. Overview of the SmartScope framework. A. Workflow for unsupervised grid 
navigation and imaging. SmartScope handles specimen exchange, atlas acquisition, 
ROI identification, classification, and selection. It then visits the selected regions and 
identifies and selects TOIs which are acquired at higher magnification and 
preprocessed. B. Detailed steps in ROI selection. After detection and classification, 
ROIs are also clustered into groups. In the example is a clustering by size. Then, from 
the ROIs are queried based on their class and ROIs from different clusters are selected. 
C. Detailed steps in TOI selection. Shown here is the hole detection followed by a 
median intensity clustering. Then, holes are grouped by image-shift radius and groups 
from each cluster are selected for imaging.  
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Figure 2. Deep-learning-based feature recognition for autonomous grid 
navigation. Sample images show the performance of the square (A) and hole (B) 
detectors applied to gold (left) and carbon (right) grids. A. Automatic detection of 
squares and classification into six different classes: small, cracked, dry, contaminated, 
good and partial. Representative examples of squares assigned to each class and 
corresponding detection precision values are shown (bottom panel). B. Hole detection 
performance on representative square images extracted from gold and carbon grids. 
The hole detector implements a classification step to filter out contaminants (shown in 
yellow) and increase hole detection precision (shown as pink circles).  
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Figure 3. SmartScope’s screening mode statistics. Screening rates with and without 
beam-image shift (BIS) were 1.0 and 0.7 holes per minute respectively (RANSAC 
regression). The red arrow indicates the time of specimen loading and start of atlas 
acquisition. Dashed blue line represents the median session duration (21.6 min) and the 
median number of high-magnification images (9.0) obtained per specimen during 
screening mode. 
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Figure 4. Acquisition of POLG2 dataset using SmartScope. A. Atlas of the specimen 
(left), typical micrograph (center) with some particles picked (purple circles) and 2D 
classes of POLG2 (right). B. Resulting map of POLG2 colored by local resolution (left) 
and example of an alpha helix with atomic model fit into the density (left). C. Fourier-
shell correlation curve between half-maps showing a resolution of 3.4 Å. 
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