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ABSTRACT 
Early ascertainment of metastatic tumour phases is crucial to improve cancer survival, formulate an accurate prognostic 
report of disease advancement and, most important, quantify the metastatic progression and malignancy state of 
primary cancer cells with a universal numerical indexing system. This work proposes an early improvement of cancer 
detection with 97 nm spatial resolution by indexing the metastatic cancer phases from the analysis of atomic force 
microscopy images of human colorectal cancer histological sections. The procedure applies variograms of residuals of 
Gaussian filtering and theta statistics of colorectal cancer tissue image settings. The methodology elucidates the early 
metastatic progression at the nanoscale level by setting metastatic indexes and critical thresholds from relatively large 
histological sections and categorising the malignancy state of a few suspicious cells not identified with optical image 
analysis. In addition, we sought to detect early tiny morphological differentiations indicating potential cell transition 
from epithelial cell phenotypes of low to high metastatic potential. The metastatic differentiation, also identified by 
higher moments of variograms, sets different hierarchical levels for the metastatic progression dynamic, potentially 
impacting therapeutic cancer protocols. 

 

Introduction 
Tumour metastasis is the migration of cancer cells from the 
primary tumour cores to the lymph nodes, tissues, or distant 
organs. Metastasis is responsible for 90% of colorectal cancer 
(CRC) deaths; therefore, early diagnosis is critical for patient 
survival1. Metastasis is a complex process that involves 
morphological adjustments and the attachment of cancer cells 
to other cells and the extracellular matrix (ECM). It 
represents a key hallmark2 of malignance's progression 
towards a higher pathological state. Therefore, indexing 
assessment of the metastatic state and its early prediction is 
fundamental for enlightening cancer progression, improving 
early cancer prognosis and developing therapeutic 
schemes3,4. Tissue microenvironmental factors, including 
stiffness and topography (nuclei's shape, morphology, and 
texture specificity), contribute to the targeting preferences of 
metastatic cancers5–9 because biological and 
mechanical/topographic parameters are associated with 
cancer cell proliferation, migration and metastasis7,10,11. 
Cancer cells regulate their stiffness to match the ECM local 
environment by adjusting viability to different structural 
proteins' complex ECM topographical environment. 
Metastasis of variable percentage may arise in all stages12, 
indicating that common histological and cytological findings 
are necessary but insufficient to identify high-risk 
characteristics and predict metastatic phases. To improve 
patients' survival, it is mandatory to ascertain the tumour 
stage accurately, formulate a universal prognostic report 
about disease progression, and, most importantly, identify 
the metastatic phase and heterogeneity of primary cancer 
cells as early as possible13,14. Even though the latest CRC 

TNM classification protocols of malignant in regional lymph 
nodes are considered, and each pathological stage is further 
subdivided15, early state and novel classification schemes are 
needed, and research aims to establish biomarkers for early 
and reliable tumour diagnosis and metastasis prognosis. The 
correlation between metastasis and tumour histological 
alterations was recognized in the early mid-nineteenth 
century. Since then, optical and electronic microscopy has 
been applied for routine cancer diagnostics by visual 
interpretation of ultra-thin, two-dimensional tissue sections, 
where histopathologists decide whether tissue regions are 
cancerous and classify the malignancy level16. 
Still, diagnosis and classification of cancer are operator-
dependent and thus imperilled to errors. Also, negative 
factors include the inherent limitations of magnification, the 
field of view, contrast, and small focal depth of optical 
systems17. Consequently, besides optical imaging state of the 
art histological image analysis software and texture 
algorithms, exploiting the microscopic variations of cells' 
shapes and tissue morphologies are needed for early and 
reliable prediction of metastasis.  Along the above lines, a 
novel methodology of probing the mechanics of tumours 
emerged as a supportive method to find the link between the 
mechanical properties of single tumour cells and their 
metastatic potential18–20. However, although several 
techniques exist, including the atomic force microscopy 
(AFM)5,21,22, to measure the mechanical properties of single 
cells, information on the mechanics of tumour cells in the 
ECM is missing because most measurements are made on 
cultured tumour cells10,23. Besides, each method has a 
particular set of parameters that do not consider patient-to-
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patient variations, which is an additional drawback in 
comparing different studies5,24. 
Machine vision and learning methods were also applied as 
complementary approaches to microscopic histopathological 
examination and molecular-based approaches for cancer 
prediction and prognosis25–27. The established digital 
histopathology image analysis is based on tissue image 
classification and tiny segmented structures, including nuclei 
and cells28. However, machine learning still experiences 
numerous technical and organizational challenges and 
limitations because of the complexity of tissue morphology, 
tumour heterogeneity, and diversity of shape, location, and 
size of the tumour segmentation. Developing accurate and 
efficient algorithms is still a challenging issue26. 
Likewise, mathematical modelling of complex natural 
systems, including tumours, aim to characterize architecture 
and decode spatial and temporal complexity and 
heterogeneity, commonly appearing in nature29. Fractality, 
complexity, and structure statistics discriminate tags suitably 
from Euclidean morphometric measurements (e.g. length, 
volume, density)30–32 and several methods33 developed to 
study physical entities in many different contexts34–40. For 
example, the generalised method of moments (GMM) is 
viewed as an extension of the z-height correlation functions. 
Variograms also are used extensively in geology and 
medicine41–43 to quantify images' spatial variability and 
correlation distances. A variogram expresses the expected 
square difference between two data values separated by a 
distance-vector, e.g., grayscale values between pixels in 
optical microscopy or z-height values in AFM images.  
Overall, one or two-dimensional variograms (1D, 2D) are 
visual expressions of the spatial correlation of image points. 
Variograms were used in diagnosis, including spatial tissue 
displacement of ultrasound elastography in areas 
surrounding needles44, image-guided neurosurgery45, and 
non-subjective evaluation of chromatin in cell proliferation 
and apoptosis46. Similarly, in magnetic resonance of 3D brain 
structural changes47 and spatial autocorrelation stiffness 
differences between aortic and pulmonary valve interstitial 
cell48. Internal tension and sub-cellular spatial distribution 
differentiate metastatic and non-metastatic cells and tissues. 
Variograms applied to 2D malignant breast tissue images49, 
anticancer treatment50 or differentiation between melanomas 
and normal skin tissues51.  
Although low spatial resolution optical imaging44 utilizes 
variograms42, an early cancer prognostic tool implies tissue 
structural differentiation at the nanoscale level52. However, a 
reliable, label-free, non-invasive approach for identifying and 
quantifying nanoscale metastatic differentiation on 
conventional histological sections is challenging53. In this 
direction, AFM is suitable for non-destructive 3D imaging of 
cells and tissues with nanometric resolution19,54,55. So far, few 
AFM studies have analyzed formalin-fixed and paraffin-
embedded (FFPE) cancer histological tissues because of 
diagnostic and prognostic constraints56,57. Second-order 

effects and lacunarity (distribution, size of gaps between 
cells)58 were proposed as marking factors in histopathology 
image analysis. The correlation between the fractal 
dimension of AFM images and the z-scale factor served as a 
mechanical mark of human lung carcinoma59. Analysis of 
AFM adhesion of cells60 reveals that fractality differences are 
evident when premalignant cells transform into 
cancerous61,62. 
Variogram analysis is based on the hypothesis that images’ 
statistical mean and variance are independent of pixels' 
location. Also, statistical mean and variance commonly bear 
comparable values for entities belonging to the same 
hierarchical group, such as the different sets of metastatic 
and non-metastatic CRC AFM images of histological tissues. 
For example, the variograms of domain size Gaussian 
filtering (DSGF) differentiate similar but different 
hierarchies43.  
In this work, small biological features discriminate AFM 
images of metastatic/non-metastatic CRC tissues. A 
significant sensitivity improvement in differentiating 
metastatic/ non-metastatic stages in CRC cells was obtained 
by applying moment variograms of residuals of Gaussian 
filtering and theta statistics63 in 50 μm x 50 μm AFM cancer 
histological images from three different patients. Likewise, 
AFM image theta statistics incorporate inclination histograms 
of tiny planar segments of CRC histological sections. The 
theta distribution skewness could differentiate the signatures 
of different hierarchical groups as metastatic and non-
metastatic tissues.   
Furthermore, towards establishing early quantifying markers 
of metastatic phases, the differentiation between metastatic 
and non-metastatic tissues was approached with rescaled 
range, surface statistics, and phase analysis in AFM imaging. 
Results were compared with those from variograms and 
theta statistics. Noticeably, the novelty and state-of-the-art of 
the current work are grounded on improving metastatic 
differentiation by higher moments of variograms. 
The tactic aims to provide an insight into the metastatic 
hierarchical levels and the dynamics of metastatic evolution 
by early diagnosing the malignancy condition of suspicious 
cells (typically a few) not identified by optical microscopy 
when subtle signs appear. We sought to identify early tiny 
morphological changes indicating potential cell transition 
from an epithelial phenotype typical of cells with a low 
metastatic potential to a mesenchymal phenotype that marks 
high mobility cell features and provides quantifying 
universal metastatic indexes and critical thresholds.  
 
Results 
 
Optical and AFM Microscopy of CRC Histological Sections  
Typical AFM CRC metastatic and non-metastatic histological 
tissue images, extracted during 2021 from three patients, are 
shown in Fig. 1. 
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Fig. 2  Optical, AFM images and z-height distribution of human CRC histological metastatic/non-metastatic sections. (a) Optical image  
(40 x)  of a metastatic section (0.17 mm x 1.73 mm). (b) AFM image of metastatic tissue at the point a of the image (a) (arrow). (c) The z-
height distribution from the AFM image of image (b). (d) Optical image (20x) of non-metastatic histological section. (e) Non-metastatic 
AFM of image (d) (arrow). (f) The z-height distribution from the AFM image (e). 

The first and second indexing numbers are associated with the 
patient and sample parts. In AFM images, the visual 
differentiation between the two classes of metastatic and non-
metastatic tissues is unclear.  On the contrary, optical images 
(4x, 20x, 40x) of hematoxylin stained CRC histological sections 
unveil metastatic/non-metastatic differentiation, Fig. 2. The 
cells of metastatic tissues, Figs. 2a,2b, are closely spaced 
compared with the non-metastatic ones, Figs. 2d,2e. 
Nevertheless, optical microscope differentiation between 
metastatic and non-metastatic cells might be subjective and, in 
some cases, depends on the operator.  
 
Variograms of Residuals Gaussian Filtering  
The two dimensional (2D) variograms of the residuals of the 
Gaussian filtered AFM images, Fig. 1, of metastatic and non-
metastatic histological tissues along with all directions sustain 
closed elliptic and open contours, Fig. 3. The same colour 
closed areas characterize equal RMS deviations of small size 
spatial scale differences (small lag vectors). Spatial correlations 
with dimensions below 0.5 μm are from small biological and 
structural tissue topologies. For a Gaussian filter applied with 
standard deviation σ (px), the kernel box size along each axis is 
6σ+1(px), and the lag vectors' zero limits (nugget) is 1 px, Fig. 
4a. For standard deviation σ values between 2.5, 5, and 10 px, 
the magnitude of RMS deviation of closed contour areas 
diverges for metastatic and non-metastatic phases, Fig. 3, 
Supplementary Fig. S1 online. Close to the centre of the 2D 
variograms, a relatively large RMS deviation is the typical 
signature of non-metastatic tissues. The colour indexing reveals 

that the mean RMS deviation of the metastatic and non-
metastatic tissues is ~0.17 and ~0.27 μm (blue-arctic, yellow-
lemon, Fig. 3, respectively). Therefore, the RMS deviation of the 
non-metastatic phase is noticeably larger than the metastatic 
one.  The differentiation between metastatic and non-metastatic 

tissues is also retained for lower resolutions images of equal 
size (50 μm x 50 μm), e.g.  for 256 px x 256 px, and 128 px x 128 

px image sizes and σ between 2.5 and 10 px, Supplementary Fig. 
S1 online.  
Comprehensive interpretation and quantification of 2D 
metastatic and non-metastatic variograms are gained by 1D 

 

Fig. 1 AFM images of metastatic (m1.1-m3.2) and non-metastatic 
(nm1.1-nm2.3) human CRC histological sections. The first and 
second numbers refer to the patient and sample, respectively. 
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variograms, Figs. 4a-4f. The amplitude of lag vectors for all 
directions is along the x-axis. Along the y-axis, the non-
overlapping sill values γ(h) of metastatic (red curves) and non-

metastatic (blue curves) histological tissues represent lag 
vectors of zero correlation,  with a relatively wide gap between 
the sill values of the two histological groups. Also, the sill 
values of non-metastatic tissues are constantly placed above the 
sill values of metastatic ones, Figs.  4d-4f.  Most importantly, for 
different image resolutions (pixels per line) and the same σ 
(μm), the sill indexes are invariant for the metastatic and non-
metastatic groups, Figs. 4d-4f, Supplementary Fig. S2 online. 
The mean sill value of each metastatic and non-metastatic 
group (red and blue lines parallel to the y-axis) is extracted 
from the average sill values of the associated histological 
tissues, Figs. 4d-4f.  The median value of mean sill values of 
metastatic and non-metastatic tissues defines threshold lines 
(black line) above which tissues are non-metastatic and 
metastatic below the line.  For different image resolutions and 
identical σs, equal to 1 μm, the set of three different pixel and σ 
pairs, (128 px x 128 px, 2.5 px (1 μm)), (256 px x 256 px, 5 px (1 
μm)), (512 px x 512 px, 10 px (1 μm)), retains almost a constant 
threshold sill value, equal to 0.571, 0.566 and 0.563 μm, Figs. 4d-
4f. 
Similarly, two sets of pixel and identical σ (μm) values ((128 px 
x 128 px, 5 px (2 μm), (256 px x 256 px, 10 px (2 μm)), and ((256 px 

x 256 px, 2.5 px (0.5 μm), (512 px x 512 px, 5 px (0.5 μm)) retain 
almost the same threshold sill values, equal to 0.899, 0.896, and 
0.318, 0.314 μm; Supplementary Fig. S2 online. Variograms of 
low-resolution images and large σ’s bear wider gaps and high 
uncertainty between the mean sill values of metastatic and non-
metastatic variogram groups (bands), Supplementary Fig. S2 
online. Relatively large σs amplify the uncertainty of 
information. The optimum metastatic differentiation for the 
current experimental configuration is obtained for a resolution 
of 512 px x 512 px and σ=5 px. The threshold criteria for 
differentiating metastatic and non-metastatic tissues were 
successful in 17 out of 18 samples, except sample nm2.4, which 
is non-metastatic, but appeared to have metastatic behaviour. 
However, by applying higher moments than 2 (vide infra), the 
nm2.4 sample has the correct non-metastatic behaviour.  

 
Moments of Gaussian Filtering Residuals Variogram   
Gaussian filtering residuals variograms of higher moments 
upsurge the differentiation between metastatic and non-
metastatic AFM images. For large scaling exponents q, the 
difference between metastatic and non-metastatic tissues 
further widens than the lower q values, Figs. 5a-5d. For 
example, the variogram sill value (512 px x 512 px, σ=5 px) for 
q>3 is always higher than q<3 in all non-metastatic samples 
compared to the metastatic ones, Figs. 5a-5d, Supplementary 
Fig. S3 online.  Furthermore, the nm2.4 tissue sample, the 
unsuccessful exception in the 1D variograms threshold criterion 
that behaves as a metastatic one, now adopts the correct non-
metastatic behaviour for higher moments (q>2), agreeing with 
the pathologist’s examination. However, for different image 
resolutions and Gaussian filtering σ, the moments that give the 
corrected result for the nm2.4 tissue deviate, Supplementary 
Fig. S4 online. Therefore, the threshold criterion of metastasis 
varies for different moments. Consequently, the metastatic 
differentiation is improving at higher moments. 

 
Theta Statistics 
Differences in the theta distribution profiling may be critically 
associated with different biological interactions between 
metastatic tumour cells and the ECM, leading to tissue 
differentiation. Other surface roughness characteristics in 
metastatic tissues (11 tissue samples) lead to notably broader 
inclination-angle distributions than the non-metastatic ones (7 
tissue samples). The last is characterized by sharp peaks in the 
theta distribution diagram. It appears that non-metastatic 
tissues are typified by a structural surface regularity, 
highlighted by the sharp peaks at higher theta values, Fig. 6a. 
In contrast, random patterns and de-oriented structures define 
the metastatic phase. Skewness and kurtosis are differentiating 
measures in theta distribution. The skewness, Fig. 6b, of theta 
distribution of all metastatic sample AFM images is positive, 
agreeing with Fig. 6a. 

Fig. 3 2D RMS deviation spectra of metastatic/non-metastatic 
CRC histological sections of the AFM images, Fig. 2. The spectra 
were taken with a 3D Gaussian high pass filter. The RMS 
deviation images represent a statistical measure of the deviation of 
heights within an area at a particular scale. The plot shows 
elliptical-like contours for small scales (100 nm-1 μm, 1-10 px) of 
equal-value RMS deviation for a given colour. Different RMS 
deviations from the colour index are noticed for metastatic/non-
metastatic sections. Non-metastatic CRC sections are characterized 
by higher values of RMS deviation within the closed and open 
areas compared to non-metastatic ones. 
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Fig. 4 Metastatic/non-metastatic 1D variograms of residuals Gaussian filtering. (a) Variogram’s typical parameters. (b) Metastatic 
threshold vs. AFM image resolution  for different σ [px,μm]. The metastatic threshold stays invariant for identical  σ [μm] values. (c) 
Metastatic threshold vs. σ[px] at different AFM image resolutions. The metastatic threshold is invariant for identical σ (μm) values. (d) 
Variogram lines of metastatic (red) and non-metastatic (blue) groups.  AFM image size 50 μm x 50 μm, resolution 128 px x 128 px, 
standard deviation σ [μm]=1 μm, σ [px]=2.5 px. The black sill line is the metastatic threshold defined as the median value of mean sill 
values of metastatic and non-metastatic tissues. Above the threshold line  tissues are non-metastatic and metastatic below the line. Red 
and blue lines are the mean metastatic/non metastatic sill values. (e) The same as (d) with image resolution 256 px x 256 px and σ [px]= 5 
px. (f) The same as (e) with image resolution 512 px x 512 px, and σ [px]= 10 px.  
 

In contrast, the skewness of non-metastatic tissues is negative 
(except for one sample), owing to the sharp peaks on the right 
side of the graph. In addition, kurtosis of theta distribution 
deviates from zero in all AFM images for metastatic and non-
metastatic samples, leading to non-normal distributions, as 

expected, Fig. 6c. Although not in all cases, the skewness and 
kurtosis of metastatic tissues tend to have relatively large 
values. 

 
Surface Analysis 
The standard statistical parameters of stained CRC histological 
sections of AFM images were calculated; Supplementary Figs. 
S5a,S5b online.  The z-height distribution values of the AFM 
images of metastatic CRC histological tissues appear to have a 
wider dispersion around a mean value and obtain far extremer 
values than the non-metastatic ones; Supplementary Fig. S5a 
online.  Also, the RMS roughness values, red squares, of 
metastatic tissues are smaller than circular black values for non-
metastatic ones; Supplementary Fig. S5b online. Contrary to 
1D, 2D variograms, and theta distribution, the surface analysis 
does not clearly distinguish between metastatic and non-
metastatic phases. However, there is an underlying tendency of 
lower roughness values for metastatic tissues compared to non-
metastatic ones, in agreement with the results from variograms 
and theta analysis, Figs. 3,4. 

Rescaled Range Analysis (Hurst exponent) 
Rescaled range analysis/surface statistics is also applied 
along the same direction for 512 lines of each tissue image; 
Supplementary Figs. S5c-S5e online. First, each of the  2D 
AFM images was transformed into a 1D array by putting 

every line of 512 px one after another, and the Hurst 
exponent64  of each 512 px x 512 px array string was 
calculated, Supplementary Fig. S5c online. The same analysis 
was also performed for every line of an AFM image. Then, 
the mean value of the Hurst exponent of each AFM image 
was calculated for all lines, and the histogram was plotted; 
Supplementary Fig. S5d online.  
The Hurst exponents and their trends extracted from the two 
algorithms are dissimilar; Supplementary Figs. S5c,5d online. 
The differentiation is expected because the two methods bear 
different correlations and connectivity between lines.  The 
distribution histogram of the Hurst exponent distributed 
between the 512 lines is shown in Supplementary Fig.  S5e 
online. There is a considerable variation of the Hurst 
exponent with the number of lines. The differentiation 
between metastatic and non-metastatic tissues is unclear, 
despite shifting the distribution function to the right relative 
to the maximum mean value for the metastatic tissues.  The 
Hurst exponent does not differentiate between metastatic and 
non-metastatic tissues. Rescaled range analysis as second-
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order statistics usually provides insights for monofractal 
systems. However, metastasis is a dynamic process that 
drives cancer to higher non-reversible hierarchical levels. 
 

Phase Analysis 
Because the phase images correlate with the topographical 
ones, the signal's driving frequency is associated with a phase 
shift, owing to adhesion, stiffness, or friction. Therefore, the 
standard statistical phase parameters of stained CRC 
histological sections AFM images were calculated. As for the 
AFM amplitude imaging, the z-height distribution of non-
metastatic tissues has a broader dispersion around the mean 
value; Supplementary Fig. S6a online. Also, the RMS 
roughness values of metastatic tissues are lesser than for non-
metastatic ones; Supplementary Fig. S6b online. Again, there 
is no clear distinction between metastatic and non-metastatic 
tissues. Rescaled range analysis is also applied for phase 
images: the Hurst exponent, Supplementary Figs. S6c,6d 
online, and the Hurst exponent distribution were extracted 
between the phase lines, Supplementary Fig. S6e online. 
As for the amplitude images of the Hurst exponent, the 
differentiation between metastatic and non-metastatic tissues 
is unclear. However, surface and rescaled analysis bear 
noticeable similarities despite limiting metastatic 
information. 

Monofractal Image Analysis  
Monofractal dimensionality Df of metastatic and non-
metastatic tissues was calculated by cube counting, 
triangulation, power spectrum, and partition algorithms, 

Supplementary Fig. S7 online. The cube counting and the 
triangulation methods, Supplementary Figs. S7a,7d online 
provide a lower Df number for metastatic tissues than the 
other two methods, Supplementary Figs. S7b,7c online, 
where the fractal dimensionality of non-metastatic tissues is 
relatively more minor than that of metastatic ones. Overall, 
the four algorithms have no clear differentiation between 
metastatic and non-metastatic tissues.  
 
Discussion 
 
Cancer is a multivariate and complex disease, and despite 
intense research starting as early as the last century, still, it 
represents a challenging issue. There are many reasons for it. 
Over the years, clinical methods applied favourable average 
practices. Nevertheless, cancer is highly heterogeneous even 
within the same cell and similar class. Consequently, an 
overall positive average outcome does not translate to 
individual positive results. 

 

Fig. 5 Gaussian filtering residuals variograms of different moments q. (a) Gaussian filtering residuals variogram of moments q from 0.5 
to 5.0 for  the metastatic tissue m2.1. (b) The same as (a) for the metastatic tissue nm2.3. (c) The same as (b) for the non-metastatic tissue 
nm2.4. Threshold criteria for differentiating metastatic and non-metastatic tissues, Fig. 4,  are not functioning for the sample nm2.4. (d) 
Gaussian filtering residuals variograms of higher moments upsurge the differentiation between metastatic (red) and non-metastatic (blue) 
groups of lines. For higher moments than 2, the nm2.4 tissue sample has the correct non-metastatic state. 
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Moreover, despite the significant effort and the enormous 
resources devoted to cancer research, it is still unknown why 
drugs are more effective for some individuals and not for 
others. Besides other critical issues, deciphering cancer 
growth, metastatic progression and migration at the 
nanoscale is vital for survival. Likewise, metastasis shapes 
one of the six crucial hallmarks of cancer2,65; the others have 
been sustaining proliferating signalling, evading growth, 
suppression and activating invasion. 
The intricacy is further increasing because almost 12 years 
after the seminal paper of Hanahan and Weinberg2, four 
additional cancer hallmarks highlight the disease's 
complexity, signalling that traditional approaches need new 
strings in their bows66. First, it is now well understood that a 
novel interdisciplinary approach to the cancer menace is 
required, where biology, physics and mathematics, in an 
integrating step, could illuminate the dark pathways of 
cancer progression or even discover hidden physical laws of 
the phase transition between healthy and carcinogenic cells. 
Second, even if critical sporadic and uncorrelated 
contributions to cancer research were made from different 
physics and cell biophysics fields, their integration is still 
intermittent in cancer research. Third, the metastatic phase 
usually is clinically validated by biomarkers. So thought, 
even when the diagnosed metastatic phase is discovered with 
an optical histological examination of spatial resolution less 
than 500 μm, it represents a late and fatal stage. Fourth, the 
multistep process of invasion and metastasis mimics, under 
certain circumstances, a developmental program referred to 
as the Epithelial-Mesenchymal Transition (EMT)67. The basic 
idea of the current work is to identify, in the primary tumour 
sites, carcinoma cells with early morphological changes, 
which can indicate the activation of the EMT program. 
Indeed, during EMT, the carcinoma cells lose their cell-cell 
junctions and move apart, generating tiny but significant 
histological and cytological changes detected only at the 
nanoscale level with AFM. 
The sill variogram values of metastatic CRC histological 
tissues from three patients are below 0.566, the threshold line 
for image resolutions 512 px x 512 px and σ= 10 px (1 μm). For 
different configurations of image resolutions and σ values, 
the metastatic threshold line could be adjusted accordingly. 
The metastatic threshold line from variograms between the 
metastatic and non-metastatic phases defines the borderline 
between death and extended survival of patients. 
Importantly, in the case of ambiguity, as for the nm2.4 tissue, 
higher moments than 2nd order variograms remove any 
possible mixing between metastatic and non-metastatic 
tissues, Fig.  5, Supplementary Figs. S3,S4 online. Contrary to 
variograms and θ-statistics, P-value statistics verified that the 
rescaled range, surface, phase, and monofractal analysis does 
not distinguish between metastatic and non-metastatic 
tissues,  and the correlation between metastasis and tissue 
mono-fractality is vague, Supplementary Tables T1,T2,T3 
online. Indeed,  during the transformation of single 
premalignant cells into cancerous62, the fractal 

dimensionalities do not necessarily imply the existence of 
fractal geometrical features. 
In contrast, by applying P-value statistics in second-moment 
variograms and the null hypothesis that the mean sill values 

of metastatic and non-metastatic tissues are the same, the 
differentiation between metastatic and non-metastatic tissues 
(P-value) is confident with a probability of 99.99999%. The 
differentiating confidence for higher than 2nd order 
variogram moments for metastatic and non-metastatic tissues 
is further improved. High order variograms of Gaussian 
residual filtering distinguish metastatic and non-metastatic 
tissues by categorizing a well-defined threshold. The reason 
is that Gaussian filtering differentiates the z-heights features 
with size less than 97.5, 194, and 388 nm (for image 
resolutions 512 px x 512 px, 256 px x 256 px, 128 px x 128 px, 
respectively). This result agrees with previous work62, where 
microvilli, micro ridges, and glycocalyx are responsible for 

 

Fig. 6 Theta statistics of metastatic/non-metastatic CRC 
histological sections. (a) Theta spectra of metastatic 
(red)/non metastatic (black) sections. The metastatic sections 
have one maximum value at 15o. The non-metastatic sections 
have two maxima, the first at small angles (2o) and the second 
at high angles (>600). (b) Theta distribution skewness of 
metastatic/non-metastatic CRC histological sections with 
negative and positive skewness values. (c) Theta distribution 
kurtosis of metastatic/non-metastatic CRC histological 
sections. 
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the pericellular brush surface geometry structure. AFM 
imaging includes information from the cell's surface, random 
cell volume cross-sections, CRC histological tissue encloses 
and ECM. Therefore, Gaussian filtering differentiates small 
biological features between metastatic and non-metastatic 
phases in the CRC-ECM system. 
Besides the practical utility of variograms in cancer 
prognosis, grouping the well-defined threshold sill lines for 
metastatic and non-metastatic CRC tissues have broader 
implications in cancer research. Undeniably, the 
differentiation between the metastatic and non-metastatic 
phases defines two different hierarchies in the CRC cell-ECM 
system. Generally, dynamical systems, such as cancerous 
ones, have structural (hardware) and functional (software) 
connotations that form ensembles of successfully interacting 
nested sets and subunits of variables and parameters. Also, 
as the complexity of structural and functional systems 
depends on the number of their components and 
interconnections, it is inversely proportional to the stability 
and the degrees of freedom. It thus defines a particular 
hierarchical state (level). Furthermore, the systems afford a 
specific state-space-time description with certain collective 
properties (e.g., statistical moments, convolutions, 
distribution functions). From that state, during the evolution 
process across the dynamical paths, the systems within 
“limited-time series” are commonly driven to lower 
complexities with fewer degrees of freedom and thus to more 
stable states (high viability). 
Therefore, the dynamical systems evolve from lower 
hierarchical levels with many degrees of freedom and high 
complexities to higher hierarchical levels with fewer degrees 
of freedom and lower complexities. Besides structural 
hierarchies, the systems are characterized by the dynamic of 
formation. The higher levels receive selective information 
from the lower levels through the cognition (memory)68 of 
collective properties. In turn, they exercise negative feedback 
control commands on the dynamics of the lower levels in 
their effort to occupy successfully higher hierarchical levels. 
Therefore, interactive systems are characterized by mutual 
“simulation”. One dynamic system, say a non-metastatic one, 
tries to simulate another with fewer degrees of freedom and 
higher stability (metastatic system). Thus, a non-metastatic 
system will eventually occupy higher hierarchical levels of 
lower complexity with higher stability.  The opposite route, 
the evolution from higher hierarchical levels to lower ones, 
requires the expenditure of additional information energy 
(entropy). Therefore, in most cases, the reverse process is 
energetically unfavoured. Along the above lines, the selective 
differentiation between metastatic and non-metastatic groups 
evinces the dynamic evolution of different hierarchical 
carcinogenic states during the stages of disease progression. 
The advancement ranges from lower carcinogenic 
hierarchical levels of higher complexity and low stability 
(premalignant conditions) to higher ones that are less 
complex and stable (metastatic forms). The evolutionary 
dynamic might well explain the heterogeneous 

chemotherapy results.  If the hierarchical dynamic is 
deciphered, the cancer therapeutic protocols and road map 
might change.    
 
Materials and methods 
 
Histological Tissue Preparation  
CRC human histological tissues were prepared at the 
University Hospital "Federico II" in Naples, Italy, using 
anonymous numerical codes. Human tissues were handled 
and prepared following the Helsinki protocol 
(http://www.wma.net/en/30publications/10policies/b3/) and 
the practices approved by the legal guardians of Comitato 
Etico, Universita Frederico II (protocol article 152-18/ 
13/06/2018) and the Bioethics Committee of NHRF (reference 
number 2/13-04-2022). The tissue samples were labelled 1) 
according to the tumour site (right colon, transverse, left 
colon, rectosigmoid), 2) the pathological classification 
(Cancer Control UICC, 2017, T, N, M), 3) the vascular 
hematic, vascular lymphatic and perineural invasion, and 4) 
the surgical resection margin status. Necrosis, neoplastic 
cellular percentage, desmoplasia, and tumour-infiltrating 
lymphocytes were assessed by optical microscopy. The 
mucinous acellular component was categorized as absent 
(<1%) and present (≤50% or >50%).  
The tumour histological sections were collected on glass 
slides in FFPE blocks. Before AFM imaging, they dewaxed at 
60 C.  Then, the wash was for 300 s in three steps with 
xylene, and xylene traces were removed by three washing 
steps in 100 % ethanol for 300 s each time. After that, slides 
were further washed in 95% ethanol for 300 s and once in 
distilled water again for 300 s. Samples were stained with 
hematoxylin solution, according to Mayer (Sigma Aldrich 
Chemie GmbH, Riedstr. 2-D89555 Steinheim49 7329 970, 
1.044 grml-1 at 20o C) and dried in the air for about 600 s at 20o 
C.  

AFM Image Analysis 
Sixteen metastatic/non-metastatic fixed histological tissues 
were imaged by Innova AFM (Bruker/Veeco, Inc., Santa 
Barbara, CA) operating in tapping mode with phosphorus 
(n)-doped silicon cantilever (RTESPA, Bruker, Madison, 120 
WI, USA) with a nominal tip diameter of 8-10 nm, and 
nominal spring constant of 40 N/m  at 300 kHz resonance 
frequency. 
Surface image quality was optimized by lowering the scan 
rate to 0.2 Hz. All images were acquired with 50 μm x 50 μm 
scan sizes, 512 x 512 data point resolution, and pixel size 
97.656 nm.  Besides height, amplitude and phase images were 
also recorded. The AFM was installed on a vibration isolation 
table (minus k technology BM-10) to compensate for regular 
environmental vibrations and placed inside an acoustic 
enclosure (Ambios technologies Isochamber) for thermal and 
building vibrations isolation. The AFM imaging was 
performed in air at constant ambient temperature.  
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Histological Tissue Optical Analysis  
Before AFM imaging, optical microscopy was used for 
metastatic identification. First, the paraffin-stained CRC 
histological sections were placed under a transmitted light 
optical microscope (Carl Zeiss, Primovert microscope) with 
magnifications 4x, 20x, and 40x. Then, the AFM probe was 
positioned in the identified image areas. 

 
Gaussian Filtering Residuals RMS Deviation 
A 3D Gaussian filter is applied to the original image for each 
AFM image. The Gaussian cubic filter size (kernel) was set to 
31 px, a standard deviation σ of 5 px in every dimension. The 
residuals of the Gaussian filter (a high-pass filter that 
represents the small scale roughness of the surface) consist 
primarily of the spatial frequencies below the cut-off 
wavelength (6σ+1 = 31 px or ~ 3 μm, 1 px =97.65 nm for 512 px 
x 512 px image resolution), with some leakage of higher 
spatial frequencies. The statistical measure of the height 
differences for all possible point pairs of an area at a 
particular scale, the RMS deviation 퐷(ℎ) is determined for 
each lag vector ℎ = (±푣, ±푝), then scaled with lag vectors’ 
magnitude. 

 

퐷(ℎ) =
1
푁 [푧 푥 ,푦 )− 푧 푥 ,푦 , (푣,푝 > 0) (1) 

퐷(ℎ) =
1
푁 [푧 푥 ,푦 ) − 푧 푥 ,푦 , (푣 > 0,푝 < 0)  (2)   

 

퐷(ℎ) =
1
푁 [푧 푥 ,푦 )− 푧 푥 ,푦 , (푣 < 0,푝 > 0) (3) 

 

퐷(ℎ) =
1
푁 [푧 푥 ,푦 ) − 푧 푥 ,푦 , (푣,푝 < 0) (4)    

where l stands for  the size of the image and N is the number 
of sample points separated by |ℎ| = 푣 + 푝 . 
The RMS deviation as a function of lag vectors in all 
directions is depicted in 2D or 1D plots (variograms). 
1D plots depict the RMS deviation between all points spaced 
apart by ℎ = 푣 + 푝  Alternatively called empirical or 
experimental variograms/semivariograms. The empirical 
variograms were calculated as the average of the square 
differences of the values 푧 푥 ,푦 ), 푧 푥 ,푦  of all pairs of 
locations that fall within length intervals, h (lags). 
The sill value in variograms depicts zero correlation of lag 
vectors, visualized with variograms’  flattening off, Fig. 4a. 
The analysis was made for three different image resolutions, 
512, 256 and 128 px per axis and three different Gaussian 
filtering standard deviation values of 2.5, 5 and 10 px. 
 

Moments of Gaussian Filtering Residuals Variogram 
Various Gaussian Filtering Residuals Variogram moments 
were calculated as an extension of the previous method. For 
q = [0.5, 1, 2, 3, 4, 5], the generalised variogram 훾(ℎ, 푞) was 
evaluated. 

 훾(ℎ, 푞) =
1
푁 [푧 푥 ,푦 ) − 푧 푥 ,푦      (5) 

Then the generalised variogram sill was calculated and 
compared for metastatic/non-metastatic samples. The small 
order moments, 0 < 푞 < 2, are responsible for the core of the 
probability density function (PDF), while higher moments 
contribute to the tails of the PDF. For 푞 = 1 generalised 
variogram is the empirical variogram. Comparing 
generalised and simple variogram sills of metastatic/non-
metastatic samples leads to clear differentiation of samples. 
 
Theta Statistics 
Inclination-slope distributions were applied for metastatic 
and non-metastatic AFM images using the Gwyddion 
software69. The polar angle 휃 between the horizontal plane 
and the "central derivative plane" in every pixel is related to 
the surface-profile gradient 푣⃗ = ,  via the equation 

휃 = 푡푎푛 |푣⃗|. The polar angle θ is always positive and rises 
with a slope ,   while the integral ∫휌(휃)푑휃, for 휃 ∈

 0,  is normalized to one and ρ =    
∫(   ) .  For 

quantified comparison between different slope distributions 
the skewness 푆푘 =

∑ | |   
∑ (푋 − 푋)  and 

kyrtosis 퐾푢 =
∑ | |   

∑ (푋 − 푋)  of slope 

distribution is calculated63. 
 

Rescaled Range Analysis  
The Hurst exponent of every line of AFM image was 
calculated using the rescaled range analysis of Hurst64. The 
algorithm for these calculations was designed and run in 
MATLAB. 9.4.0.813654 (R2018a), The MathWorks Inc.; 
Natick, MA, the USA based on Weron's algorithm70. Then, 
the mean value of the Hurst exponent of every AFM image 
was calculated, and the histogram was plotted. In addition, 
the 2D AFM image was transformed into a 1D array by 
putting every line after another. Finally, the Hurst exponent 
of every 1D AFM image was calculated with the same 
methodology. The same analysis was also performed on 
"phase" images. 

 
Surface Statistics  
Several different parameters were used for the first 
qualitative evaluation of surface characteristics of metastatic 
and non-metastatic samples. First, was calculated the average 
z-height (nm), an arithmetic mean defined as the sum of all 
height values divided by the number of data points 푍̅ =

 ∑ 푍  .  Next, the RMS roughness was calculated, which is 
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the square root of the mean value of the squares of the 
distance of the points from the image mean value, 푅 =

 ∑ (푍 − 푍̅)  .  

 
Phase Spectra   
The AFM tapping mode generates the phase images, and the 
signal's frequency (phase) is a function of the driving 
frequency adjusted to be at the actual probe resonance, as it is 
shifted due to the tip-sample forces. Tip height variation of 
phase images correlates with the topographical ones. The 
signal's driving frequency is associated with a phase shift, 
owing to adhesion, stiffness, or friction, and the interaction 
between tip and surface will cause the lag oscillation. The 
RMS phase roughness, mean phase, mean phase Hurst 
exponent of 512 lines, and Hurst exponent of 1D image 
vector was calculated for all phase AFM images. 
Statistical analysis was applied to both images. The average 
phase shift (V) is an arithmetic mean defined as the sum of all 
height values divided by the number of data points 푃 =

 ∑ 푃  .  The RMS roughness is the square root of the mean 
value of the squares of the distance of the points from the 

image mean value, 푅 =  ∑ (푃 − 푃)  .  

 
Monofractal Image Analysis  
The self-affine properties in a specific range of scales were 
analyzed using monofractal analysis. Four methods 
calculated the fractal dimension Df using "Gwyddion, SPM 

data visualization and analysis tool." The methods used to 
calculate Df are cube counting, triangulation, and partition. 
Cube counting arises from the definition of box-counting 
fractal dimension where an l cubic lattice constant 
superimposes on the z-expanded surface. First, l is set at X/2 
( X is the surface’s edge length), providing a lattice of 23 
cubes N(l), containing at least one pixel. The lattice 
constant l is reduced stepwise by a factor of two, and the 
process repeats until l equals the distance between two 
adjacent pixels. The slope of a plot of log(N(l)) versus log(1/l) 
gives 퐷 . Triangulation is similar to the previous method. A 
grid of unit dimension l is placed on the surface, defining the 
location of several triangle vertices. For l = X/4, 32 triangles of 
different areas inclined at different angles with the xy plane 
cover the surface. The areas of all triangles are calculated and 
summed to approximate the surface area S(l) for a given l. 
Next, the grid size decreases by a successive factor of 2, and 
the process continues until l equals the distance between two 
adjacent pixel points. The slope of a plot of log(S(l)) versus 
log(1/l) is the number Df − 2. The partitioning algorithm is 
based on the scale dependence of the variance of fractional 
Brownian motion. One divides the entire surface into equal-
sized squared boxes, and the variance (power of RMS 
heights) was calculated for the particular box size. The 
slope value β of a least-square regression line fits the data 
points in the log-log plot of variance extracts Df's as Df = 3 
− β/2.  
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