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Single-cell genomics analysis requires normalization of feature counts that stabilizes variance
while accounting for variable cell sequencing depth. We discuss some of the trade-offs present
with current widely used methods, and analyze their performance on 526 single-cell RNA-seq
datasets. The results lead us to recommend proportional fitting prior to log transformation
followed by an additional proportional fitting.

Introduction
A central theme in single-cell RNA-seq “count normalization” is the importance of achieving
depth normalization alongside variance stabilization (Vallejos et al. 2017; Evans, Hardin, and
Stoebel 2018; Robinson and Oshlack 2010). While variance stabilization has been studied for
over 85 years (Bartlett 1936), the question of how to achieve both variance stabilization and
depth normalization is unsolved. An important condition that is often overlooked when
evaluating normalization and variance-stabilization methods is that structure must be preserved
in the data, which is why classic variance stabilizing transformations are monotonic by design
.(Doob 1935). This is why the constant transformation, which sets all counts equal to each other
and results in a fully variance-stabilized matrix with all cell depths equal, is not a good
normalization.

While many methods have been proposed for single-cell RNA-seq normalization (Cole et al.
2019; Tian et al. 2019; You et al. 2021; Lytal, Ran, and An 2020; Borella et al. 2021;
Ahlmann-Eltze and Huber 2021; Breda, Zavolan, and van Nimwegen 2021), the approach of
equalizing depth for all cells, often to a “size factor” such as ten thousand (CP10k) or one million
(CPM), followed by the application of a variance stabilizing transform like log plus one (log1p) is
most popular. These methods are implemented in the widely used Seurat1 and Scanpy (Wolf,
Angerer, and Theis 2018) programs, but they do not explicitly model cell depth as a covariate.
The recently published sctransform method (Hafemeister and Satija 2019), which has quickly
become the most widely used normalization method for single-cell RNA-seq, aims to address
the challenge of variance stabilization and depth normalization by transforming data to Pearson
residuals derived from a regularized negative binomial regression. This regression-based

1 The Seurat R toolkit for single cell genomics is unpublished, however the default normalization is
described in several “vignettes” on the software website that showcase standard analysis workflows:
https://satijalab.org/seurat/articles/get_started.html.
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method incorporates sequencing depth as a covariate in a model, rather than utilizing a size
factor (Anders and Huber 2010). However, despite the claims in (Hafemeister and Satija 2019),

Figure 1: Questions about the efficacy of the sctransform depth normalization. (a) A
reproduction of Figure 6 from (Hafemeister and Satija 2019) shows a UMAP generated from the
10x Genomics “33k PBMCs from a Healthy Donor, v1 Chemistry” dataset, where the data has
been normalized with the log1pCP10k transform. The figure on the right shows a UMAP
generated from the raw data normalized with sctransform. The authors state that “..correlations
[between locations of embedded cells and sequencing depth] are strikingly reduced for Pearson
residuals [in comparison to log-normalized data” but the difference for Monocytes (circled in red)
does not look striking. (b) A differential expression control experiment from (Hafemeister and
Satija 2019) showing sctransform greatly reduces false positive genes in comparison to the log
transform whereas (c) the opposite is shown in a similar control experiment in (Choudhary and
Satija 2022). The figures are all licensed under CC BY 4.0, and have been reproduced from the
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papers they were published in with only minor modifications (cropping, the addition of arrows
and circles, and addition of number in the plot shown in (c)).

benchmarking of sctransform in (Crowell et al. 2020) shows that the method fails to completely
remove the effects of variable depth. The authors show that as a result, sctransform produces
“unacceptably high false discovery rates [when used for differential expression]”. Similarly,
(Brown et al. 2021) find that sctransform performs poorly (see their Figure 3) and the veracity of
the claim in (Hafemeister and Satija 2019) that sctransform “can successfully remove the
influence of technical characteristic from downstream analyses” is brought into question by the
authors’ own results. Figure 6 of their paper shows a UMAP plot of 33,148 PBMCs that the
authors claim displays “a gradient that is correlated with sequencing depth” for log-normalized
data, but not for data normalized with sctransform (Fig. 1a).

The figure belies this claim. Contrary to the authors’ assertions, an examination of the plots
shows that the Monocytes have a depth gradient with both methods. While this may be due to
challenges in interpreting the UMAP embeddings (Chari, Banerjee, and Pachter 2021), it could
also be an indication that both methods fail to depth normalize the data. Furthermore, a
differential expression benchmark of sctransform in (Hafemeister and Satija 2019) shows that it
produces almost no false positives, whereas a similar benchmark in a later paper (Choudhary
and Satija 2022) shows the opposite (Fig. 1b, c, d). Aside from questions about depth
normalization, it is also unclear whether sctransform is effective at variance stabilization
(Ahlmann-Eltze and Huber 2021). These issues raise the question of how effective sctransform,
or any other currently used method, is at achieving both depth normalization and variance
stabilization.

Furthermore, an analysis of how normalization is used in practice (Supp. Fig. 1), shows that
normalization methods are applied in a task-specific manner, resulting in numerous
normalizations sometimes being mixed together in a single analysis.  For example, sctransform
is not, in practice, a single method for computing Pearson residuals from raw counts, but rather
a program that implements multiple normalization methods, where each method is used for a
different task in the standard Seurat workflow. This highlights the importance of benchmarking
the fundamental properties of each normalization technique in a way that is motivated by, and
cognizant of, the downstream analysis tasks it may be applied to. In this paper we evaluate
several commonly used normalization methods based on how they perform with respect to three
criteria that are crucial for common analysis methods: variance stabilization, normalization, and
monotonicity of the transformations.

Results

Evaluation criteria
In considering how to evaluate normalization methods, we focused on downstream applications
and their respective assumptions. Dimensionality reduction with PCA is an initial step in many
analyses that relies on equal gene variances. If variance is not stabilized, genes with a high
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variance may have an outsized impact on the singular values solely due to having a high mean
(Nguyen and Holmes 2019). Similarly, without depth-normalization, the key step of identifying
genes that are differentially expressed between cell types, may yield false-positive genes simply
due to certain groups of cells being sampled more deeply than others (Robinson and Oshlack
2010). An additional property of normalization techniques that is important for tasks such as
marker gene selection is monotonicity of the transformations, especially for constructing
heatmaps or similar visualizations.

Figure 2: Benchmarking normalization techniques on 437 of 526 datasets passing filter. (a)-(c)
demonstrate metrics computed on all genes, a task which is computationally intractable to
compute on sctransform and scalelog1pCP10k due to their size. (d)-(f) demonstrate metrics
computed on a subset of genes as identified by sctransform’s default gene filtering. (Methods).
(a) and (d) show the coefficient of variation on the gene variances for each dataset. (b) and (e)
show the Pearson r2 between the raw cell depth and the transformed cell depth. (c) and (f) show
one minus the absolute value of the mean Spearman r on the raw vs transformed cell. A bar is
plotted to the mean of each distribution (also marked with a red circle). The 10xv3_nih_3t3
dataset is marked with a blue circle.

To assess effectiveness of variance stabilization, we plotted the mean of each gene vs. its
variance across cells, and measured the coefficient of variation of the gene variance (CV) after
transformation as a scale-independent measure of the effectiveness of variance stabilization.
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Depth normalization was assessed by plotting, for each cell, the total raw cell counts vs. the
total transformed cell counts. Since the total abundance of a gene per cell may not be measured
with respect to an absolute scale, we computed the r2 correlation with raw cell depth as a proxy
for the extent to which raw cell counts were reflected in the transformed data. Finally, for each
cell, we computed the Spearman rank correlation between cells prior to, and after,
transformation to measure deviations from a monotonic transformation. These three metrics
allow for quantifying the trends observed in the three plots and offer a measure of the
effectiveness of each normalization technique.

To verify that these metrics are reasonable for benchmarking normalization methods, we first
examined cells from a NIH/3T3 mouse cell line dataset published in (Svensson 2020) and
studied in (Ahlmann-Eltze and Huber 2021). We found that these metrics, which we computed
for each normalization technique, were concordant with the analysis performed in
(Ahlmann-Eltze and Huber 2021), and provided useful summaries of the performance of
different normalization techniques (Supp. Fig. 2).

Benchmarks of 526 datasets
In recognition of the fact that the patterns we observed in 10xv3_NIH_3T3 were not necessarily
representative of other datasets, we analyzed a further 525 datasets of which 437 passed
quality control (Supp. Fig. 3.1 - 3.526, Methods). We evaluated eight normalization techniques;
in addition to sctransform, we selected seven other methods based on their use in popular
single-cell RNA-seq analysis packages, as well as a novel method we decided to investigate
after examining initial results (see Methods). The most widely used approach for depth
normalization and variance stabilization is depth normalization of cell counts to ten thousand
counts (CP10k), followed by variance stabilization of the gene counts with the log(x+1)
transform (denoted by log1p, with the combined procedures denoted log1pCP10k). This is the
default in the Seurat and Scanpy packages. Seurat and Scanpy also recommend an additional
scaling step (scalelog1pCP10k) for some analyses. Scaling consists of two steps: centering
gene expression values by subtracting the mean expression of each gene, and equalizing gene
variances by dividing the counts for each gene by the standard deviation (computed across
cells). We also benchmarked a method that has been adapted for single-cell RNA-seq from bulk
RNA-seq, namely cell depth normalization to the mean cell depth, followed by log1p (log1pPF).
This “proportional fitting” approach, our name for the method because the first step constitutes
one step of iterative proportional fitting (Edwards Deming and Stephan 1940), is similar to
log1pCP10k (Love, Huber, and Anders 2014), and is the method underlying the Monocle
single-cell analysis package (Cao et al. 2019). We also tested the square root transformation
that forms a part of the scprep package default transformation2, as well as a log1pCPM, which is
a popular option in Seurat, and is similar to log1pCP10k but with a scaling factor of one million
rather than ten thousand. Finally, we included a benchmark of PF for completeness.

2 The scprep package is unpublished but is documented here:
  https://github.com/KrishnaswamyLab/scprep
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Our benchmarks revealed high variability in the extent of variance stabilization for any given
method (Fig. 2a); to the extent that even though one method might be better at stabilizing
variance than another, on one dataset it may produce worse results than the inferior method on
another. For example, the sqrt transformation results in a CV of 1.61 for GSM3738540 (Supp.
Fig. 3.400.2)  whereas the log1p transformation yields a higher CV of 6.78 for GSM3396184
(Supp. Fig. 3.243.2). Some datasets are also particularly sensitive to the method used. The sqrt
transformation gives a CV of 9.45 for GSM3178783 (Supp. Fig. 3.178.2) and 46.53 for
GSM3396177 (Supp. Fig. 3.236.2), whereas the log1p transformation gives consistent results
for these datasets with 5.77 GSM3178783 and 5.8 for GSM3396177; interestingly there is even
a slight reversal in behavior. This highlights the importance of large-scale benchmarking for
evaluating normalization methods.

Figure 3: Cell-type level metrics. Three metrics are computed for cells within the Type 2
pneumocytes from angelidis_2019 for all normalization methods. (a) The fraction entropy of the
PC1 loadings for all genes as a fraction of the max entropy. (b) The number of false-positive DE
genes. (c) The absolute value of the mean within-cell-type-pairwise Spearman r.

The sctransform method subsets the genes analyzed (see Methods), so to compare sctransform
to other methods we redid the analysis of each method with respect to the sctransform selected
genes (Fig. 2d); we found the results to be qualitatively consistent with the full analysis using all
genes. In terms of depth normalization, we found that even methods that claim to normalize for
depth, e.g. sctransform, do not succeed in completely removing depth effects and retain
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information about depth in the normalized data (Fig. 2e). Popular normalization methods such
as log1pCP10k are similar in terms of removing the effects of depth on downstream analysis
(Fig. 2b, 2e). The sctransform normalized cells, for example, exhibit similar cell-depth correlation
(r2 = 0.37) as log1pPF cells (r2 = 0.43) on average, with some sctransform normalized datasets
exhibiting very high depth correlation (Supp. Fig. 3.520.2). Finally, while most transformations
are monotonic, we find that sctransform scrambles the rank order of genes in individual cells
(Fig. 2c, f), a straightforward result of the normalization procedure that can negatively influence
downstream analyses if not taken into consideration.

Variance stabilization
Our analysis of current normalization methods shows that they exhibit a stark tradeoff between
variance stabilization and depth normalization. To understand the implications of each
normalization technique we analyzed data from (Angelidis et al. 2019), as studied in
(Ahlmann-Eltze and Huber 2021).

Interestingly, there has been much focus on variance stabilization, perhaps because variance
stabilization has a long history dating back to (Bartlett 1936). A relationship between expression
levels of a gene and its variance can mask biological variation and affect data analysis methods
such as PCA as a result of technical artifacts (e.g. sampling). Highly expressed genes may
dominate PCA components, regardless of biologically meaningful variation. When analyzing
angelidis_2019 we found that PF, like the raw counts, was not variance stabilized resulting in
non-uniform PC loadings corresponding to low entropy for genes (Fig. 3a), with PC loadings
increasing with increasing gene mean (Supp. Fig. 4). sctransform had the highest entropy, a
finding that can be explained by the heuristic clipping procedure performed on the gene
variances (Choudhary and Satija 2022).

To address this problem, approximations to variance stabilizing transforms, such as log1p or
sqrt are used, often in conjunction with a depth normalization step such as PF, CP10k, and
CPM. The effect of each of these transformations on the mean-variance relationship can be
seen in Supp. Fig. 3.519.2.3 Variance stabilizing transforms like log1p and sqrt reduce the CV of
the genes from angelidis_2019 by a factor of 29.1 and 7.9 respectively (from 98.8 to 3.4 and
12.5). The addition of depth normalization step does not greatly affect the CV for log1pPF (3.0).
Therefore normalization techniques that include a variance stabilization step will greatly reduce
the effects that highly expressed, and thus highly variable, genes have on PC components.

The log transformation is often used with a pseudocount, and the size of the pseudocount can
be seen to reflect assumptions about the extent of overdispersion (Ahlmann-Eltze and Huber
2021; Booeshaghi and Pachter 2021). For negative binomial data, the overdispersion is the
constant α in a quadratic mean (μ) - variance (σ2) relationship of σ2 = μ + αμ2. Depth
normalizations prior to logarithmic transformation with a pseudocount of 1 therefore reflect
assumptions about the overdispersion as reflected in the size factor. As pointed out in

3 Different plotting styles can lead to very different interpretations of the effect of each
normalization procedure on the mean-variance relationship (Supp. Fig. 5).
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(Ahlmann-Eltze and Huber 2021), a large size factor represents an assumption of high
overdispersion. For example, (Ahlmann-Eltze and Huber 2021) show that scaling counts with a
size factor of one million by computing CPM in a scRNAseq dataset with an average of 5,000
counts per cell, is equivalent to using a pseudo-count of 0.005.4 This  amounts to assuming an
overdispersion of α = 50. This calculation is based on a variance stabilizing approximation
derived by the Delta method that yields a pseudocount of 1/4α; interestingly, there is some
disagreement over the denominator of the pseudocount as 1/2α (Anscombe 1948) is frequently
preferred. In a simulation study (see Methods), we found that in the range of relevant
overdispersion parameters, 1/4α provides a slightly better variance stabilizing transform than
1/2α (Supp. Fig 6).

Our results (Fig. 3) reflect the different assumptions about overdispersion underlying the use of
log1pPF, log1pCP10k, or log1pCPM depth-normalization, however they also show that a
smaller CV is not necessarily indicative of better variance stabilization. For example, the CPM
assumption of overdispersion, that is at least two orders of magnitude larger than present in
biological datasets, results in overcorrection and the removal of biological variation
(Ahlmann-Eltze and Huber 2021) and results in the smallest CV in angelidis_2019 of 1.7. The
sqrt transformation did not perform as well at stabilizing the variance as log1p, which is not
surprising given the overdispersion (relative to the Poisson distribution) of single-cell RNA-seq
data. As noted previously, many methods display a linear relationship between gene mean and
gene variance for cells with very low counts. This phenomenon is well known and is a
consequence of Theorem 1 of (Warton 2018). The sctransform method is an exception,
because when the program computes the Pearson residuals, the standard deviation for each
gene is artificially required to be at least nzmedian/5 where nzmedian is the median number of
counts for each gene computed over non-zero cells. (Choudhary and Satija 2022).

The log1pPF method, which stabilizes the variance after depth normalization, performs well in
all metrics, a result which is consistent with the findings of (Ahlmann-Eltze and Huber 2021).
Overall, while some methods achieve better variance stabilization than others since they better
match the overdispersion characteristics of biological data (e.g. log1p vs. sqrt), even sqrt is
effective at achieving an absolute reduction in the coefficient of variation of variance, which
explains its adequacy in scprep. Similarly, while log1pCP10k is preferable to log1pCPM, the use
of log1pCPM does not preclude obtaining some meaningful results in analysis (Chen et al.
2021). Indeed, all current variance stabilization procedures are heuristics that ignore the fact
that Poisson and negative binomial distributions may arise due to biophysical stochasticity in
bursty transcription and RNA degradation (Amrhein, Harsha, and Fuchs 2019; Jahnke and
Huisinga 2007). The development of “mechanistically justified normalization” is a pressing
challenge for single-cell RNA-seq analysis.

4 (Ahlmann-Eltze and Huber 2021) made a minor error when performing this calculation and
erroneously reported an overdispersion of 250.
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Implicit use of cell depth
Current depth normalization procedures that are applied alongside variance stabilization
procedures implicitly assume that differences in cell-count depth is a technical artifact due to
sampling differences between cells, rather than the result of different numbers of RNA
molecules in different cells. While this assumption may be flawed, in the absence of effective
data and procedures for assessing variation in the amount of RNA between cells, normalization
for cell sequencing depth is essential. This is because standard statistical tests that are
employed in Seurat and Scanpy, such as the t-test and wilcoxon rank-sum, do not explicitly
model cell-depth as a technical covariate.

To investigate the effect that poor depth-normalization can have on analysis, we selected two
subsets of cells from Type 2 pneumocytes with high and low depth respectively (see Methods).
An analysis of the number of differential expressed genes detected after transformation with
different methods shows that poor depth normalization can lead to many false positives (Fig.
3b). Interestingly, the default normalization used for differential expression analysis in Seurat
and Scanpy (CP10k) finds 1,490 false-positive DE genes, about seven times more than
log1pPF (Love, Huber, and Anders 2014), which is used in (Cao et al. 2019), and has been
recently recommended again (Ahlmann-Eltze and Huber 2021). In comparison, sctransform
finds 442 DE genes, about twice as many as log1pPF and about three times fewer than
log1pCP10k.5

Depth normalization is also important for identifying clusters with biologically meaningful
gene-expression patterns. Standard clustering techniques first construct a cell-cell distance
matrix based on a distance metric. Next, a k-nearest neighbor graph is constructed from the
distance matrix with tools such as annoy (Bernhardsson 2018). Finally, graph-partition methods,
e.g. Louvain (Blondel et al. 2008) or Leiden (Traag, Waltman, and van Eck 2019), identify
“communities” of cells in this graph that exhibit similar expression patterns.6 In the absence of
proper depth normalization, cell-cell distances, computed with metrics like the l1 distance can be
correlated with cell depth (Supp. Fig. 7a). For Type 2 Pneumocytes in angelidis_2019, the
cell-cell distances were correlated with cell depth when normalized with sctransform (0.71) and
scalelog1pCP10k (0.54) but not with PFlog1pPF (0.06). Proper depth normalization ensures
that the k-nearest neighbor graph can be built with a distance metric that is cell-depth
independent and results in cell communities that exhibit similar gene expression patterns.

The interpretation of PCA requires confidence that explained variation is biological rather than
technical (Lun 2018) and in the absence of depth normalization, PCA components can correlate
strongly with cell depth (Supp. Fig. 7b). Normalization techniques that do not include a final
depth-normalization step, like sqrt, log1p, and log1pCP10k, demonstrate a high correlation with

6 The Scanpy workflow runs Louvain and Leiden clustering with the same neighborhood graph as UMAP.
This is not the case for Seurat’s RunUmap (used for UMAP) and FindNeighbors (used for clustering)
which utilize different default distance metrics (cosine vs. Euclidean distance) and different numbers of
neighbors (30 vs. 20) respectively.

5 The use of Pearson residuals for differential expression has been both recommended (example 1, 2019;
example 2, 2022) and discouraged (example, 2021) by the authors of sctransform.
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PC1. Techniques that end with a depth normalization step like PF and PFlog1pPF,  and
techniques that model cell depth as a covariate, exhibit lower correlation with PC1 with the
former exhibiting almost no relation to PC1. In the absence of depth normalization, subsequent
analyses that rely on PCA, such as clustering or UMAP, may produce results that are affected
by technical artifacts, rather than reflecting biological structure (Fig. 1a).

Finding markers versus differential expression
Classic variance stabilizing transformations such as the logarithm or square root functions are
monotonic, a property that is rarely highlighted, but of crucial importance. For instance,
monotonicity of the transformation applied to single-cell RNA-seq counts is crucial for the task of
finding marker genes. The term “marker gene identification” is frequently used interchangeably
with “differential expression” (Dumitrascu et al. 2021), but the two tasks are not the same.
Differential expression, which is the identification of genes exhibiting significantly different
expression between groups of cells, is a needed step for marker gene identification, however
the latter demands more: good marker genes for a group of cells are not only statistically
differential with respect to other cells, but also specifically expressed (i.e. not present in high
abundance in other cells).

One popular approach for finding marker genes is manual inspection of heatmaps, because in
principle these can allow for identifying genes that not only distinguish among cell types, but that
are also exceptionally highly expressed within cell types (Bonnycastle et al. 2020). The accurate
depiction of gene expression in heatmaps is challenging due to the wide range of gene
expression in typical experiments. To address this problem, programs such as Seurat and
Scanpy scale the gene expression values across cells, by normalizing them to have mean zero
and variance 1, and then clip extreme values. These values are visualized using a continuous
color scale.

The use of heatmaps requires some care, because the relative expression of two marker genes
within a cell type becomes meaningless as each gene is centered and scaled, effectively
scrambling gene expression within each cell (Supp. Fig. 8). For example in the angelidis_2019
dataset, Syce2 is a DE gene for Red Blood Cells that switches ranking within the Eosinophils
cell type, from rank 76 to rank 41 out of 96 top DE genes, after the heatmap scaling procedure
(Methods). This scaling procedure, coupled with the lack of monotonicity of the sctransform or
scalelog1pCP10k transformations of Seurat or Scanpy can make finding marker genes from
heatmap visualizations challenging.

Use of monotonic transformations for normalizations results in cells within a cell type exhibiting
higher pairwise Spearman r on their gene expression; a feature of monotonic transformations
such as log1pPF but not non-monotonic transformations such as sctransform (Fig. 3c, Supp.
Fig. 9). By avoiding an initial scrambling of genes within cells, further heatmap scaling
procedures can then be applied to create two heatmaps (Supp Fig. 10) that more faithfully
represent gene expression ranking. The first heatmap scales values across genes and the
second across cells.
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Scalable normalization
Compute resource constraints imposes practical limits on matrix operations (Lun 2020, n.d.).
One issue that arises in the context of normalization is that some methods transform sparse
matrices into dense matrices that can surpass standard RAM availability. For example, we found
that the scalelog1pCP10k matrix ERX2756720 was 219 times larger than the log1p sparse
matrix. Memory and speed requirements (Supp. Fig. 11) can inhibit scalable computation on
increasingly large scRNA-seq datasets and drive higher cloud-computing costs (Supplementary
Table 1 of (Melsted et al. 2021))). In contrast, sparse matrices have been used for
high-performance computing for a long time (Orchard-Eays 1956; Markowitz 1957), and can
drastically reduce the memory overhead required to perform memory-intensive computations.
While recently developed “sketching” procedures (Hao et al. 2022) that subsample matrix
operations for scalable computation may provide workarounds for dense matrices, we believe
that sparsity will remain an important consideration for normalization transformations for the
foreseeable future.

The PFlog1pPF heuristic
The Seurat and Scanpy workflows offer users the ability to choose different matrix types for
different analysis tasks. This is a good design decision, in principle, because different tasks
make different assumptions on the count matrix. However, without clear guidelines or
appropriate defaults, matrix managers like the Seurat and AnnData objects can confuse users
and make analysis error-prone. A single normalization technique resulting in a single (sparse)
matrix can make data sharing and reproducibility more straightforward.

While depth normalization is achieved perfectly with proportional fitting (PF), the addition of a
log1p transform in log1pPF does reintroduce some depth heterogeneity (Fig. 2b). The
importance of depth normalization therefore motivated us to explore adding an additional
proportional fitting step to log1pPF. We hypothesized that an additional round of proportional
fitting might achieve depth equalization without drastically affecting variance stabilization. We
tested this method (PFlog1pPF) and found that to be the case on 10xv3_nih_3T3 (Supp. Fig.
3.2.2), angelidis_2019 Supp. Fig. 3.519.2, and the other benchmark datasets (Supp. Fig. 3).

We observed that PFlog1pPF (Supp. Fig. 12) can be seen to only slightly decrease variance
stabilization (Fig. 2a) while ensuring depth normalization and monotonicity. With the addition of
a PF step, gene variance CV suffers only slightly making PFlog1pPF comparable to sqrt with the
additional benefit of full depth normalization of PF resulting in almost no false-positive
differentially expressed genes (Fig. 3b). PFlog1pPF also recapitulates cell-type marker gene
expression for angelidis_2019 and is consistent with other normalization techniques tested in
(Ahlmann-Eltze and Huber 2021) (Supp. Fig. 13). Additionally, PCA components computed on
PFlog1pPF have similar loadings to log1pPF (Fig 3a) and within-celltype pairwise gene
expression rankings are better preserved than sctransform and scalelog1pCP10k (Fig. 3c) both
of which exhibit high concordance (Supp. Fig. 14).
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Discussion
Count normalization is a crucial first step in all scRNAseq analysis that, in principle, comprises a
single step in a standard workflow. However in practice normalization is a collection of
techniques, data representations, analysis types, and visualizations that interact with each other
in non-obvious and frequently undocumented ways. In Seurat and Scanpy, the analysis software
used for the majority of scRNAseq analysis, some normalization implementations can also limit
users by requiring large amounts of memory. Thus, while users frequently think of normalization
as a single data transformation step in analyses, it is often not; the software engineering choices
made by developers of the tools used can affect analyses in unpredictable, and sometimes
unintended ways.

Despite the complexity of normalization in practice, much work on scRNAseq has focused on
statistical details that, while important, are not necessarily the primary determinants of results.
For example, the debate over whether gene-specific over-dispersion parameters should be
used when computing Pearson residuals (Hafemeister and Satija 2019; Lause, Berens, and
Kobak 2021; Hafemeister and Satija 2020; Choudhary and Satija 2022) ignores the fact that
Pearson residuals are not the result of a monotonic transformation, and they create dense
matrices that can lead to significant analysis limitations (Borella et al. 2021). These problems
have significant implications for common tasks such as finding marker genes, as discussed
above. Newer methods that explicitly couple statistical methods with software engineering
considerations are needed; we examined several recent publications proposing new ideas but
restricted the paper to widely used methods common in existing workflows (Brown et al. 2021;
Breda, Zavolan, and van Nimwegen 2021; Borella et al. 2021; Bacher et al. 2017). A detailed
analysis and review of these methods is an important next step. Furthermore, normalization
should ideally include modeling of transcriptional dynamics so as to be able to evaluate the
contribution of technical noise to count data (Gorin and Pachter 2021).

We have argued that a single, sparse, variance-stabilized and depth-normalized matrix on which
all analysis and visualizations are performed can simplify current workflows. The PFlog1PF
heuristic we have proposed is a monotonic transform on the raw counts that results in a fully
depth normalized matrix and offers variance stability similar to sqrt. Importantly, we have shown
that for downstream analysis, PFlog1pPF effectively stabilizes variance for PCA, produces low
false-positive DE genes, and has the same within cell-type Spearman correlation as
unnormalized matrices. Having said that, we believe it is an interesting challenge to develop
more principled approaches that achieve depth normalization and variance stabilization while
preserving sparsity and respecting monotonicity

Regardless of the normalization transformation that is applied, our work shows that assessment
of data quality and normalization effectiveness is crucial in practice. Measures such as the
overdispersion, coefficient of variation of the transformed-gene variances, and raw to
transformed cell-depth Pearson correlation ought to be collected as part of standard quality
control of experiments. It's also crucial that practitioners understand the assumptions implicit in
the normalizations applied, and the implications for interpretation of results, such as whether
variation is technical or biological.
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Methods

Preprocessing
Raw matrices were filtered by removing cells beneath a selected knee-plot threshold. The knee
plot and threshold used for each dataset are reported in the dataset folders. Datasets for which
the average count per cell was less than 818.46 (the average count per cell in angelidis_2019)
were not used in Fig. 1.

Collecting metadata
Dataset metadata was collected with the ffq program version 0.2.1 available at
  https://github.com/pachterlab/ffq by running `ffq -l 2 -o DATASETID_metadata.json
DATASETID`. 18 out of the 526 datasets processed did not have metadata associated with their
dataset ID.

Normalizing matrices
We applied seven normalization methods to the cell-filtered matrix: PF, sqrt, log1p, log1pCP10k,
log1pPF, log1pCPM, PFlog1pPF. The normalization transformations were computed by running
the `norm_sparse.sh` script.

We then ran `norm_sctransform.sh` on the original cell-filtered matrix to generate the
sctransform matrix. The sctransform function was called with
var_features_n=number_of_genes_in_dataset, vst_flavor="v2", and default parameters. In order
to perform a uniform analysis, we filtered the original cell-filtered matrix to the set of genes
returned by sctransform- since sctransform has a built-in gene filtering step.

We then ran `norm_sparse.sh` to create the seven normalized matrices mentioned above, and
finally ran `norm_cp10k_log_scale.sh` to create the scalelog1pCP10k matrix.

Running sctransform
We performed all of our benchmarks of sctransform with v2. The sctransform v1 regression
model has been shown to be overspecified (Lause, Berens, and Kobak 2021) and has been
superseded by v2. We opted to benchmark sctransform v2 over analytical Pearson residuals as
the latter's validation consisted of comparing two dimensional PCA and UMAP embeddings to
compare and contrast methods.

In order to run sctransform v2, a one-line modification was made to pysctransform.py (in the
develop branch), namely casting `params[“order”]` as a numpy array with
`npy.asarray(params["order"])` in line 333. This modification fixed an issue described in
https://github.com/saketkc/pySCTransform/issues/4#issue-912930103 which was causing the
pip-installed version of pySCTransform not to work. An additional modification to the
pySCTransform code allowed for the corrected counts matrix to be returned- line 759 `return
(vst_out["residuals"], vst_out["corrected_counts"])`.
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Computing dataset metrics
For each normalization method we computed three metrics: the coefficient of variation on the
transformed-gene variances (CV), the Pearson r2 correlation between the transformed-cell
counts and the raw cell counts, and the average Spearman r between the transformed-cell
counts and the raw cell counts. The CV was computed by calculating the variance for each
gene, across all cells, and then calculating the variance and mean across all genes, and
dividing the two. The Pearson r2 was computed by summing the transformed cell counts and
running sklearn.linear_model.LinearRegression().fit() followed by score() on the transformed cell
counts and the raw cell counts. The average Spearman r was computed by first performing
paired stats.spearmanr on all transformed-raw cell pairs and then taking the mean.

Computing cell-type metrics
Cell-type metrics were computed on cells from the Type 2 pneumocytes in the angelidis_2019
dataset. For each normalization method, `sklearn.decomposition.PCA()` was run with
n_components=1 and svd_solver=”full” and the absolute value of the loadings were
l1-normalized. The entropy was computed with `scipy.stats.entropy()` and the max entropy was
computed with `np.log(ngenes)`. Additionally, the Pearson r2 was computed on PC1, derived
from PCA on the normalized matrix, and raw-cell depth.

To compute the number of false-positive DE gene genes, we performed differential expression
on two groups of cells: 500 cells with the highest raw-cell count and 500 cells with the lowest
raw-cell count. Then, for each normalization method, we performed differential expression as
previously described (Booeshaghi et al. 2021). The number of differentially expressed genes
with a corrected p-value less than 0.01 were recorded.

To compute the average pairwise-Spearman gene-rank correlation, we first found the smallest
non-zero difference in counts between entries in each normalization matrix. We added a random
number between zero and one-fourth of this minimum to each gene vector to break ties. After
adjusting the matrix counts, pairwise-Spearman correlations were calculated on all cells and the
average was computed.

To compute the correlation between pairwise-difference in cell depth and pairwise l1 distance, for
each matrix we subsampled to 1,000 cells and then computed all pairwise differences in cell
depth by running `sklearn.metrics.pairwise_distances` with metric=”l1” on the cell sums. Then
we computed the pairwise l1 distances in the same manner but on with the entire gene vectors.
Lastly, `sklearn.linear_model.LinearRegression.fit()` and `score()` were used to compute the
Pearson correlation.

Computing matrix metrics
The following matrix-level metrics were computed for each matrix, on both all genes and those
subset by sctransform: the number of cells (ncells), the number of genes (ngenes), the number
of non-zero entries in the matrix (nvals), the fraction of non-zero entries (density), the average
depth per cell (avg_per_cell), the average depth per gene (avg_per_gene), the minimum depth
per cell (min_cell), the maximum depth per cell (max_cell), the total number of counts in the
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matrix (total_count), the empirical overdispersion (overdispersion). These metrics were
computed with `metrics_matrix.sh`.

Creating multi-panel normalization figure
For each dataset and normalization, the following three plots were made: 1. A scatterplot of the
transformed gene variance vs raw gene mean, 2. a scatterplot of the transformed cell depth vs
raw cell depth, and 3. a histogram of the distribution of transformed-to-raw cell Spearman rank
correlations. To make visualization easier, a min-max procedure was performed to scale the x
and y axes of plot 2 where the min cell depth was subtracted from each cell and the result was
divided by the max cell depth. These figures were made on all genes, for normalizations that
were computationally tractable, and on the gene subset by sctransform for all normalizations.

Plotting styles for the gene mean-variance relationship
In order to consistently visualize variance stabilization of normalization procedures against each
other, we plotted all transformations on a log-log axis with the x and y-axis limits set equal. We
also plotted the identity line y equals x to illustrate the asymptotic behavior of the mean-variance
relationship for genes with small mean.

Pseudocount simulation
We simulated negative binomial count data for 8,000 genes, g1, g2, …, g8000, as follows:  we first
drew the mean expression for each gene from an exponential distribution with mean 3,
obtaining μ1, μ2, …, μ8000.  We considered the overdispersion parameters γ = 0.3, 0.5, 1, 1.5, 2,
3, 4, 5.  This spans a larger range than is evident in typical single-cell RNA-seq
experiments, but is informative. For each gene we generated gene counts for 10,000 cells
from a negative binomial distribution with mean μi and overdispersion γk to form a 10,000 cells x
8,000 genes count matrix. We then filtered this data to remove genes with average count less
than 4. Two hundred simulations were performed for each parameter setting.

Generating heatmaps
The top 100 expressed genes were found for each cell type in angelidis_2019. Then a cell type
x gene matrix was made by averaging the expression of all cells within a cell type on the set of
top 100 genes for that cell type. Lastly, the genes within each cell type were ranked from lowest
to highest expressed using `scipy.stats.rankdata()` and the matrix of ranks was plotted on a
heatmap.

To create the cell and gene-scaled cell x gene heatmaps, the top 96 DE genes for all cell types
were selected and the cell x gene matrix on those 96 genes was scaled to unit variance and
zero mean using `sklearn.preprocessing.scale()` across the cells to create the gene-scaled
heatmap, and across the genes to create the cell-scaled heatmap. To find genes that switch
rank, we first rank the raw gene expression within a cell type for the top marker genes, and then
compare gene ranks to scaled (mean zero and variance one) gene expression ranks.
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Data and code availability
All data and code to reproduce the figures and results in the paper are available at
https://github.com/pachterlab/BHGP_2022.
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