1	Enterobacterales-associated plasmid sharing amongst human
2	bloodstream infections, livestock, wastewater, and waterway
3	niches: a genomic surveillance study in Oxfordshire, UK
4	
5	William Matlock* ^{,1} , Samuel Lipworth ^{*,1,2} , Kevin K. Chau ¹ , Manal Abu Oun ³ , Leanne
6	Barker ¹ , James Kavanagh ¹ , Monique Andersson ² , Sarah Oakley ² , Marcus Morgan ² , Derrick
7	W. Crook ^{1,2,4,5} , Daniel S. Read ⁶ , Muna Anjum ³ , Liam P. Shaw ^{#,7} /Nicole Stoesser ^{#,1,2,4,5} ,
8	REHAB Consortium
9	
10	* Contributed equally as first authors
11	[#] Contributed equally as senior authors
12	¹ Nuffield Department of Medicine, University of Oxford, Oxford, UK
13	² Oxford University Hospitals NHS Foundation Trust, Oxford, UK
14	³ Animal and Plant Health Agency, Addlestone, UK
15	⁴ NIHR Health Protection Research Unit in Healthcare Associated Infections and
16	Antimicrobial Resistance at University of Oxford in partnership with Public Health England,
17	Oxford, UK
18	⁵ NIHR Biomedical Research Centre, Oxford, UK
19	⁶ Centre for Ecology and Hydrology, Wallingford, UK
20	⁷ Department of Zoology, University of Oxford, Oxford, UK
21	Correspondence: William Matlock (william.matlock@ndm.ox.ac.uk) and Nicole Stoesser
22	(nicole.stoesser@ndm.ox.ac.uk)

23

- 24 Keywords: plasmid, *Enterobacterales*, antimicrobial resistance (AMR), bloodstream
- 25 infections (BSI), One Health, genomic epidemiology, Escherichia coli

26 Abstract

27 Background

28	Plasmids enable the	dissemination of	f antimicrobial	resistance	(AMR) in common
----	---------------------	------------------	-----------------	------------	-----------------

- 29 Enterobacterales pathogens, representing a major public health challenge. However, the
- 30 extent of plasmid sharing between *Enterobacterales* causing human infections and those from
- 31 other niches remains unclear. Studies to date have been small, with dispersed sampling
- 32 frames, restricted to drug-resistant isolates only, and using incomplete plasmid sequence
- 33 reconstruction.

34 Methods

35 We established a geographically and temporally restricted collection of human bloodstream

36 infection (BSI)-associated, livestock-associated (cattle, pig, poultry, and sheep faeces, farm

soils) and wastewater treatment work (WwTW)-associated (influent, effluent, waterways

38 upstream/downstream of effluent outlets) *Enterobacterales*. Isolates were collected between

39 2008-2020 from sites <60km apart in Oxfordshire, UK, and sequenced using short-

- 40 (Illumina) and long-read (PacBio, Nanopore) approaches to fully reconstruct bacterial
- 41 genomes.

42 Findings

43 We analysed 1,458 complete *Enterobacterales* genomes, including 3,697 circularised

44 plasmids, one-third of which represented novel diversity. Plasmid alignment-free clustering

45 identified 122/247 (49%) closely related clusters containing plasmids found in human BSIs

and ≥ 1 other niche (73/247 [30%] such clusters across human BSI and livestock-associated

- 47 niches). Seventeen groups of near-identical plasmids (*n*=84 plasmids) were seen across
- 48 human BSIs and ≥ 1 other sampling niche (eight groups across human BSI and livestock-
- 49 associated niches), including six AMR-gene associated groups. Pangenome-style analyses of
- 50 the 69 most prolific clusters (n=1,832/3,697 plasmids) revealed shared, core, "backbone"

51	gene sets. Core-gene plasmid phylogenies reflected an intertwined ecology where well-
52	conserved plasmid backbones carried diverse accessory functions, potentially linked to niche
53	adaptation. Closely related plasmids were found across distantly related bacterial lineages and
54	species.
55	Interpretation
56	We identified significant plasmid diversity, highlighting the challenges in adequately
57	sampling natural plasmid populations. Many genetically related plasmids were seen across
58	species and niches, raising the possibility that plasmid movement between these followed by
59	rapid accessory gene change may be relatively common. Dense, unselected sampling is
60	highly relevant to developing our understanding of plasmid epidemiology and designing
61	appropriate interventions to limit the dissemination of plasmid-associated AMR.
62	Funding
63	This study was funded by the Antimicrobial Resistance Cross-council Initiative supported by
64	the seven research councils and the NIHR, UK.
65	
66	Research in context
67	Evidence before this study
68	We searched PubMed using the search terms (Enterobacterales AND plasmid*) AND
69	(Human OR Animal OR wastewater OR river OR sewage OR environment*) and
70	(Enterobacterales AND plasmid*) AND ("One Health") to 04/Jul/2022 with no restrictions
71	on start date or language. We identified 221 studies, of which 167 (76%) were investigating
72	Enterobacterales plasmid epidemiology to a lesser or greater extent. 108 (65%) studies
73	analysed >1 Enterobacterales species, 49 (29%) studies investigated >50 isolates, 38 (23%)
74	studies completely reconstructed all genomes being evaluated (20 studies a subset of
75	genomes), 23 (14%) studies sampled across multiple niches, and only seven (4%) studies

76	considered drug- and non-drug-resistant isolates. We identified no large-scale study which
77	considered plasmid epidemiology in several species of drug-resistant and non-resistant
78	Enterobacterales across multiple human and non-human niches.
79	Added value of this study
80	For the first time, we demonstrate that Enterobacterales plasmid transfer and evolution
81	between geographically proximate niches, including human bloodstream infection and
82	livestock-associated niches, is not uncommon. This includes closely related plasmids
83	associated with AMR, observed across Enterobacterales species and lineages, underscoring
84	the relevance of our findings for "One Health" for AMR management approaches. Our study
85	also highlights that plasmid diversity in Enterobacterales is substantial and undersampled to
86	date.
87	Implications of all the available evidence
88	Our understanding of Enterobacterales plasmid and AMR epidemiology has been limited by
89	the size and scope of available studies. In the largest systematic study to date, we demonstrate
90	that whilst in some cases niche-/host-associated plasmid structuring exists, multiple
91	Enterobacterales plasmid clusters, including those associated with AMR genes, can
92	disseminate widely.

93 Introduction

94	<i>Enterobacterales</i> are found both in human niches (e.g., hospital patients ^{1,2} and wastewater ³)
95	and non-human niches (e.g., livestock-associated ^{4,5} and waterways ⁶). In recent decades,
96	widespread carriage of antimicrobial resistance (AMR) genes has complicated the treatment
97	of <i>Enterobacterales</i> infections ^{7,8} . The dissemination of AMR genes between
98	Enterobacterales occurs in a 'Russian-doll'-style hierarchy of nested, mobilisable genetic
99	structures9: genes not only move between bacterial hosts on mobilisable or conjugative
100	plasmids but can also be transferred within and between plasmids and chromosomes by
101	smaller mobile genetic elements (MGEs) such as insertion sequences ^{10,11} . Despite gene
102	gain/loss events, many plasmids have been shown to have a persistent structure encoding
103	replication and transfer machinery ^{12,13} .
104	
105	Many plasmids can transfer between species and are seen across different niches ¹⁴ but the
106	extent to which they are shared between human and non-human niches remains poorly
107	understood. Previous studies investigating this topic have often been limited in size given the
108	genetic diversity in these niches ^{15,16} , and/or restricted to single species ¹⁷ or drug-resistant
109	isolates ¹⁸ . Further, fragmented genome assemblies in many cases make recovering complete
110	plasmids, and other MGEs, impossible ¹⁹ . There are clearly multiple instances where AMR
111	genes are believed to have emerged from non-human niches and subsequently become major
112	clinical problems in human Enterobacterales infections, highlighting the relevance of inter-
113	niche transfer in AMR gene dissemination (e.g., $mcr-1^{20}$ and bla_{NDM-1}^{21}).
114	
115	To explore Enterobacterales plasmid diversity and sharing across niches in a geographically
116	and temporally restricted context, we studied hybrid assemblies (i.e., using both long and

short reads) of large *Enterobacterales* isolate collections in Oxfordshire, UK, from (i) human

118 blood	stream infections	(BSI	; 2008-2	018),	(ii)) livestock-	associated	sources (faeces	from
-----------	-------------------	------	----------	-------	------	--------------	------------	-----------	--------	------

- 119 cattle, pigs, poultry, sheep; surrounding environmental soils; [all 2017 except poultry 2019-
- 120 2020], and (iii) wastewater treatment work (WwTW)-associated sources (influent, effluent,
- 121 waterways upstream/downstream of effluent outlets; Oxfordshire, 2017).
- 122
- 123 Methods

124 Livestock-associated isolates

- 125 *n*=247 *Enterobacterales* isolates from farm-proximate soils and poultry faeces (*n*=19 farms;
- 126 n=5 cattle, n=4 pig, n=5 poultry, n=5 sheep) were collected and sequenced for this study in
- 127 2017-2020. DNA extraction and sequencing was performed as in Shaw *et al.*, 2021^{11} .
- 128 Genomes were hybrid assemblies reconstructed using Unicycler²² (v. 0.4.4; default hybrid
- assembly parameters except min_component_size 500 and --min_dead_end_size 500). Only
- 130 complete assemblies (plasmids and chromosomes) were considered (n=162/247).

131 BSI isolates

- 132 Sequenced Human BSI Enterobacterales isolates from patients presenting to *n*=4 hospitals
- 133 within Oxfordshire, UK, September 2008-December 2018, as described in Lipworth et al.,
- 134 2021²³ were also included. Although all patients were sampled in Oxfordshire, a total of
- 135 n=505/738 patients resided in Oxfordshire, n=133/738 in surrounding counties, and
- 136 n=100/738 had location information omitted. Only complete assemblies (n=738/953 total
- 137 assembled) were considered.

138 Other livestock-associated and WwTW-associated isolates

- 139 *Enterobacterales* isolates from faeces from the *n*=14 non-poultry farms and wastewater
- 140 influent, effluent, and waterways upstream/downstream of effluent outlets surrounding n=5
- 141 WwTWs, across 3 seasonal timepoints in 2017 (as in ¹¹) were included. Only complete
- 142 assemblies (n=558/827 total assembled) were considered.

143 Statistical analysis and bioinformatics

144	Chromosome sequence types (STs) were determined with mlst (v. 2.19.0; see Supplementary
145	Methods). To generate accumulation curves (ACs), new plasmid diversity was recorded for
146	each isolate sampled randomly, without replacement. A bootstrapped average of $b=1,000$
147	ACs was used to estimate a Heap's parameter (γ) by fitting a linear regression to log-log
148	transformed data see (Supplementary Methods). We adopted three approaches to plasmid
149	classification, using COPLA to classify plasmids into broad plasmid taxonomic units (PTUs),
150	and also grouping and clustering plasmids into smaller clusters using alignment-free
151	distances (see Supplementary Methods). Within plasmid clusters, we identified core genes
152	with Panaroo (v. 1.2.9), aligned them with mafft (v7.407) and produced trees with IQ-tree (v.
153	2.0.6). Plots were primally produced using the R library ggplot2, with additional graphics in
154	BioRender. More information can be found in the Supplementary Methods.
155	
156	Results
157	Our dataset of $n=3,697$ plasmids from $n=1,458$ isolates (Fig. 1a, Table 1) contained bacteria
158	from human bloodstream infections (BSI; $n=1,880$ plasmids from $n=738$ isolates), livestock-
159	associated sources (cattle, pig, poultry, and sheep faeces, soils surrounding livestock farms;
160	n=1,155 plasmids from $n=512$ isolates), and from wastewater treatment works (WwTW)-
161	associated sources (influent, effluent, waterways upstream/downstream of effluent outlets;

- 162 n=662 plasmids from n=208 isolates). All sampling sites were <60km apart (Fig. 1b) and
- timeframes overlapped (2008-2020; Fig. 1c). Isolates had a median 2 plasmids (IQR=1-4,
- 164 range=0-16). Major *Enterobacterales* genera represented included: *n*=1,044 *Escherichia*,
- 165 *n*=211 *Klebsiella*, *n*=125 *Citrobacter*, and *n*=63 *Enterobacter*.

166

Niche	Sample type(s)	No.	No. plasmids	
		isolates		
Bloodstream infections	Community, nosocomial, other	738	1,880	
(BSI)	healthcare associated infections			
Livestock-associated	Cattle faeces	133	215	
	Sheep faeces	113	286	
	Pig faeces	104	352	
	Poultry faeces	34	112	
	Soil surrounding livestock farms	128	190	
Wastewater treatment	Influent	88	313	
work (WwTW)-	Upstream waterways	25	60	
associated	Effluent/downstream waterways	95	289	
Total		1,458	3,697	

167

Niche	Isolate genus								
	Citrobacter	Enterobacter	Escherichia	Klebsiella	Other				
Bloodstream infections (BSI)	6	11	547	161	13	738			
Livestock-associated	54	10	433	14	1	512			
Wastewater treatment work (WwTW)-associated	65	42	64	37	0	208			
Total	125	63	1,044	212	14	1,458			

168

169 Sampling niche was strongly associated with isolate genus (Fisher's test, *p*-value<5e-4; Table

170 2). *Klebsiella* isolates were disproportionately derived from BSI versus other niches (76%

171 [161/212] versus 51% [738/1,458]). *Citrobacter* and *Enterobacter* were disproportionately

derived from WwTW-associated versus other niches (52% [65/125] and 67% [42/63] versus

173 14% [208/1,458]). Chromosomal Mash trees (see Supplementary Methods) for the two most

174 common species in the dataset, *E. coli* (72% [1,044/1,458]; see Fig. S1) and *K. pneumoniae*

175 (11% [163/1,458]; Fig. S2) demonstrated intermixing of human and non-human isolates

176 within clades, consistent with species-lineages not being structured by niche.

177

178 We contextualised our plasmids within known plasmid diversity using 'plasmid taxonomic

179 units' (PTUs; using COPLA, see Supplementary Methods), designed to be equivalent to a

180 plasmid 'species'. We found 32% (1,193/3,697) of plasmids were unclassified, highlighting

181 the substantial plasmid diversity within this geographically restricted dataset. In total, we

182	found <i>n</i> =67 known PTUs, containing a median 9 plasmids (IQR=4-30, range=1-556), with
183	the largest PTU-F _E (556/2,504), corresponding to F-type <i>Escherichia</i> plasmids.
184	
185	Near-identical plasmid sharing observed between human and livestock-associated
186	Enterobacterales
187	We screened for near-identical plasmids shared across isolates by grouping those with a low
188	Mash distance ($d < 0.0001$) and highly similar lengths (longest plasmid $\leq 1\%$ longer than
189	shorter plasmids; see Supplementary Methods). We found $n=225$ near-identical groups of ≥ 2
190	members, recruiting 19% (712/3,697) plasmids. Bootstrapping accumulation curves for near-
191	identical plasmid groups and singletons per the number of isolates (ACs; see Supplementary
192	Methods), we revealed a highly 'open' accumulation (Heap's parameter γ =0.97, Fig. S3)
193	suggesting further isolate sampling would detect more unique plasmids approximately
194	linearly. Restricted to BSI/livestock-associated isolates alone, we found similar curves for
195	both niches (BSI γ =0.98, livestock-associated γ =0.94), suggesting they had similar levels of
196	plasmid diversity.
197	
198	Near-identical pairs of plasmids were most common, representing 71% (159/225) of groups
199	(group size IQR=2-3, range=2-32). Plasmid members of near-identical groups represented
200	multiple bacterial host STs (25% [56/225]), species (4% [9/225]), and genera (4% [9/225]),
201	consistent with plasmids capable of inter-lineage/species/genus transfer. Further, 8% (17/225)
202	of near-identical groups contained plasmids found across human BSIs and ≥ 1 other sampling
203	niche (livestock-associated/WwTW-associated), suggesting inter-niche transfer (i.e., 'cross-
204	niche groups'; Fig. 2a). Within cross-niche groups, $n=3/17$ contained plasmids from multiple
205	bacterial species (Fig. 2b), and most consisted of conjugative plasmids ($n=5/17$ conjugative,
206	n=9/17 mobilisable, $n=3/17$ non-mobilisable; Fig. 2c). AMR genes were carried by plasmids

in n=6/17 cross-niche groups (Fig. 2d), with n=5/6 of these groups containing ≥ 1 beta-

208 lactamase protein.

209

210	Sharing between BSI and livesto	ck-associated isolates was	supported by 8/17 cross-niche

211 groups (n=45 plasmids). Of these, n=2/8 contained non-mobilisable Col-type plasmids (one

212 group contained BSI/pig/poultry/influent plasmids, and one group contained BSI/poultry

213 plasmids); *n*=4/8 contained mobilisable Col-type plasmids (two groups contained BSI/pig

214 plasmids, one group contained BSI/sheep plasmids, and one group contained

215 BSI/cattle/pig/poultry/sheep/influent plasmids), of which one group contained BSI/pig

216 plasmids carrying the AMR genes *aph*(3")-*Ib*, *aph*(6)-*Id*, *dfrA14*, and *sul2* (see

217 Supplementary Methods). The remaining 2/8 groups contained conjugative FIB-type

218 BSI/sheep plasmids. One group contained plasmids, carrying the AMR genes aph(3'')-Ib,

219 *aph*(6)-*Id*, *bla_{TEM-1}*, *dfrA5*, *sul2*, and the other group contained plasmids carrying the MDR

220 efflux pump protein *robA*.

221

222 Plasmid clustering reveals a diverse but intertwined population structure across niches

223 Near-identical plasmids shared across niches are a likely signature of recent transfer events,

but we also wanted to examine the wider plasmid population structure. We therefore

agnostically clustered all plasmids based on alignment-free sequence similarity (clusters were

groups of $n \ge 3$ plasmids; see Supplementary Methods and Figs. S5-6). We defined n=247

227 plasmid clusters with median 5 members (IQR=3-10, range=3-123) recruiting 71%

228 (2,627/3,697) of the plasmids. The remainder were either singletons (i.e., single, unconnected

plasmids; 19% [718/3,697]) or doubletons (i.e., pairs of connected plasmids; 10%

[352/3,697]). By bootstrapping b=1,000 ACs for plasmid clusters, doubletons, and singletons

found against number of isolates sampled (Fig. S7; see Supplementary Methods), we

estimated that the rarefaction curve had a Heap's parameter γ =0.75, suggesting further isolate sampling would likely detect more plasmid diversity and clusters.

234

235	Of the plasmid clusters, $n=69/247$ (28%) plasmid clusters had ≥ 10 members, representing
236	50% (1,832/3,697) of all plasmids (Fig. 3a). 122/247 (49%) clusters contained BSI plasmids
237	and plasmids from ≥ 1 other niche. This included 73/247 (30%) of clusters with both BSI and
238	livestock-associated plasmids, representing $n=38$ unique plasmid replicon haplotypes (i.e.,
239	combinations of replication proteins) of which only 24% (9/38) were Col-type plasmids,
240	which are often well-conserved and carry few genes ²⁴ . 72/247 (29%) of clusters contained
241	both BSI, and influent/effluent/downstream plasmids, reflecting a route of Enterobacterales
242	dissemination into waterways. In contrast, only 18/247 (7%) of clusters contained both BSI
243	and upstream waterway plasmids, of which most (13/18 [72%]) also contained
244	influent/effluent/downstream plasmids.
245	
246	Overall, plasmid clusters scored high homogeneity (h) but low completeness (c) with respect
247	to biological and ecological characteristics (non-putative PTUs [$h=0.99$, $c=0.66$]; replicon
248	haplotype [h=0.92, c=0.69]; bacterial host ST [h=0.84, c=0.14] in Fig. 3b; predicted mobility
249	[$h=0.93$, $c=0.20$] in Fig 3c). This indicated that clustered plasmids often had similar
250	characteristics, but the same characteristics were often observed in multiple clusters. The
251	imperfect homogeneity is to be anticipated as replicon haplotypes and mobilities can vary
252	within plasmid families, and plasmid families can have diverse host ranges ¹⁴ .
253	
254	Plasmids carrying AMR genes were found in 21% (52/247) of the plasmid clusters (i.e.,
255	'AMR-carrying clusters'), representing n=550 plasmids (Fig. 3d). Of the AMR-carrying

clusters, 92% (48/52) contained at least one beta-lactamase-carrying plasmid (*n*=437

257	plasmids in total). AMR genes were present in a median proportion 67% of AMR-carrying
258	cluster members (IQR=28-100%, range=3-100%). This highlights that AMR genes are not
259	necessarily widespread on genetically similar plasmids and can be potentially acquired
260	multiple different times through the activity of smaller MGEs (e.g. transposons) or
261	recombination. For example, cluster 12 was a group of $n=42$ conjugative, PTU-F _E plasmids
262	found in BSI, wastewater, and waterways. Of these, 31% (13/42) carried the AMR gene
263	bla_{TEM-1} , and in a range of genetic contexts: $n=9/13$ bla_{TEM-1} genes were found within Tn3 and
264	n=4/13 were carried without a transposase, of which $n=2/4$ were found with the additional
265	AMR genes aph(6)-Id, aph(3'')-Ib, and sul2. AMR genes were disproportionately carried by
266	F-type plasmids (61% [337/550] AMR-carrying cluster plasmids versus 34% [891/2627] of
267	the total clustered plasmids), further underlining the known role of F-type plasmids in AMR
268	gene dissemination ¹³ .
269	
270	An intertwined acalegy of plasmids across human and livesteely associated nickes

270 An intertwined ecology of plasmids across human and livestock-associated niches

Plasmids can change their genetic content, particularly when subject to new selective
pressures^{25,26}. Many plasmids have a structure with a 'backbone' of conserved core genes and

a 'cargo' of variable accessory genes^{12,13}. We wanted to explore evidence for cross-niche

274 plasmids with minimal mutational evolution in a shared backbone (compatible with ~years of

evolutionary separation) but variable accessory gene repertoires.

276

277 We first conducted a pangenome-style analysis (see Supplementary Methods) on the

278 n=69/247 plasmid clusters with ≥ 10 members. For each cluster, we determined "core" (genes

found in \geq 95% of plasmids) and "accessory" gene repertoires (found in <95% of plasmids).

280 Within clusters, we found median 9 core genes (IQR=4-53, range=0-219), and median 9

accessory genes (IQR=3-145, range=0-801) (Fig. 3e). Core genes comprised a median

282	proportion 42.2% of the total pangenome sizes (IQR=20.9-66.7%). At an individual plasmid
283	level, core genes shared by a cluster comprised a median proportion 62.5% of each plasmid's
284	gene repertoire (IQR=37.4-83.3%; Fig. 3e). Putatively conjugative plasmids carried a
285	significantly higher proportion of accessory genes in their repertoires than mobilisable/non-
286	mobilisable plasmids (Kruskal-Wallis test [<i>H</i> (2)=193.01, <i>p</i> -value<2.2e-16] followed by
287	Dunn's test).
288	
289	Using multiple sequence alignments of the core genes within each cluster, we produced
290	maximum likelihood phylogenies (see Supp. File 1 and Supplementary Methods). For this
291	step, we only considered the $n=62/69$ clusters where each plasmid had ≥ 1 core gene. With the
292	n=27/62 clusters that contained both BSI and livestock-associated plasmids, we measured the
293	phylogenetic signal for plasmid sampling niche using Fritz and Purvis' D (see Table S1 and
294	Supplementary Methods). The analysis indicated that the evolutionary history of plasmid
295	clusters is neither strictly segregated by sampling niche nor completely intermixed, but
296	something intermediate.
297	
298	Alongside the core gene phylogenies, we generated gene repertoire heatmaps (example
299	cluster 2 in Fig. 4a-b; all clusters and heatmaps in Supp. File 1). By visualising the genes in a
300	consensus synteny order (see Supplementary Methods), the putative backbone within each
301	plasmid cluster is shown alongside its accessory gene and transposase repertoire. This

302 highlights how plasmids might gain/lose accessory functions within a persistent backbone.

303 Log-transformed linear regression revealed a significant relationship between Jaccard

304 distance of accessory genes presence against core gene cophenetic distance

305 $(y=0.080\log(x)+0.978, R^2=0.47, F(1,52988)=4.75e4, p-value< 2.2e-16; see Fig. S8 and$

306 Supplementary Methods).

307

308 Plasmid evolution between human and livestock-associated niches is not structured by 309 bacterial host

- 310 Alongside vertical inheritance, conjugative and mobilisable plasmids are capable of inter-host
- transference, crossing between bacterial lineages, species, up to phyla¹⁴. However, bacterial
- surveillance often only tracks clonally evolving lineages²⁷, which might not account for
- 313 clinically relevant AMR genes mobilised on plasmids. Phylogenetic analysis can determine
- 314 whether plasmid evolution between BSI and livestock-associated niches is driven by host
- 315 clonal expansion or other means.
- 316

317 As a detailed example, we evaluated the largest plasmid cluster containing both human and

318 livestock-associated plasmids (cluster 2, *n*=100 members). All plasmids carried at least one

F-type replicon and were all putatively conjugative, with 75% (75/100) and 25% (25/100)

assigned PTU- F_E and a putative PTU, respectively. Further, 48% (48/100) plasmids carried

321 *bla_{TEM-1}*, and 51% (51/100) carried >1 AMR gene. All host chromosomes were *E. coli* except

322 OX-BSI-481_2 (S. enterica ST 2998; hereon omitted from the analysis). The n=99 E. coli

323 isolates represented six phylogroups: A (5/99), B1 (18/99), B2 (52/99), C (14/99), D (7/99),

- and G (3/99; see Supplementary Methods).
- 325

Figure 4b-c shows the plasmid core gene phylogeny (T_{plasmid}) and the *E. coli* host core gene phylogeny ($T_{\text{chromosome}}$). The *E. coli* phylogeny was structured by six clades corresponding to the six phylogroups (see Supplementary Methods). We found low congruence between the plasmid core-gene phylogeny and the chromosomal core-gene phylogeny as seen in the central 'tanglegram' (i.e., lines connecting pairs of plasmid and chromosome tips from the same isolate). Additionally, we calculated a Robinson-Foulds distance $RF(T_{\text{plasmid}},$

332	$T_{\text{chromosome}}$)=162, reflecting a high number of structural differences between the phylogenies
333	(see Supplementary Methods). There was some evidence of plasmid structuring by niche
334	(Fritz and Purvis' D=0.24; see Supplementary Methods).
335	
336	Within the plasmid phylogeny, there was a clade of $n=44$ plasmids (support 100%; circled in
337	grey in Figure 4b) containing both BSI and livestock-associated plasmids, which were within
338	median 4 core gene SNPs of each other (IQR=2-8, range=0-59). Estimating plasmid
339	evolution at an approximate rate of one SNP per year (see Supplementary Methods) would
340	give a median time to most recent common ancestor of the backbone at approximately 4
341	years prior to sampling, consistent with recent movement between human and livestock-
342	associated niches. This plasmid clade was mainly present in phylogroup B2 (20/44), but also
343	A (3/44), B1 (9/44), C (8/44), and D (4/44), suggesting plasmid movement. Further, 77%
344	(34/44) of plasmids within the clade carried bla_{TEM-1} (BSI: 25/34, Livestock-associated: 8/34,
345	WwTW-associated: 1/34), and 82% (36/44) carried \geq 1 AMR gene, highlighting the role of
346	plasmids in cross-niche dissemination of AMR.
347	
348	To examine the evolution of entire plasmid sequences within the clade, we represented all
349	n=44 plasmids as a 'pangraph' (Figure 4d; see Supplementary Methods). Briefly, pangraph
350	converts input sequences into a consensus graph, where each sequence is a path along a set of
351	homologous sequence alignments i.e., 'blocks', which in series form 'pancontigs'. Filtering
352	for 'core blocks' (i.e., those found in \geq 95% plasmids), we found 4 pancontigs (40 blocks
353	total), with the longest 98,269bp (total length 125,369bp), indicating a putative plasmid
354	backbone (Fig. 4e). Then, filtering for 'accessory blocks' (i.e., those found in <95%
355	plasmids), we found 18 pancontigs (39 blocks total), with median length 2,380bp (total length

63,753bp), forming the accessory gene repertoire (Fig. 4f). This points to a persistent plasmid
backbone structure with loss/gain events at particular 'hotspots' as well as rearrangements.

358

359 Discussion

- 360 By analysing a dataset of n=3,697 systematically collected *Enterobacterales* plasmids
- 361 sampled from human BSI, livestock- and WwTW-associated sources in a geographically and
- temporally restricted context, we find evidence of plasmid dissemination across niches,
- including those carrying clinically relevant AMR genes. We found 225 instances of shared,
- near-identical plasmid groups, 25% of which were found across multiple bacterial STs, 4%
- across multiple bacterial species, and 8% in both human BSI and ≥ 1 non-BSI niche. Beyond
- this near-identical sharing, we analysed 'clusters' of plasmids and found that that 73/247
- 367 clusters contained plasmids seen in both human BSIs and other contexts. Over one fifth
- 368 (52/247) of plasmid clusters contained plasmids carrying AMR genes (*n*=550 plasmids). Our
- results suggest the need for broad, unselected, and detailed sampling frames to fully
- 370 understand plasmid diversity and evolution.
- 371
- 372 Whilst some plasmid clusters are strongly structured by host phylogeny and isolate source,

some plasmids from human BSIs are highly genetically related to those in other niches,

- including livestock. However, recovering these similarities is a sampling challenge.
- 375 Accumulation curve analyses suggested increasing the size of our dataset would have led to
- 376 further near-identical matches at an approximately linear rate, meaning even a dataset of this
- 377 size captures only a small fraction of the true extent of plasmid sharing between human
- 378 clinical and other non-human/clinical niches. This presents a challenge for designing
- appropriately powered studies. Had we only sampled n=100 livestock-associated isolates

(i.e., around 20% of our actual sample), there was only a 39% chance that we would have
detected ≥5 matches with BSI plasmids (Fig. S4).

382

383	Given that plasmids observed in BSI isolates represent a restricted and small proportion of							
384	human Enterobacterales diversity, many more sharing events may occur in the human gut ²⁸							
385	which we only sampled incompletely using wastewater influent as a proxy. The human colon							
386	contains around 10 ¹⁴ bacteria ²⁹ , with large ranges of <i>Enterobacteriaceae</i> abundance. Further,							
387	even small numbers of across-niche sharing events, such as transfer events of important AMR							
388	genes from species-to-species or niche-to-niche, may have significant clinical implications, as							
389	has been seen with several important AMR genes globally (e.g., mcr-1, bla _{NDM-1}). Future							
390	studies need to carefully consider the limitations of sampling frames in detecting any genetic							
391	overlap, given both substantial diversity and the effects of niches and geography ^{11,16} .							
392								
393	By examining plasmid relatedness compared to bacterial host relatedness, we demonstrated							
394	that cross-niche plasmid spread is not driven by clonal lineages. Using a pangenome-style							
395	analysis, we showed that plasmids can share sets of near-identical core genes alongside							
396	diverse accessory gene repertoires. While plasmids with more distantly related core genes							
397	tended to have dissimilar accessory gene content, plasmids with more closely related core							
398	genes shared a wide range of accessory gene content. This would be consistent with a							
399	hypothesis of persistent 'backbone' structures gaining and losing accessory functions as they							
400	move between hosts and niches. We suggest that this mode of transfer might be worth							
401	considering. Evolutionary models for plasmids which can accommodate well-conserved							
402	backbone evolution alongside accessory structural changes and gain/loss events are urgently							
403	needed. Estimating plasmid evolutionary rates remains a challenge, with little known about							

404 appropriate values for mutation rates in plasmids, and even less for non-mutational processes405 such as gene gain/loss.

406

407	Our study had several limitations. Our non-BSI isolates were not as temporally varied as the
408	BSI isolates, meaning we could not fully explore temporal evolution. Isolate-based
409	methodologies are limited in evaluating the true diversity of the niches sampled; composite
410	approaches including metagenomics might shed additional insight in future studies. Further,
411	the exact source of an isolate is poorly defined for wastewater/waterway isolates as they act
412	as a confluence of multiple sources, although they represent important niches in their own
413	right. We only analysed plasmids from complete genomes i.e., where the chromosome and all
414	plasmids were circularised, meaning we disregarded ~23% and ~33% of BSI and non-BSI
415	assemblies, respectively. We only focused on plasmids as horizontally transmissible elements
416	here; detailed study of other smaller mobile genetic elements across-niches would represent
417	interesting future work. We have also investigated a limited subset of Enterobacterales:
418	plasmid sharing likely extends to other bacterial hosts not investigated here. Lastly, our
419	isolate culture methods for livestock-associated samples may not have been as sensitive for
420	the identification of Klebsiella spp. as for other Enterobacterales such as Escherichia, as we
421	did not use enrichment and selective culture on Simmons citrate agar with inositol ³⁰ .
422	
423	In conclusion, this study presents to our knowledge the largest evaluation of systematically
424	collected <i>Enterobacterales</i> plasmids across human and non-human niches within a

424 collected *Enterobacterales* plasmids across human and non-human niches within a

425 geographically and temporally restricted context. Plasmids can clearly disseminate between

426 niches, although this dynamic likely varies by cluster; the overall number of near-identical

427 plasmid groups identified across niches consistent with recent transfer events was 8%

428 (17/225) and influenced by sample size. We demonstrate a likely intertwined ecology of

- 429 plasmids across human and non-human niches, where different plasmid clusters are variably
- 430 but incompletely structured and putative 'backbone' plasmid structures can rapidly gain and
- 431 lose accessory genes following cross-niche spread. Future "One Health" studies require dense
- 432 and unselected sampling, and complete/near-complete plasmid reconstruction, to
- 433 appropriately understand plasmid epidemiology across niches.
- 434

435 Data availability

- 436 Study metadata is provided in Table S2. Accessions for poultry and environmental soil isolate
- 437 reads are given in Table S3, and assemblies will shortly be made available on NCBI.
- 438 Accessions for existing BSI and REHAB reads and assemblies can be found in Lipworth et
- 439 *al.*, 2021^{23} and Shaw *et al.*, 2021^{11} , respectively.

440 Code availability

- 441 Analysis scripts can be found in the GitHub repository
- 442 <u>https://github.com/wtmatlock/oxfordshire-overlap</u>.

443 **REHAB Consortium.**

- 444 Manal AbuOun², Muna F. Anjum², Mark J. Bailey³, Brett H⁸, Mike J. Bowes³, Kevin K.
- 445 Chau¹, Derrick W. Crook^{1,6,7}, Nicola de Maio¹, Nicholas Duggett², Daniel J. Wilson^{1,9},
- 446 Daniel Gilson², H. Soon Gweon^{3,4}, Alasdair Hubbard¹⁰, Sarah J. Hoosdally¹, William
- 447 Matlock¹, James Kavanagh¹, Hannah Jones², Timothy E. A. Peto^{1,6,7}, Daniel S. Read³, Robert
- 448 Sebra⁵, Liam P. Shaw¹, Anna E. Sheppard^{1,6}, Richard P. Smith², Emma Stubberfield², Nicole
- 449 Stoesser^{1,6,7}, Jeremy Swann¹, A. Sarah Walker^{1,6,7}, Neil Woodford¹¹
- 450 ¹ Nuffield Department of Medicine, University of Oxford, Oxford, UK
- 451 ² Animal and Plant Health Agency, Weybridge, Addlestone, UK
- 452 ³ UK Centre for Ecology & Hydrology, Wallingford, UK
- 453 ⁴ University of Reading, Reading, UK

- 454 ⁵ Icahn Institute of Data Science and Genomic Technology, Mt Sinai, NY, USA
- ⁶ NIHR HPRU in healthcare-associated infection and antimicrobial resistance, University of
- 456 Oxford, Oxford, UK
- 457 ⁷ NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
- 458 ⁸Thames Water Utilities, Clearwater Court, Vastern Road, Reading, UK
- ⁹Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive,
- 460 Oxford, UK
- ¹⁰Department of Tropical Disease Biology, Liverpool School of Tropical Medicine,
- 462 Liverpool, UK
- 463 ¹¹Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI) Reference Unit,
- 464 National Infection Service, Public Health England, London, United Kingdom
- 465 **Declarations of interests**. The authors declare no interests.
- 466 **Role of the funding source.**
- 467 This work was funded by the Antimicrobial Resistance Cross-council Initiative supported by
- the seven research councils [grant NE/N019989/1]. The UKCEH component of the REHAB
- 469 consortium was supported by the Natural Environment Research Council (NERC)
- 470 [grant NE/N019660/1]. DWC, SG, TEAP and NS are supported by the National Institute for
- 471 Health Research Health Protection Research Unit (NIHR HPRU) in Healthcare-Associated
- 472 Infections and Antimicrobial Resistance at the University of Oxford in partnership with
- 473 Public Health England (PHE) [grant HPRU-2012–10041 and NIHR200915]. DWC and
- 474 TEAP are also supported by the NIHR Oxford Biomedical Research Centre. The
- 475 computational aspects of this research were funded from the NIHR Oxford BRC with
- 476 additional support from a Wellcome Trust Core Award Grant [grant 203141/Z/16/Z]. The
- 477 views expressed are those of the authors and not necessarily those of the NHS, the NIHR, the
- 478 Department of Health or Public Health England. WM and KKC are supported by a

- 479 scholarship from the Medical Research Foundation National PhD Training Programme in
- 480 Antimicrobial Resistance Research (MRF-145-0004-TPG-AVISO). NS is an Oxford Martin
- 481 Fellow and a Senior NIHR BRC Oxford Fellow. LPS is a Sir Henry Wellcome Postdoctoral
- 482 Fellow funded by Wellcome (grant 220422/Z/20/Z).

483

484 **Bibliography**

- 1. Linh, T. D. *et al.* Expansion of KPC-producing Enterobacterales in four large hospitals
- 486 in Hanoi, Vietnam. Journal of Global Antimicrobial Resistance 27, (2021).
- 487 2. Kraftova, L. *et al.* Evidence of an epidemic spread of KPC-producing Enterobacterales
- 488 in Czech hospitals. *Scientific Reports* **11**, (2021).
- 489 3. Cahill, N. et al. Hospital effluent: A reservoir for carbapenemase-producing
- 490 Enterobacterales? *Science of the Total Environment* **672**, (2019).
- 491 4. Subramanya, S. H. et al. Detection and characterization of ESBL-producing
- 492 Enterobacteriaceae from the gut of subsistence farmers, their livestock, and
- the surrounding environment in rural Nepal. *Scientific Reports* **11**, (2021).
- 494 5. Abuoun, M. *et al.* A genomic epidemiological study shows that prevalence of
- 495 antimicrobial resistance in enterobacterales is associated with the livestock host, as
- 496 well as antimicrobial usage. *Microbial Genomics* **7**, (2021).
- 497 6. Díaz-Gavidia, C. et al. Isolation of Ciprofloxacin and Ceftazidime-Resistant
- 498 Enterobacterales From Vegetables and River Water Is Strongly Associated With the
- 499 Season and the Sample Type. *Frontiers in Microbiology* **12**, (2021).
- 500 7. Buchy, P. et al. Impact of vaccines on antimicrobial resistance. International Journal
- 501 *of Infectious Diseases* vol. 90 Preprint at https://doi.org/10.1016/j.ijid.2019.10.005
- 502 (2020).
- 8. Ruppé, E. *et al.* From genotype to antibiotic susceptibility phenotype in the order
 Enterobacterales: a clinical perspective. *Clinical Microbiology and Infection* 26,
 (2020).
- 506 9. Sheppard, A. E. *et al.* Nested Russian doll-like genetic mobility drives rapid
- 507 dissemination of the carbapenem resistance gene blakpc. *Antimicrobial Agents and*
- 508 *Chemotherapy* **60**, (2016).

- 509 10. Che, Y. et al. Conjugative plasmids interact with insertion sequences to shape the
- 510 horizontal transfer of antimicrobial resistance genes. *Proc Natl Acad Sci U S A* **118**,
- 511 (2021).
- 512 11. Shaw, L. P. *et al.* Niche and local geography shape the pangenome of wastewater-and
- 513 livestock-associated Enterobacteriaceae. *Science Advances* 7, (2021).
- 514 12. Orlek, A. *et al.* Plasmid classification in an era of whole-genome sequencing:
- 515 Application in studies of antibiotic resistance epidemiology. *Frontiers in Microbiology*
- vol. 8 Preprint at https://doi.org/10.3389/fmicb.2017.00182 (2017).
- 517 13. Matlock, W. *et al.* Genomic network analysis of environmental and livestock F-type
 518 plasmid populations. *ISME Journal* 15, (2021).
- 519 14. Redondo-Salvo, S. *et al.* Pathways for horizontal gene transfer in bacteria revealed by

a global map of their plasmids. *Nature Communications* **11**, (2020).

- 521 15. Mounsey, O. et al. Limited phylogenetic overlap between fluoroquinolone-resistant
- 522 Escherichia coli isolated on dairy farms and those causing bacteriuria in humans living
- 523 in the same geographical region. *Journal of Antimicrobial Chemotherapy* **76**, (2021).
- Hanage, W. P. Two health or not two health? That is the question. *MBio* 10, e00550-19
 (2019).
- 526 17. Ludden, C. et al. One health genomic surveillance of escherichia coli demonstrates

527 distinct lineages and mobile genetic elements in isolates from humans versus livestock.

- 528 *mBio* **10**, (2019).
- 529 18. Shen, C. et al. Dynamics of mcr-1 prevalence and mcr-1-positive Escherichia coli after
- the cessation of colistin use as a feed additive for animals in China: a prospective
- 531 cross-sectional and whole genome sequencing-based molecular epidemiological study.
- 532 *The Lancet Microbe* **1**, e34–e43 (2020).

533	19.	Hilpert.	С	Bricheux.	G.	&	Debroas.	D.	Reconstruction	of	plasmids b	v shotgun

- sequencing from environmental DNA: Which bioinformatic workflow? *Briefings in Bioinformatics* 22, (2021).
- Wang, R. *et al.* The global distribution and spread of the mobilized colistin resistance
 gene mcr-1. *Nat Commun* 9, 1–9 (2018).
- 538 21. Sekizuka, T. et al. Complete sequencing of the bla NDM-1-positive IncA/C plasmid
- from Escherichia coli ST38 isolate suggests a possible origin from plant pathogens.

540 *PLoS ONE* **6**, (2011).

541 22. Wick, R. R., Judd, L. M., Gorrie, C. L. & Holt, K. E. Unicycler: Resolving bacterial

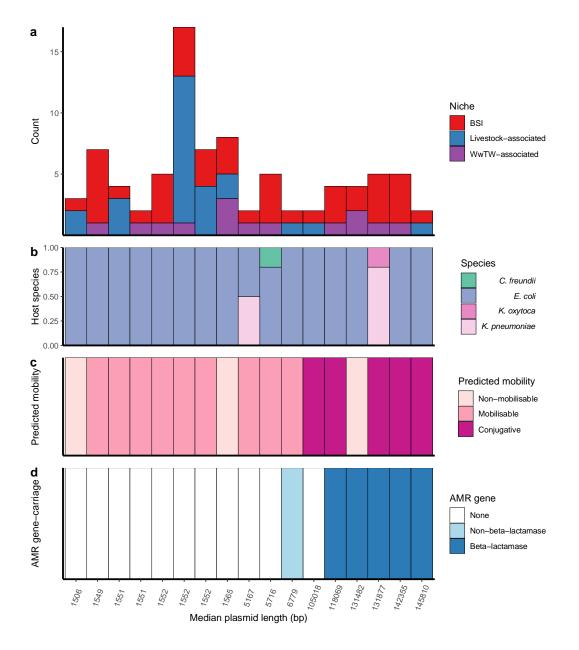
542 genome assemblies from short and long sequencing reads. *PLoS Computational*

- 543 *Biology* **13**, (2017).
- Lipworth, S. *et al.* Ten-year longitudinal molecular epidemiology study of Escherichia
 coli and Klebsiella species bloodstream infections in Oxfordshire, UK. *Genome*
- 546 *Medicine* **13**, (2021).
- 547 24. Rozwandowicz, M. *et al.* Plasmids carrying antimicrobial resistance genes in
- 548 Enterobacteriaceae. *Journal of Antimicrobial Chemotherapy* **73**, (2018).
- 549 25. Rodríguez-Beltrán, J., DelaFuente, J., León-Sampedro, R., MacLean, R. C. & San
- 550 Millán, Á. Beyond horizontal gene transfer: the role of plasmids in bacterial evolution.
- 551 *Nature Reviews Microbiology* vol. 19 Preprint at https://doi.org/10.1038/s41579-020-
- 552 00497-1 (2021).
- Pesesky, M. W., Tilley, R. & Beck, D. A. C. Mosaic plasmids are abundant and
 unevenly distributed across prokaryotic taxa. *Plasmid* 102, (2019).
- 555 27. David, S. *et al.* Integrated chromosomal and plasmid sequence analyses reveal diverse
- modes of carbapenemase gene spread among Klebsiella pneumoniae. *Proc Natl Acad*
- 557 *Sci U S A* **117**, (2020).

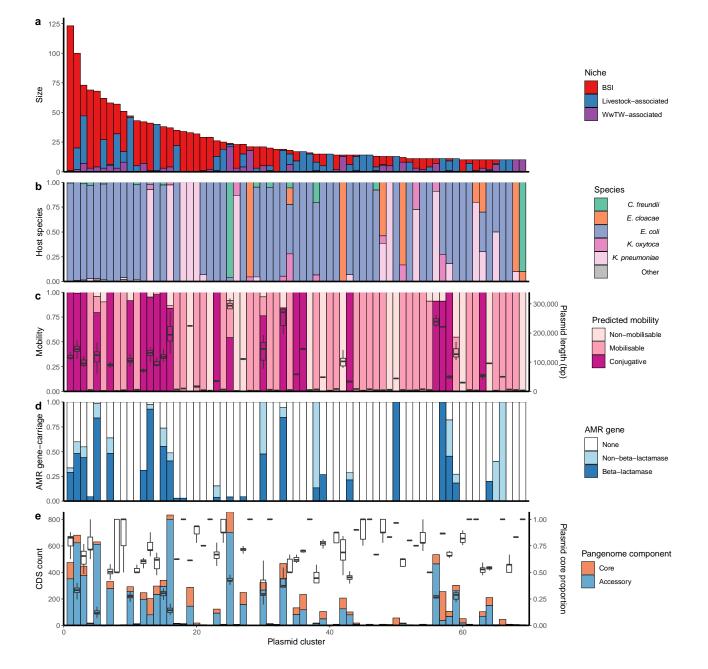
- 558 28. Forster, S. C. *et al.* A human gut bacterial genome and culture collection for improved
- 559 metagenomic analyses. *Nature Biotechnology* **37**, (2019).
- 560 29. Sender, R., Fuchs, S. & Milo, R. Revised Estimates for the Number of Human and
- 561 Bacteria Cells in the Body. *PLoS Biology* **14**, (2016).
- 562 30. Rodrigues, C. et al. High Prevalence of Klebsiella pneumoniae in European Food
- 563 Products: a Multicentric Study Comparing Culture and Molecular Detection Methods.
- 564 *Microbiology Spectrum* **10**, (2022).

565

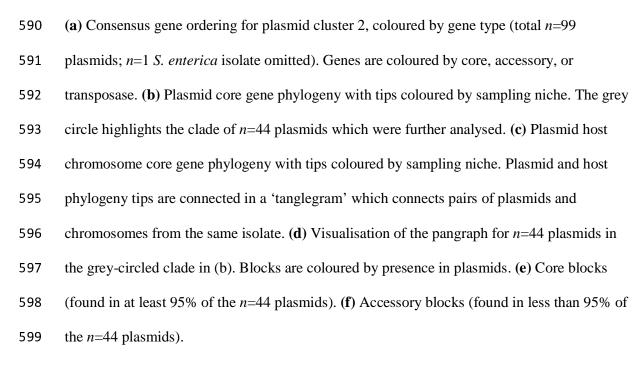
566

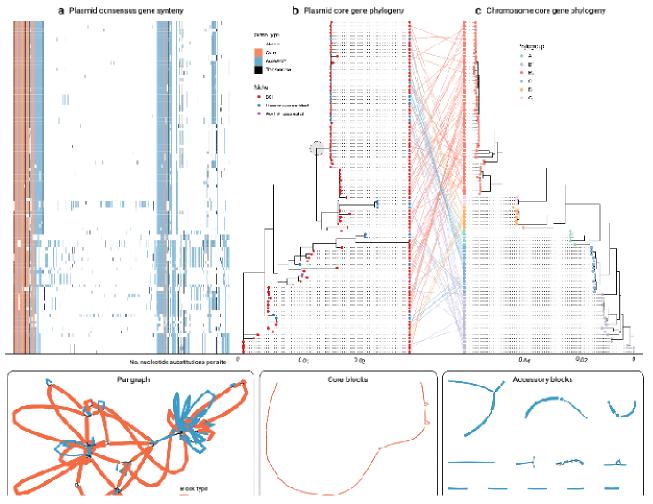

567 Fig. 1. A diverse sample of geographically and temporally restricted *Enterobacterales*

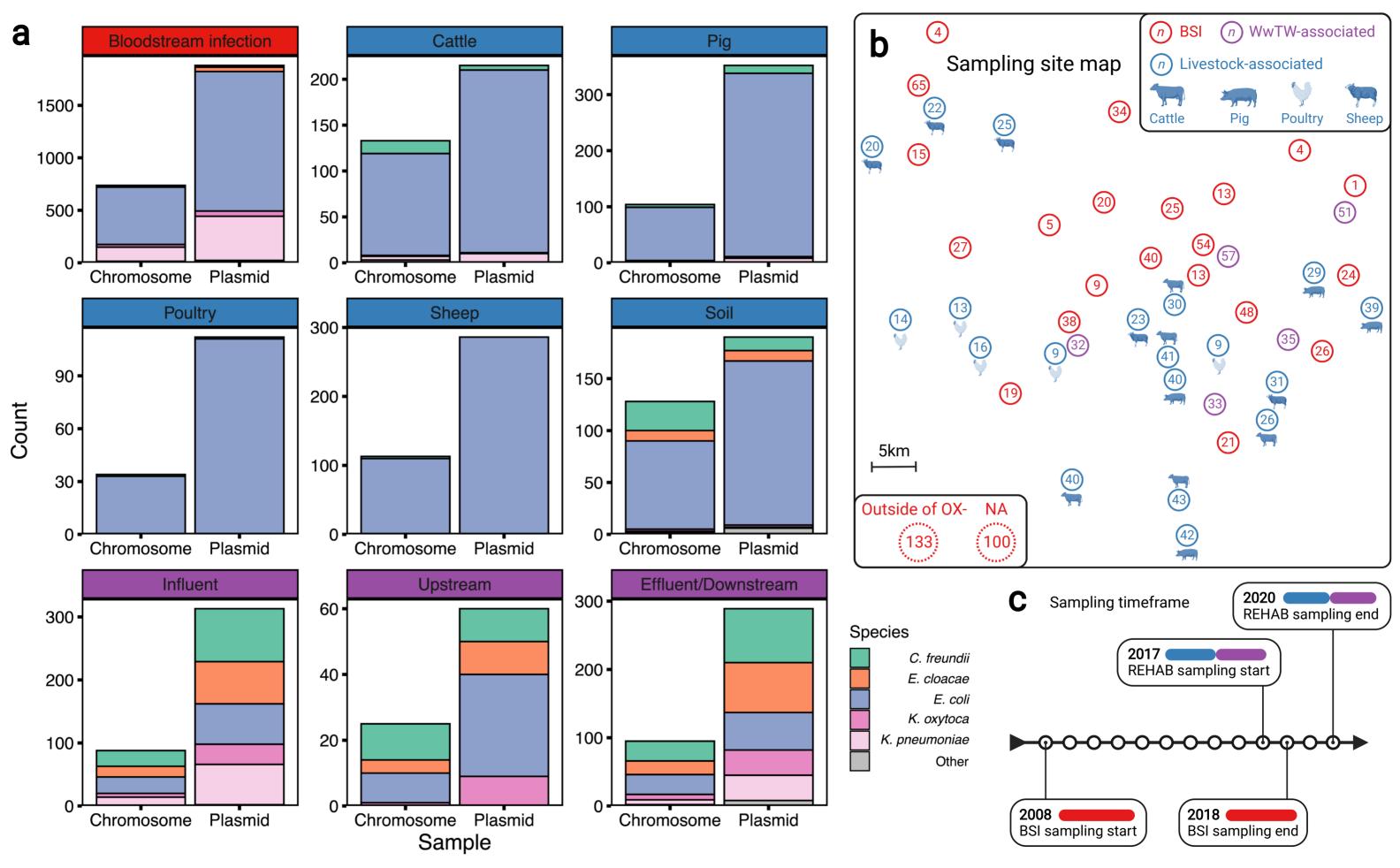
- 568 (a) Number of chromosomes and plasmids by niche, stratified by isolate genus. (b) Map of
- approximate, relative distances between sampling sites, coloured by niche (human
- 570 bloodstream infection [BSI], livestock-associated (cattle, pig, poultry, and sheep faeces, soils
- 571 nearby livestock sites), and wastewater treatment work (WwTW)-associated sources
- 572 (influent, effluent, waterways upstream/downstream of effluent outlets). Number in circles
- indicates how many of the n=1,458 isolates are from that location. (c) Sampling timeframe
- 574 for BSI and REHAB (non-BSI) isolates.

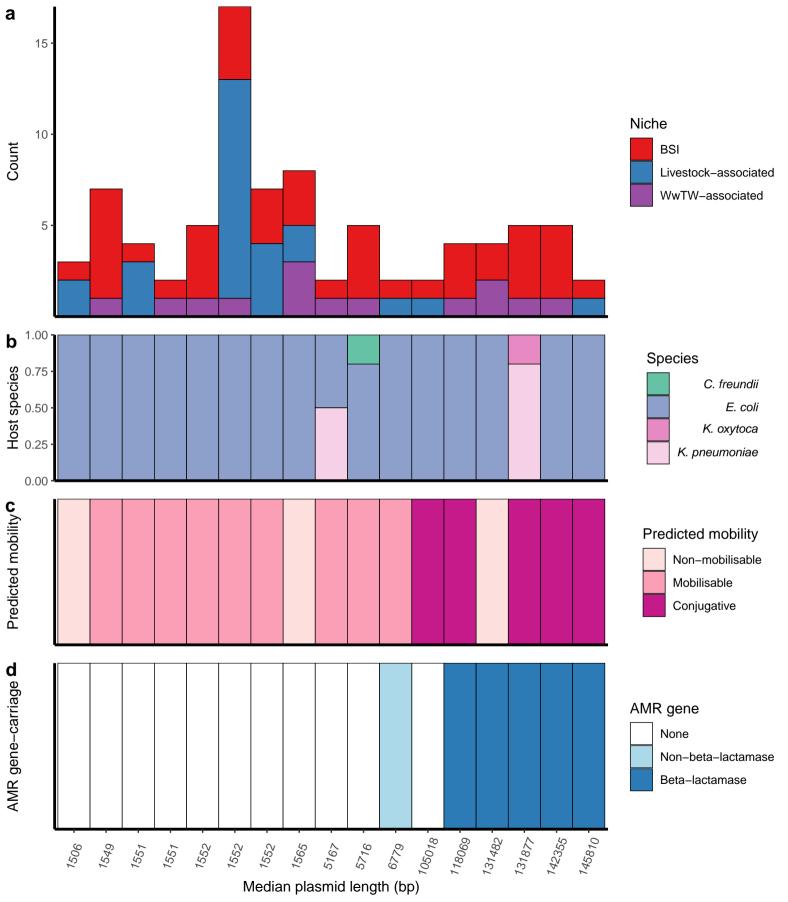

575 Fig. 2 Cross-niche, near-identical plasmids.

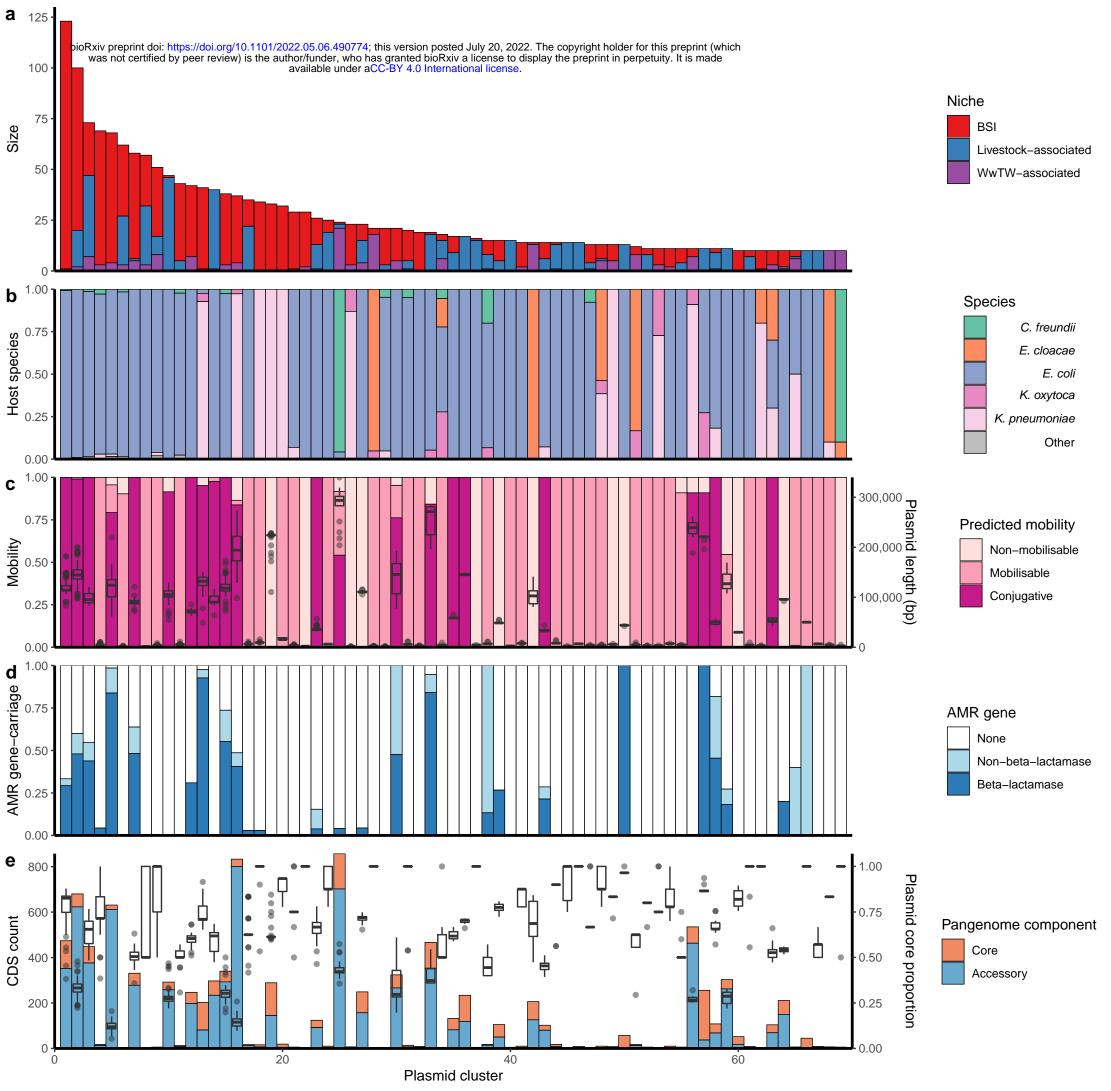
- 576 (a) Size of cross-niche, near-identical plasmid groups, coloured by niche (total n=84
- 577 plasmids). Median length (bp) of plasmids within groups increases from left to right. (b)
- 578 Proportion of plasmid host species by group. (c) Predicted mobility of plasmid. (d) AMR
- 579 gene carriage in plasmid.


580 Fig. 3. Genetically similar plasmids share between niches


- 581 (a) Size of plasmid clusters with at least 10 members, coloured by niche. Size of clusters
- 582 decreases from left to right. (b) Proportion of plasmid host species by cluster. (c) Plasmid
- 583 mobility class and size: Left hand axis shows proportion of plasmids with a predicted
- 584 mobility class by cluster. Right hand axis shows plasmid length boxplots by cluster. (d)
- 585 Proportions of AMR gene carriage by cluster. (e) Plasmid core and accessory genomes: Left
- hand axis shows the count of core and accessory coding sequences (CDS) by cluster. Right
- hand axis shows plasmid core gene proportion (i.e., plasmid core CDS/total plasmid CDS)




588 boxplots by cluster.


589 Fig. 4. Cluster 2 plasmid and host evolution

