New Results
Depth normalization for single-cell genomics count data
View ORCID ProfileA. Sina Booeshaghi, View ORCID ProfileIngileif B. Hallgrímsdóttir, View ORCID ProfileÁngel Gálvez-Merchán, View ORCID ProfileLior Pachter
doi: https://doi.org/10.1101/2022.05.06.490859
A. Sina Booeshaghi
1Department of Mechanical Engineering, California Institute of Technology, Pasadena, CA
Ingileif B. Hallgrímsdóttir
2Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA
Ángel Gálvez-Merchán
2Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA
Lior Pachter
2Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA
3Department of Computing and Mathematical Sciences, Pasadena, CA

- Supplementary Material[supplements/490859_file03.pdf]
Posted May 06, 2022.
Depth normalization for single-cell genomics count data
A. Sina Booeshaghi, Ingileif B. Hallgrímsdóttir, Ángel Gálvez-Merchán, Lior Pachter
bioRxiv 2022.05.06.490859; doi: https://doi.org/10.1101/2022.05.06.490859
Subject Area
Subject Areas
- Biochemistry (9152)
- Bioengineering (6789)
- Bioinformatics (24037)
- Biophysics (12142)
- Cancer Biology (9550)
- Cell Biology (13808)
- Clinical Trials (138)
- Developmental Biology (7649)
- Ecology (11719)
- Epidemiology (2066)
- Evolutionary Biology (15522)
- Genetics (10654)
- Genomics (14337)
- Immunology (9495)
- Microbiology (22872)
- Molecular Biology (9113)
- Neuroscience (49070)
- Paleontology (355)
- Pathology (1485)
- Pharmacology and Toxicology (2572)
- Physiology (3851)
- Plant Biology (8341)
- Synthetic Biology (2299)
- Systems Biology (6199)
- Zoology (1302)