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Abstract 
 
Mammalian cells exhibit a high degree of intercellular variability in cell cycle period and phase 

durations. However, the factors orchestrating the cell cycle duration heterogeneities remain 

unclear. Herein, by combining cell cycle network-based mathematical models with live single-cell 

imaging studies under varied serum conditions, we demonstrate that fluctuating transcription rates 

of cell cycle regulatory genes across cell lineages and during cell cycle progression in mammalian 

cells majorly govern the robust correlation patterns of cell cycle period and phase durations among 

sister, cousin, and mother-daughter lineage pairs. However, for the overall cellular population, 

alteration in serum level modulates the fluctuation and correlation patterns of cell cycle period and 

phase durations in a correlated manner. These heterogeneities at the population level can be fine-

tuned under limited serum conditions by perturbing the cell cycle network using a p38-signaling 

inhibitor without affecting the robust lineage level correlations. Overall, our approach identifies 

transcriptional fluctuations as the key controlling factor for the cell cycle duration heterogeneities, 

and predicts ways to reduce cell-to-cell variabilities by perturbing the cell cycle network 

regulations.  
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Significance statement 
In malignant tumors, cells display a diverse pattern in cell division time. This cell-to-cell 

variability in cell cycle duration had been observed even under culture conditions for various 

mammalian cells. Here we used live-cell imaging studies to monitor FUCCI-HeLa cells and 

quantified the cell cycle period and time spent in different phases under varied serum conditions. 

We proposed a set of stochastic cell cycle network-based mathematical models to investigate the 

live-cell imaging data and unraveled that the transcription rate variation across cell lineages and 

during cell cycle phases explains every aspect of the cell cycle duration variabilities. Our models 

identified how different deterministic effects and stochastic fluctuations control these variabilities 

and predicted ways to alter these cell cycle duration variabilities. 
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Introduction 

Cell cycle period and phase durations of mammalian cells demonstrate a high degree of 

heterogeneity under culture conditions (1–9), and within a tumor micro-environment (10, 11). 

Often, such heterogeneities significantly influence the cell-fate decision-making (12–16). This 

means that these heterogeneities can be fine-tuned to design better therapeutics if the factors 

controlling these variabilities are known precisely. However, identifying these controlling factors 

is highly challenging due to the diverse and complex nature of cell cycle duration heterogeneities. 

For example, The cell cycle phase durations quantified at the single-cell level in proliferating 

lymphocytes (8, 17) using FUCCI-reporter (18) showed a highly variable S-G2-M time with 

strongly correlated G1 timings in the sibling cell pairs. A highly correlated cell cycle in sibling 

pairs has been observed in other mammalian cell types as well (19–22) with mothers and daughters 

having poor correlation in cell cycle timings, while cousins showing a significant correlation for 

the same (19–22). These observations are quite generic and cell-type independent, however, the 

precise understanding of the nature and origin of these heterogeneities remains elusive. 

To understand such complex inheritance patterns of cell cycle durations in cell lineages, 

different kinds of mathematical modeling studies were employed. The model based on transition 

probability by Dowling et al. assumed that cells transit from one cell cycle phase to another 

randomly, and consequently create no/poor correlation in mother-daughter pairs (17). However, 

the cell cycle period of siblings are correlated as cells spent an equal proportion of division time 

in S-G2-M phases (17). A ‘kicked cell cycle model’ proposed by Sandler et al. considered that 

another oscillator like the circadian clock eventually influences cell cycle durations and causes the 

observed correlation pattern in cell lineages (20). Recent models using bifurcating autoregressive 

(BAR) approach suggest that the inheritance of more than one deterministic factor account for the 

observed correlation pattern in cell lineages (21, 22). It was evident that these modeling studies 

came up with a widely varied qualitative explanation for the inheritance pattern. However, none 

of these studies considered the well-established cell cycle gene-interaction network which 

dynamically controls the cell cycle progression and the associated variabilities (23, 24) within the 

cell lineages and even at the overall cellular population level. It can be envisaged that an 

appropriate network-based stochastic cell cycle model will provide the opportunity to identify the 

effect of various kinds of noise sources like, (i) intrinsic noise due to gene expression variabilities 

(25–27), (ii) extrinsic noises due to cell to cell variability in the transcription rates of cell cycle 
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related genes within different lineages (28–32), epigenetic modifications during the cell cycle (33–

36), random partitioning of molecules during cell division (23, 24), etc., and (iii) even the 

deterministic factors that ultimately orchestrate the cell cycle duration heterogeneities and the 

inheritance pattern.  

Moreover, in most of the previous single-cell studies (20–22), the heterogeneities in cell 

cycle duration have been quantified for a healthy growing condition. However, the cell cycle 

durations are known to get altered due to changes in the growth environment (17, 19), and in 

malignant tumors, the cells continue to proliferate even under minimal growth condition (7, 37). 

This suggests that the cell cycle durations and the corresponding heterogeneities associated with 

it may change according to the serum level. Earlier, it was shown that for a specific growth 

condition, most of the cell cycle period variation happens due to G1-phase duration variability 

while S-G2-M time remains relatively constant (38), while recent studies demonstrate that even S-

G2-M phase duration can also be highly variable (17). However, the exact nature and to what extent 

the serum level influences the cell cycle duration heterogeneities, remain unresolved. In this 

article, we take a system biology approach to unravel how the change in serum level 

simultaneously modifies the heterogeneities of the cell cycle phase durations and inheritance 

pattern among the cell lineage pairs and for the overall cellular population under culture conditions. 

Our proposed network-based stochastic cell cycle model allowed us to address these pertinent 

questions; (i) Which is the factor that influentially governs the correlation pattern of cell cycle 

period and phase durations for cell lineage pairs under different serum conditions? (ii) Which noise 

source (Intrinsic or Extrinsic) majorly controls the variance of the cell cycle period and phase 

duration distributions? (iii) How do serum levels alter the fluctuation and correlation patterns of 

cell cycle period and phase durations for the overall cellular population? and (iv) Can we fine-tune 

these cell cycle period and phase duration heterogeneities for the overall cellular population to 

attain a therapeutically advantageous situation?  

 To answer these questions, we quantified the intercellular variability and lineage 

correlations in cell cycle period and phase durations from single-cell imaging data and investigated 

the origin of these variabilities and correlations using our network-based stochastic cell cycle 

model. Live-cell imaging of FUCCI-HeLa cells under different serum conditions depict that the 

variabilities and correlations observed in cell cycle and phase durations can be modulated in a 

serum-dependent manner. Our modeling study reconciled the experimental data and demonstrated 
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that cell-to-cell variability in transcription propensities of the cell cycle regulatory genes is one of 

the major sources of variability in cell cycle period and phase durations. It further revealed that 

the memory of transcriptional activity in cell lineages leads to the correlation pattern observed in 

mother-daughter, sibling, and cousin pairs under varied serum conditions. Finally, we showed that 

it is possible to fine-tune the heterogeneities of cell cycle period and phase durations under a 

specific serum level without altering the inheritance pattern by just altering specific gene 

expression via inhibition of the p38-signaling (39, 40) pathway.  

  

Results: 
Alteration in serum level influences the cell cycle period and phase duration heterogeneities 

To investigate cell cycle progression at the single-cell level, we produced FUCCI (18) expressing 

stable HeLa cell-line (FUCCI-HeLa, Materials and Methods) to precisely quantify the cell cycle 

period and phase durations (Fig. 1a). We performed live-cell imaging studies with FUCCI-HeLa 

cells under two different serum concentrations 2% (low, Movie S1 and Movie S2, Fig. 1b) and 

10% (high, Movie S3 and Movie S4, Fig. 1c) and measured the cell cycle period (TCC), and phase 

duration (TG1 & TS-G2-M) distributions by following FUCCI reporter trajectories from several single 

cells (Fig. 1d-e) (details in Materials and Methods). To calculate the statistics for TCC, TG1 & TS-

G2-M timings, we only considered those cells which completed their cell cycle during the imaging 

period. We observed across different replicates (Table S1) that cells exhibit a longer G1 and cell 

cycle mean durations for 2% serum (Fig. 1d, Fig. S1, and Table S1) in comparison to 10% serum 

condition (Fig. 1e, Fig. S1, and Table S1), while the mean S-G2-M duration shows a slight increase 

or no perceptible change (Table S1) under 10% serum concentration (Fig.1d-1e). While TG1 

variability remains higher than TS-G2-M variability under both the serum conditions, the mean CV 

(coefficient of variation) of TG1 and TCC duration decreases, and TS-G2-M increases at 10% serum 

compared to 2% serum (Fig. 1f and Table S1).  

 Thus, one can presume that the TG1 and TS-G2-M are mutually adjusting in a correlated 

manner during the cell cycle progression. However, the TG1 and TS-G2-M showed poor correlation 

under both serum conditions (Fig. 1g-1h and Fig. S1). This indicates that the phase durations do 

not mutually influence each other i.e. a shorter TG1 does not cause a longer TS-G2-M or vice versa, 

which had been previously reported as well (42). Interestingly, our experiments revealed that under 

a 2% serum condition, TCC correlates to a higher extent with TG1 in comparison to TS-G2-M (Fig. 
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1g). This confirms that TG1 being highly variable (Fig. 1d) indeed greatly influences the TCC at 2% 

serum condition.  

However, higher serum concentration (10%) decreases the TCC vs TG1 correlation and increases 

the TCC vs TS-G2-M correlation (Fig. 1h) suggesting that TS-G2-M variability dictates the TCC 

variability at 10% serum, even though the magnitude of TG1 variability is higher than the 

corresponding TS-G2-M variability (Fig. 1e). These observations state that variations in serum 

condition modulate the TCC, TG1, and TS-G2-M heterogeneities in a specific manner at the population 

level.  

 
Cells within a subpopulation and in cell lineages show distinct cell cycle period and phase 

duration pattern  

Often, a population-level cellular response can be influenced by a subpopulation of cells with 

distinct behaviour (43, 44). To investigate this aspect, we have divided the cellular population into 

two subpopulations based on the average TCC (Fig. S2A) to understand the contribution of the slow 

and fast cycling cells in the observed correlation pattern between TCC vs TG1 and TCC vs TS-G2-M 

under varied serum conditions. We find that under low serum (2%) conditions, both fast and slow-

cycling cells have a high TCC vs TG1 correlation (Fig. 1i and Fig.S2b). However, at 10% serum 

condition, slow-cycling cells have an increased TCC vs TS-G2-M correlation than the fast-cycling 

cells (Fig. 1j and Fig.S2b). This indicates that slow-cycling cells cause the higher TCC vs TS-G2-M 

correlation for the overall cellular population at 10% serum. Further, we analyze this continuously 

dividing the cellular population by following the cells over specific cell lineages which eventually 

produces subpopulations of mother-daughter, sister-sister, and cousin-cousin pairs. Previous 

studies had demonstrated that mother-daughter, sister-sister, and cousin-cousin pairs show distinct 

correlation patterns of cell cycle period and phase durations (17, 19–22). We examined similar 

subpopulations and observed that on an average mother cell population had a faster cycling time 

than the daughter population under both 2% and 10% serum levels (Fig. 1k-1l) with poor 

correlation in TCC and phase timings between mother and daughter pairs (Fig. 1m-1n). We 

observed a highly correlated TCC among sister pairs (Fig. 1m-1n) with a comparatively higher 

correlation in TG1 than TS-G2-M (17, 19–22). This suggests that the sister cells execute the G1-phase 

in a coordinated manner than the S-G2-M phase, where the phase duration could get altered among 

the sister cells due to various reasons. Cousin pairs showed a moderate level of correlation which 
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was in between the sisters and mother-daughter pairs (Fig. 1m-1n). Importantly, serum level does 

not affect the TCC, TG1, and TS-G2-M correlations in sisters, cousins, and mother-daughter pairs 

significantly (Fig. 1m-1n). However, it was hard to disentangle the underlying factors which 

critically govern such kind of fluctuation and correlation patterns under different serum conditions 

explicitly by only analyzing these experimental observations. 

 

A stochastic cell cycle model to analyze the serum dependent cell cycle period and phase 

duration heterogeneities 

Over the years, many cell cycle models (45–52)  have been developed to address different aspects 

of mammalian cell-cycle regulations in a context-dependent manner. In a similar spirit, we 

developed a minimalistic cell cycle network-based (Fig. 2a) mathematical model (Table S2) to 

investigate the origin of heterogeneities observed under different serum conditions. The model 

(Fig. 2a) includes three different modules which consist of regulatory interactions controlling 

different phases of the cell cycle to generate a cycling cell. The first module (Module-I, Fig. 2a, 

and Fig. S3) depicts the early G1 phase regulation along with the restriction point control 

mechanism that organizes the decision-making for the cell cycle commitment by sensing the serum 

level (53, 54). This module contains serum-mediated Myc and CycD activation that initiates the 

phosphorylation of Rb protein by the Cyclin-dependent kinase (CDK) complex Cdk1-CycD to 

partially activate the transcription factor E2F1. The second module (Module-II, Fig. 2a, and Fig. 

S3) delineates the molecular events controlling the G1-S transition and the S-phase activities which 

primarily depend on the two important Cyclin-dependent kinase regulators, CDK2-CycE and 

CDK2-CycA. These CDK-cyclin complexes overcome the inhibitions by the Cyclin-dependent 

kinase inhibitors (CKI’s in the form of p21 and p27) and Cdh1 to help the cells cross the restriction 

point by complete activation of E2F1 which coordinates the G1-S transition and active S-phase 

related genes. The third module (Module-III, Fig. 2a, and Fig. S3) describes the molecular 

regulation of the G2 and M phases in a nutshell. It considers that the Cdk1-CycB complex in the 

G2-phase overcomes the inhibition by Wee1, and gets activated by Cdc25 due to positive-feedback 

regulation. It further activates Cdc20 in M-phase which allows the cells to exit from the M-phase 

by activating Cdh1. Additionally, we have introduced the Cdt1 and Geminin proteins in our model 

to measure the TCC, TG1, and TS-G2-M precisely from our model.  
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A detailed description of different modules and corresponding molecular events are provided in 

the supplementary material. We developed an ordinary differential equation (ODE) based 

mathematical model (Table S3) for the detailed cell cycle network (Fig. 2A and Fig. S3) and the 

kinetic parameters for the model are depicted in Table S4. The model reproduced the 

experimentally observed mean TCC, TG1, and TS-G2-M (Fig. 2b for 2% and Fig. 2c for 10% serum) 

under specific serum doses for FUCCI-HeLa cells. Here, we made sure that the number of 

molecules of mRNAs and proteins is reasonably higher, as in mammalian cells (55–58) (Fig.2b-

c), these numbers are considerably higher than budding (59–61)  or fission yeast cells (62). Such 

a deterministic model sets the stage for the stochastic model, where both intrinsic and extrinsic 

fluctuations can be introduced systematically. 

We developed the stochastic simulation protocol (Fig. 2d) to simulate cell cycle lineages 

by picking up random mother cells at t=0. For each mother cell, at time t=0, we have chosen 

transcription rates for each cell cycle gene from log-normal distributions, where the mean of the 

distributions are the mean deterministic transcription rates of the corresponding genes with a 

specific CV (28) (Fig. 2d(i)). The idea behind transcription rate variability of cell cycle genes 

stems from the recent observations, where it was suggested that cell-to-cell variability in the 

propensity to transcribe mRNAs plays a dominant role in gene expression fluctuations (28–30). It 

was observed that in each cell, the transcriptional activity for a gene fluctuates around a gene-

specific mean level with a high correlation in mean transcriptional activity between sisters and 

mother-daughter pairs, suggesting the existence of transcriptional memory across generations (29, 

30). These studies claim that the daughter cells inherit certain factors controlling transcription in a 

correlated manner but at the same time transcribe genes quite differently from the corresponding 

mother.  

Thus, we added transcription rate fluctuations across cell lineages while implementing 

Gillespie Stochastic Simulation Algorithm (SSA) to quantify the intrinsic fluctuations (Fig. S4) in 

the expression of genes (Fig. 2d(ii)) for the overall cell cycle network (Table S2 and Table S3). 

Additionally, we have incorporated the extrinsic noise sources in the form of random equal or 

unequal partitioning of proteins and mRNAs among the two daughter cells during cell division 

(23)(Fig. 2d(iii)), and transcription rate variability of the cell cycle regulatory genes in different 

phases of the cell cycle (Fig. 2d(iv)). Here, we assumed that transcription rates get modified due 

to epigenetic modifications in S-phase (during DNA-synthesis) (63–65)and M-phase (while sister 
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chromatids get segregated among the two daughter cells) (31–36). We followed many generations 

(for 72 h) in the form of lineage trees (Fig. 2d) implementing the above-mentioned simulation 

protocol (Fig. 2d and Fig. S5) by picking up a random mother cell with transcription rates of all 

regulatory genes drawn from log-normal distributions (mean deterministic transcription rate with 

20% CV). We assumed that during certain stages of the S-phase and M-Phase, these transcription 

rates either increase or decrease up to 6-30% (details in Method section and Fig. S5).  

 

Model simulations reconciled the experimentally observed cell cycle period and phase 

duration heterogeneities 

The above-mentioned stochastic simulation protocol (Table S5) qualitatively reproduced the mean 

and variances of the TCC, TG1, and TS-G2-M distributions for similar numbers of numerically 

simulated single cells by following several cell lineages under both 2% (Fig. 3a and Fig. S6a-b) 

and 10% (Fig. 3b and Fig. S6a-b) serum conditions. The numerical simulation displayed that 

under both the serum conditions, the CV of the TCC slightly decreases at 10% serum, however, TG1 

distribution CV decreases, and TS-G2-M distribution CV either increases or stays the same as the 

serum dose increases from 2% to 10% (Fig. 3c). Intriguingly, even in our numerical simulations, 

we observe that at 2% serum condition, TCC correlates to a higher extent with TG1 in comparison 

to TS-G2-M (Fig. 3d and Fig. S6c-d), whereas TCC correlates more with the TS-G2-M at 10% serum 

(Fig. 3e and Fig. S6c-d). Moreover, the model predicts that the ratio (R) of the CV’s of the TG1 

and TS-G2-M distributions (over three simulation replicates, Table S5) relatively increases by ~21% 

as the serum level changes from 2% (R2% = 0.76) to 10% (R10% = 0.92). Interestingly, we have 

observed similar features in the experimental data (over four experimental replicates, Table S1, 

and Fig. 1f) as well, where the relative increase in R is ~21.3% as the serum level goes from 2% 

(R2% = 0.61) to 10% (R2% = 0.74). Thus, our model qualitatively captures the relationship between 

the changes in the correlation and fluctuation pattern of the cell cycle phase duration distributions 

as the serum level varies from 2% to 10%. This analysis suggests that by altering the fluctuation 

pattern of these phase duration distributions, one can shift the correlation pattern between TCC Vs 

TG1 and TCC Vs TS-G2-M and vice-versa. How to achieve such kind of alteration and what will be its 

implications, remained an open question. 

A subpopulation level analysis (Fig. S2A) using the model demonstrates that for 2% serum, 

both slow and fast cycling cells have a high TCC vs TG1 correlation (Fig. 3f). However, for 10% 
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serum, TCC vs TS-G2-M correlation increases in slow-cycling cells (Fig. 3g). Our simulation further 

exhibits that the cycling time of mothers is comparably faster than the daughters under both 2% 

and 10% serum conditions (Fig. 3h-i and Fig. S7a-b). Our model simulation predicts that the 

difference in cycling time between mothers and daughters is observed due to an increase in cell 

density and cell-cell contact in the microenvironment under culture conditions (67, 68). 

Fascinatingly, our model simulations reproduced that in cell lineages, the TCC, TG1, and TS-

G2-M are highly correlated in sister pairs under both serum conditions, which is substantially higher 

than the cousin-cousin and mother-daughter pairs (Fig. 3j-k) as observed in our experiments. Our 

model analysis under 2% and 10% serum conditions suggests that the correlations of TCC, TG1, and 

TS-G2-M among sisters, mother-daughter, and cousin-cousin pairs are kind of independent of serum 

conditions. This is in line with our experimental observations (Fig. 1m-n) and is in contrast with 

the previous studies (17, 20, 22) where only a single serum condition was employed to report such 

correlations. We will elucidate how these correlations remain independent of the serum doses in 

the coming sections. However, our study, for the first time revealed that such correlations in cell 

lineage pairs for cell cycle period and phase durations can be explained from a generic stochastic 

cell cycle network-based model. Our stochastic model performed quite efficiently to reconcile such 

complex experimental observations and could potentially unravel the crucial factors governing the 

TCC, TG1, and TS-G2-M heterogeneities. 

 

Transcriptional fluctuation governs the cell cycle period and phase duration heterogeneities 

The proposed model (Fig. 2) includes all the essential deterministic regulations, intrinsic noise, 

and different extrinsic noise sources, which eventually drive the heterogeneous cell cycle 

progression in mammalian cells. Thus, it provides the opportunity to decipher the effect of these 

regulatory processes on TCC, TG1, and TS-G2-M heterogeneities by considering different reduced 

versions (Table-1) of our initially proposed full network-based stochastic model (M-1, Fig. 4a 

and Table-1). First, we performed simulation by considering only intrinsic fluctuations, where 

each starting mother cell for different cell lineages has the deterministic mean transcription rates 

for all the genes, and during division is partitioning the molecular regulators unequally among the 

two daughters (M-2, Table-1). Under this scenario, the mean TCC and TG1 decrease with the 

increased serum level without much variation in the TS-G2-M. However, this version of the model 

substantially underestimates (M-2, Fig. 4b, and Table-S6) the TCC, TG1, and TS-G2-M variabilities 
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in comparison to the experimental observation (Fig. 4a). We observed a bit of sister-sister 

correlation of TCC at 2% serum, which was absent at 10% serum level. However, no perceptible 

cousin-cousin or mother-daughter correlations were found at 2% or 10% serum levels (M-2, Fig. 

4b, and Table-S6). This suggests that extrinsic fluctuations in the form of transcription rate 

variation may significantly affect such a correlation pattern found in cell lineage analysis. 

 To verify this idea, using a deterministic model (M-3, Table-1), we simulated the cell 

lineages by including the transcription rate variabilities for each starting mother cell for a specific 

lineage, which during division is partitioning the molecular regulators unequally among the two 

daughters. Thus, the intrinsic variabilities due to inherent molecular fluctuations are absent in the 

M-3 model. M-3 model shows higher fluctuations in TCC, TG1, and TS-G2-M (more than M-2 

Model)) with growing transcription rate fluctuations (CV=0% to 40%, for the respective log-

normal distributions Table-S7) and produces a high correlation in TCC of sister pairs for both 2% 

and 10% serum conditions (M-3, Fig. 4c, and Table-S6). Intriguingly, it reveals that if all the cells 

in different lineages have identical transcription rates, then a highly correlated TCC, TG1, and TS-

G2-M can be observed for sisters, cousins, and even for mother-daughter pairs (M-3, Fig. 4c, and 

Table-S6). This displays that transcriptional variability across cell populations considerably 

contributes to the fluctuation pattern of TCC, TG1, and TS-G2-M and causes the high TCC correlations 

among sister pairs. This demonstrates that transcriptional rates can indeed get inherited (30, 35) 

by both the daughters from their mother to cause such high correlations. 

However, experimentally we do not observe such a high correlation in cousins and mother-

daughter pairs, which was confirmed by our full stochastic model (Fig. 4a and Table-S6). Here 

comes the importance of the transcription rate variations introduced by us during the S-phase and 

M-phase, respectively, which take into account the epigenetic modifications (31–36, 63–66) due 

to genome reorganization during DNA synthesis and separating the sister-chromatids to the 

respective daughter cells. We numerically included the effect of these events in the model by 

altering the extent of transcription rate variability for each transcript by using a uniformly 

distributed random number and adjusted the transcription rates accordingly during S and M-

phases, respectively (Table-S8, See Method for details). Including this feature of transcription 

rate variation in the M-4 model (M-4, Table-1) leads to a lower correlation of TCC, TG1, and TS-

G2-M among cousins and mother-daughter pairs, without affecting the sister-sister correlations (M-

4, Fig. 4d, Table-S6 and Table S8). 
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This gets further confirmed when we ignored transcription rate variation (M-5, Table-1) 

during the cell cycle in our full model. We observe an increasing level of cousin-cousin and 

mother-daughter correlation in the M-5 model simulation (M-5, Fig. 4e, and Table-S6), which is 

absent in the experimental findings. This implies that there should be sufficient variation of 

transcription rates in S and M phases during each cell cycle of every individual cell to create 

reduced TCC, TG1, and TS-G2-M correlation in mother-daughter and cousin pairs (Table S8). 

Considering equal partitioning of molecular regulators during cell division (Table S9 and Fig. S8) 

instead of unequal partitioning only increases the TG1 correlation in sisters, cousins, and mother-

daughter pairs a bit with a greater increase in TG1 correlation at 10% serum (Table-S9).  

 It is clear from the above analysis that the serum availability has less influence in 

controlling the correlation of TCC, TG1, and TS-G2-M of sisters, cousins, and mother-daughters. 

However, our full model (M-1, Table-1) analysis reconciled the fact that serum affects the 

variability of the individual phase duration distributions considerably (Fig. 3a-c and Fig. 4a) at 

the population level, as an increase in serum from 2% to 10%, reduces mean duration and CV of 

TG1 and increases the mean TS-G2-M. This consequently reverses the nature of the correlation pattern 

of TCC with TG1 and TS-G2-M (at 2% TCC correlates more with TG1, but at 10% TCC correlates more 

with TS-G2-M) (Fig. 3d-e and Fig. 4a). How change in serum level induces such kind of correlation 

reversal? To answer this intriguing question, we look back into our proposed cell cycle network 

(Fig. 2a) and find that serum not only activates the initiators (CycD and Myc (69–71)) of the cell 

cycle in the G1-phase, it further activates the Wee1 expression (72, 73) in G2 phase. Activation of 

Wee1 by serum essentially prolongs the TS-G2-M, as the serum dose is increased from 2% to 10%. 

Our reduced model (M-6, Table-1) simulation (assuming no serum mediated activation of Wee1) 

revealed that both the mean TG1 and TS-G2-M and related fluctuation decreases, as we increase the 

serum level from 2% to 10% (M-6, Fig. 4f, and Table-S6). Consequently, in both 2% and 10% 

serum conditions, the CV of TG1 remains considerably higher than the CV of TS-G2-M. This indicates 

that the serum-dependent cell cycle network functions in a highly coordinated manner to control 

the overall heterogeneities of the TCC, TG1, and TS-G2-M. At this end, we perform a detailed 

sensitivity analysis of the model parameters (Fig. S9), which demonstrates that the model 

generated TCC, TG1, and TS-G2-M change either marginally or moderately, even if we modify any 

related kinetic parameters of the model. This shows that our model predictions are quite robust. 
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Inhibiting p38-signaling alters the cell cycle duration heterogeneities at low serum condition 

The observations made from the M-6 model (Table 1) simulations indicate that it may be possible 

to perturb the serum-dependent cell cycle regulatory network in a specific manner to control the 

related heterogeneities. Since cells commit to active cell cycle progression during the G1-phase of 

the cell cycle (7), reducing the CV of the TG1 distribution for an actively proliferating population 

of cells under low serum conditions may lead to novel therapeutic insights to get rid of the 

cancerous cells within a malignant tumor, where cells can proliferate even under serum depleted 

conditions (7). Literature studies suggest that p38, a stress-signaling protein kinase, retards G1 

progression by inhibiting the transcription of Myc and CycD and promotes S-G2-M progression 

by activating Plk1 kinase under normal growth conditions in mammalian cells (74–77). Hence, we 

hypothesize (Fig. S10a) that inhibiting p38 protein-mediated signaling at a 2% serum condition 

may modulate the mean and variance of TG1, which will lead to an increase in the correlation of 

TCC and TS-G2-M, as observed under 10% serum condition (Fig. 3e). 

 We incorporated the concept of inhibiting p38 signaling by introducing the effect of the 

p38-inhibitor in a phenomenological manner (Table S10) in our deterministic model (See 

Supplementary text for details) and the model simulation at 2% serum condition shows a decrease 

and an increase in TG1 and TS-G2-M, respectively (Fig. S10b). The stochastic simulation at 2% serum 

condition in presence of p38-inhibitor demonstrates reduced mean and variability of TG1 (Table 

S11). The model simulation further predicts that the CV of TCC, TG1, and TS-G2-M at 2% serum 

condition in presence of p38-inhibition (Fig. 5a and Table S11) will show a trend as observed for 

10% serum condition without any inhibition (Fig. 1f). This effect produced in the CV of TCC, TG1, 

and TS-G2-M will accompany with a higher correlation between TCC and TS-G2-M (Fig. 5b), which is 

in stark contrast with the control simulation performed at 2% serum condition (Fig. 5b and Table 

S11) without p38-inhibitor. At the lineage level, model simulation exhibited a slight drop in the 

sister-sister TCC correlation due to a drop in the TS-G2-M correlation (Fig. 5c) under the p38 

inhibition condition, while for the mother-daughter pair, these correlations remain unaffected (Fig. 

5c). However, the cousin-cousin TCC correlation increases slightly under the p38-inhibition (Fig. 

5c and Table S11) condition due to an increase in the TS-G2-M correlation. 

To verify our model predictions, we cultured FUCCI-HeLa cells at 2% serum along with a 

p38 inhibitor and performed live-cell imaging. The analysis of live-cell imaging revealed a 

decrease in mean TG1 with an increased mean TS-G2-M (Table S12) under the p38 inhibitor 
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condition compared to the control cell population, where the TG1 variability decreases (Table S12). 

Moreover, experimentally quantified CV of TG1 at 2% serum condition in presence of p38-

inhibition is considerably lower than the control situation as predicted by our model simulation 

(Fig. 5d and Table S12). Intriguingly, under 2% serum condition, TCC vs TG1 correlation is found 

to be lower than the TCC vs TS-G2-M in the presence of p38 inhibitor (Fig. 5e and Table S12), which 

is in agreement with the model prediction. Interestingly, under 2% serum along with p38-inhibitor, 

the TCC, TG1 and TS-G2-M correlations among the sisters and mother-daughter pairs remain similar 

to that observed under the control situation (Fig. 5f and Table S12). However, the cousin-cousin 

pair shows a lower correlation under the p38-inhibitor condition (Fig. 5f and Table S12). Thus, 

the p38-inhibition study under 2% serum displays that TCC, TG1, and TS-G2-M heterogeneities at the 

overall cell population level can be fine-tuned to create lower variability in TG1, which may have 

therapeutic relevance to get rid of the unwanted carcinogenic cells within a tumor. 

Discussion: 
Identifying the governing factors that organize the cell duration heterogeneities is a 

challenging task (8, 9, 12, 17, 19–22). In this article, we combined live-cell imaging studies of 

FUCCI-HeLa cells (Fig. 1) with an appropriate cell cycle network-based stochastic mathematical 

model (Fig. 2) and unraveled the major factors that control the heterogeneities associated with the 

TCC, TG1, and TS-G2-M in a serum-dependent manner (Fig. 6). First, we demonstrated that the 

transcription rate variability in different cell lineages present within the cellular population is 

responsible for the high correlations in TCC among sister pairs across cell lineages (Fig. 6a, and 

Fig. 3-4). By employing a specific model variant (M-4 Model, Table-1), we revealed that the 

transcription rates alteration due to epigenetic modifications during S-phase and M-phases lead to 

a moderate to low correlation in cousins and mother-daughter pairs without affecting the high 

sister-sister correlation (Fig. 6a, and Fig. 4d). These findings substantiate the idea that cell-to-cell 

variability in the transcription of mRNA for different regulatory genes is the major source of 

variability in mammalian cells (28–30).  

Further, these studies suggested that daughter pairs inherit the transcription rates from the 

respective mother in a correlated manner (28–30), and it causes the correlated transcription pattern 

of various genes during the G1-phase among the daughter pairs. Our analysis with Cdt1 and 

Geminin time courses for two representative experimental (Fig. 6b(i)) and theoretical (Fig. 6b(ii)) 
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cell lineages revealed that the high sister-sister correlation is indeed emanated from the highly 

correlated transcriptional activity of the cell cycle genes (we showed Cdt1 and Geminin) during 

G1-phase, due to inheritance of same transcriptional rates for all genes by both the sisters from 

their mother. However, mothers TCC remain less correlated with the daughters TCC as mothers only 

spent a few hours with the transcription rate after the epigenetic modification in M-phase, which 

are inherited by the respective daughters during cell division. Any loss in the correlation between 

sisters arises from intrinsic molecular fluctuations and unequal molecular partitioning during cell 

division (Fig. 4). Due to epigenetic modifications, the transcriptional rates get altered during the 

S and M phases, and the respective daughters come up with different transcription rates for all the 

genes before the next cell division. However, this effect leads to a significant drop in the cousin-

cousin correlation (Fig. 1m-n, Fig. 3j-k, and Fig. 6a-b) as the extent of epigenetic modifications 

is different in respective sisters (Fig. 6b). It also caused the desynchrony in TS-G2-M (Fig. 6b) and 

little loss of TCC correlation among sister pairs. This observation is in contrast with that made by 

Dowling et al. (17) where they concluded that cells spend a near equal proportion of TCC as TS-G2-

M and that creates the correlation among sibling pairs.  These are important model predictions that 

can be experimentally probed in the future by performing in-situ epigenetic modifications in the 

cycling population of cells. Interestingly, the model simulation and experiments showed that the 

change in serum level did not modify the above-mentioned correlations appreciably (Fig. 1m-n, 

and Fig. 3j-k) among sisters, cousins, and mother-daughter pairs, demonstrating the robust nature 

of these correlations. Thus, our model provides a highly plausible and realistic explanation of the 

cell lineage pair correlations from a cell cycle network-based dynamical model. 

Second, we captured the subtle effect of serum modulation on the overall cellular 

population of FUCCI-HeLa cells. We observed that shifting the serum level from 2% to 10% 

caused a decrease and an increase in mean, variance, and CV of TG1 and TS-G2-M, respectively (Fig. 

6c and Fig. 1d-f), which lead to higher TCC vs TS-G2-M correlation at 10% serum in comparison to 

higher TCC vs TG1 correlation at 2% serum (Fig. 6c and Fig. 1g-h). These observations are quite 

counterintuitive and in contrast with what had been reported for budding yeast cell cycle (78, 79), 

where an increase in glucose dosage in media increases the number of proteins and mRNAs within 

the cells, which leads to a decrease in the mean as well as variances of TCC, TG1, and TS-G2-M. Our 

model predicted that for mammalian cells, a coordinated effect of serum mediated activation of 

CycD and Myc in the G1-phase and Wee1 in the S-G2-M phase, and the extrinsic noise due to 
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transcription rate fluctuation across cell lineages and during the S and M-phases during cell cycle 

progression produced such kind of unique fluctuation and correlation pattern (Fig. 3a-e). The 

slowly growing cells mostly dictated the overall variability pattern of TG1 and TS-G2-M for the 

overall cellular population under different serum levels (Fig. 1i-j and Fig. 3f-g), however, the 

mother's TCC was always faster than the daughter's TCC (Fig. 1k-l and Fig. 3h-i) as observed in 

case of budding yeast cells (78). 

Third, we showed that it is possible to perturb the cell cycle regulatory network to achieve 

a lower mean and variance of TG1 for a proliferating population of the cell under lower (2%) serum 

conditions by employing a p38-signaling inhibitor (Fig. 6d and Fig. 5). This may lead to effective 

therapeutic strategies to get rid of the slowly proliferating cells within the tumor population, as 

cells in tumors do survive and some of them evade chemotherapies due to higher TG1 variability 

under minimal growth conditions (Fig. 1d and Fig. 5d). Cells in presence of p38-inhibitor (with 

2% serum) behaved as if they were under 10% serum condition, and demonstrated a signature high 

TCC vs TS-G2-M correlation (Fig. 5e). However, the correlation of TCC, TG1, and TS-G2-M for cell 

lineage pairs remained grossly unaltered even under inhibitory conditions (Fig. 5f). Importantly, 

our stochastic model simulation adequately captured these features of TCC, TG1, and TS-G2-M 

heterogeneities (Fig. 5a-c). This demonstrates that the TCC, TG1, and TS-G2-M-related 

heterogeneities can be influenced by just intervening at the cellular network level. Finally, by 

employing different model variants (Table-1), we showed that intrinsic fluctuations hardly 

affected the variances of TCC, TG1, and TS-G2-M due to high copy numbers of mRNAs and proteins 

in mammalian cells (55–58), but modified the extent of variabilities originated due to transcription 

rate modifications (Fig. 4 and Table-S6).  

 In conclusion, our modeling study systematically establishes that transcription rate 

variation across cell lineages and during cell cycle progression majorly governs the cell cycle 

period and phase duration heterogeneities both at the cell lineage and overall population level. This 

contrasts the ideas of previous studies, where either it was suggested that circadian clock mediated 

cell cycle modulation (12, 20), or hidden long-range memories of growth and cell cycle period 

(22) caused the cell cycle duration heterogeneities across cell lineages. In our study, we considered 

a realistic cell cycle network model and addressed various facets of cell duration heterogeneities 

both at the cell lineage and at the overall population level under different serum conditions to 

elucidate the contribution of both stochastic and deterministic effects that organized the cell cycle 
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duration heterogeneities. We demonstrated that the TCC, TG1 and TS-G2-M related correlation in the 

cell lineage pairs remained almost unaltered under external perturbations suggesting that these 

features of cell cycle duration heterogeneities were extremely robust. However, for the overall 

cellular population, the mean and variances of TCC, TG1, and TS-G2-M can be systematically altered 

by perturbing the cell cycle regulatory network. We believe that these insights will invoke new 

ideas to alter the mammalian cell cycle period and phase durations advantageously to produce 

novel therapeutic strategies. 

 

Materials and Methods: 
Cell culture: 

HeLa cells and FUCCI -HeLa cells were cultured in DMEM medium (Hi Media, AT007) 

supplemented with 10% FBS (Gibco) and 1% Penicillin-Streptomycin (Hi Media,) at 37°C and 

5% CO2.  

Generation of a stable cell line expressing FUCCI: 

Lentiviral plasmids containing the FUCCI genes -mKO2-hCdt1 (30/120) and mAG-

hGeminin (1/110) were kindly gifted by Prof Atsushi Miyawaki, Lab for Cell Cycle Dynamics, 

RIKEN Brain Science Institute, Japan. The packaging and envelope plasmids (pCAG-HIVgp and 

pCMV-VSV-G-RSV-REV) were purchased from RIKEN BRC DNA BANK, Japan, and were 

used for lentivirus production. Plasmids containing mKO2-hCdt1 (30-120) and mAG-hGeminin 

(1-110) were co-transfected with envelope and packaging plasmids into LentiX-293T cells (Takara 

bio) to generate lentiviral particles. High-titer viral solutions were prepared and used for 

transduction. HeLa cells were first transduced with the virus-containing mAG-hCdt1 (30-120) 

gene and those cells which express RFP were sorted using FACS. Next, transduction was done on 

these sorted RFP positive cells using the virus-containing mKO2-hGem (1-110) gene. FACS 

sorting was done based on RFP fluorescence to obtain double-positive cells expressing FUCCI. 

Live cell imaging and data extraction: 

For live-cell imaging, on day 1, ~ 10,000 FUCCI expressing HeLa cells were seeded per well of 6 

well plates in opti-MEM media supplemented with FBS (2% or 10%) and 1% penicillin-

streptomycin. On day 2, live-cell imaging was done using Zeiss Observer Z1 inverted fluorescence 

microscope fitted with a high-speed microlens-enhanced Nipkow spinning disc (Yokogawa CSU-

X1 automated model) in a temperature (37°C) and CO2 (5%) controlled incubation stage.  A 
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halogen lamp is used as a light source along with Alexafluor 488 and Rhodamine filters. 10 

positions were selected and images were taken every 15 min interval for all the 10 positions 

selected for 3 days. 

Zen software was used to process the .czi files and create .tiff images for tracking. To obtain 

FUCCI trajectory in single cells, each cell was tracked by clicking the center of the nucleus using 

the ‘Manual tracking’ plugin available in ImageJ software. The positions (x, y) of the tracked cell 

are stored as a text file. An ImageJ script was written to create ROI using the x, and y coordinates 

and measure the mean fluorescence intensity at each channel for each cell. The duration between 

birth and the next division gives the cell cycle duration for a cell. The time corresponding to 

maximum RFP intensity is considered as the end of G1. The S-G2-M duration is calculated by 

subtracting G1 time from total cell cycle time. The distribution graphs were plotted using Origin 

software. 

Deterministic simulation: 

The differential equations used for deterministic simulation (Table S3) and the parameter 

values (Table S4) are given in the supplementary material. Using these, we have simulated the 

cell cycle model using a CVODE solver in XPPAUT 8.0 software and obtained periodic oscillation 

of the cell cycle network components for 2% and 10% serum levels (the ODE file will be available 

upon request). In this regard, we have tried to keep the number of proteins and mRNA in 

accordance with that reported for mammalian cells and performed some preliminary bifurcation 

analysis to set the deterministic model in the appropriate parametric regime. 

Simulation in cell lineages: 

To follow cells in lineages in our simulation similar to experiments, we developed an algorithm 

(Fig. S5), where we followed cells from Generation 0 to at most Generation III in each lineage for 

‘n’ lineages during a 72-h simulation period. To perform stochastic simulation of models-M-1, M-

2, M-5, and M-6 (Table-1), ‘Direct method of Gillespie algorithm’ (80) was used by incorporating 

the various sources of extrinsic variabilities (Fig. 2d) as described in Table-1. The details protocol 

for the simulation method is provided in Fig. S5 and the corresponding figure legend. The code 

for stochastic simulation was written in Fortran language (the code will be available upon request).  

By adopting a similar lineage simulation algorithm, we investigated the role of various extrinsic 

noise sources (Fig. 2d) in the absence of intrinsic fluctuations, by developing a Matlab code (the 

code will be available upon request) for the models-M-3 and M-4 (Table-1). For these models, the 
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differential equations (Table S3) were solved using Matlab ODE solver (ODE15s) with the 

parameters mentioned in Table S4. 

To obtain cell cycle period, G1, and S-G2-M duration distributions, we collect the cell cycle and 

phase timings from all the cells that had a complete cycle during the simulation period of 72 hrs. 

The cell cycle time is calculated using the birth and division time for each cell. Our simulation 

also keeps track of Cdt1 and Geminin dynamics during the simulation for each cell. The time 

difference between birth and the Cdt1 peak is considered as the end of G1. The S-G2-M time is 

calculated from the total cell cycle period and G1 time. For distribution graphs and variability 

calculation under different serum conditions, all the cells with a complete cycle from all the 

lineages were considered. All possible mother-daughter, sister, and cousin pairs with complete cell 

cycle duration irrespective of the generation was used to determine correlations in the cell cycle 

period and phase durations. 
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Figures and Tables 

 

 
 

Fig. 1. Live cell imaging of FUCCI-HeLa cells quantifies the serum-dependent cell cycle period and phase 

duration heterogeneities. (a) Schematic depiction of FUCCI-reporter expression dynamics during the cell cycle. 

Live-cell imaging snapshots (at 12 h intervals) of FUCCI-HeLa cells under (b) 2% serum, and (c) 10% serum 

conditions. TCC, TG1 and TS-G2-M distributions quantified from single-cell imaging data at (d) 2% serum (n=300, 

replicate 1) and (e) 10% serum (n=300, replicate 1) (4 replicates are performed, Table S1). (e) CV of TCC, TG1 and 

TS-G2-M distributions were observed across 4 individual replicates (Table S1) performed at 2% and 10% serum 
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conditions. Correlations among TCC, TG1 and TS-G2-M were observed from the single-cell imaging at (g) 2% serum 

(n=300, replicate 1) and (h) 10% serum (n=300, replicate 1) (4 replicates are performed, Table S1). Correlation 

between TCC, TG1 and TS-G2-M in slow and fast cycling cells at (i) 2% serum and (j) 10% serum for 4 individual 

replicates (Table S1). TCC, TG1 and TS-G2-M distributions for mother and daughter cells (replicate 1) at (k) 2% serum 

and (l) 10% serum (4 replicates are performed, Table S1). Observed correlations (Mean ± standard deviation) for 

TCC, TG1 and TS-G2-M in sisters, cousins and mother-daughter pairs across 4 individual replicates (Table S1) at (m) 

2% serum and (n) 10% serum conditions.  
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Fig. 2. Proposed cell cycle network-based stochastic-mathematical model to understand the experimentally 

observed serum-dependent cell duration heterogeneities. (a) The minimalistic cell cycle network under the 

influence of serum. (Solid and dotted arrows indicate the direct and indirect activation processes. Hammerhead arrows 

indicate inhibition processes.) Module-I depicts early G0 to G1 regulations. Module-II contains the optimal G1-S 

transition and S-phase regulations. Module-III represents the G2-M phase interactions in a simplified manner (Details 

in Supplementary Text-1). The temporal dynamics for Cyclins and active Cdh1 at (b) 2%, and (c) 10% serum. (d) 

Numerical simulation strategy to simulate different cell lineages by incorporating extrinsic ((i) cell-to-cell 

transcription rate variability, (ii) symmetric and asymmetric cell division event, (iii) transcription rate variation during 

cell cycle process due to epigenetic modifications, etc.) and intrinsic ((ii) due to molecular fluctuations for low copy 

numbers of proteins and mRNA’s) noise sources experienced by the mammalian cells under culture conditions. 
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Fig. 3. Stochastic model simulations corroborate the experimentally observed TCC, TG1 and TS-G2-M 

heterogeneities. Distributions of TCC, TG1 and TS-G2-M obtained from stochastic simulation at (a) 2% serum (n=300, 

replicate 1) and (b) 10% serum (n=300, replicate 1). (c) Average CV in TCC, TG1, and TS-G2-M was obtained at 2% 

serum and 10% serum (from 3 replicate simulations, 300 cells each), respectively. Correlation pattern of TCC, TG1 and 

TS-G2-M at (d) 2% serum (n=300, replicate 1) and (e) 10% serum (n=300, replicate 1). Mean and standard deviation of 

correlation between TCC, TG1 and TS-G2-M in slow and fast cycling cells at (f) 2% serum and (g) 10% serum. Scatter 

plot showing the distribution of TCC, TG1, and TS-G2-M in mothers and daughters (replicate 1) at (h) 2% serum and (i) 

10% serum. Mean and standard deviation of TCC, TG1, and TS-G2-M correlations quantified for sisters, cousins, and 

mother-daughter pairs performed at (j) 2% serum and (k) 10% serum (3 numerical replicates, Table S6). 
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Fig. 4. Simulation results at 2% and 10% serum conditions for different model variants with unequal division. 

Calculated (i) mean TCC, TG1, and TS-G2-M (± standard deviation (SD) for Replicate I), (ii) mean CV (± SD),  (iii) mean 

correlation coefficient (R2) (± SD) of TCC, TG1 and TS-G2-M, and (iv)  mean Pearson correlation coefficient (R) (± SD) 

obtained for the TCC, TG1, and TS-G2-M for sisters, cousins and mother-daughter pairs selected from different cell 

lineages for the model variants (a) M-1, (b) M-2, (c) M-3, (d) M-4, (e) M-5 and (f) M-6 defined in Table-1. 
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Fig. 5.  Inhibition of p38-signaling reduces the variability of the G1-phase and reverses the correlation pattern 

under low (2%) serum conditions. Numerically simulated 300 cells under only 2% serum (control) and 2% serum 

+ p38-signaling inhibitor (10 𝜇M). (a) mean CV (± SD) of TCC, TG1, and TS-G2-M for all 3 numerical replicates, (b) 

mean Correlation coefficients (± SD) of TCC, TG1, and TS-G2-M, and (c) mean Pearson correlation (± SD) of TCC, TG1 

and TS-G2-M calculated from cell lineages for sisters, cousins, and mother-daughter pairs. Live-cell image analysis of 

nearly 300 FUCCI-HeLa cells at 2% serum (control) and 2% serum with 10 𝜇M p38-signaling inhibitor. (d) 

experimental mean CV (± SD) of TCC, TG1, and TS-G2-M for all 3 replicates, (e) experimental mean Correlation 

coefficients (± SD) of TCC, TG1, and TS-G2-M, and (f) experimental mean Pearson correlation (± SD) of TCC, TG1, and 

TS-G2-M calculated from cell lineages for sisters, cousins, and mother-daughter pairs. 
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Fig. 6. Transcription rate variation across cell lineages and during cell cycle phases govern the cell duration 

heterogeneities. (a) Schematic depiction of how transcription rate variation across cell lineages and during cell cycle 

orchestrate the correlation of TCC, TG1, and TS-G2-M in sisters, cousins, and mother-daughter pairs. (b) Correlated 

transient dynamics of Cdt1 and Geminin during G1-phase which often gets decorrelated during S and M-phases; (i) 

Experiment, and (ii) Theory. (c) Schematic depiction of the alteration in mean, SD, and CVs of the TG1 and TS-G2-M 

due to serum doses and its effect on correlation patterns of TCC vs TG1 and TCC vs TS-G2-M. (d) Inhibition of p38-

signaling can lower the mean and variance of G1 phase duration even under low serum conditions.  
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Table 1. Different model variants are considered to unravel the contributions of various factors in controlling 

heterogeneities in TCC, TG1, and TS-G2-M for mammalian cells.  

 

Model 
Type

Complete set 
of 

deterministic 
network 

interactions
(Table S2)

Nature of Fluctuations 

Intrinsic 
fluctuation

Extrinsic fluctuations

Picking Transcription 
rates from the log-

normal distributions 
(for each transcripts) 

for the starting 
mother cell in each 

lineage

Transcription rate 
variation for each 

cell 
(in S-phase)

Transcription 
rate variation for 

each cell  
(in M-phase)

Equal 
division 

of 
mother 

cells

Unequal 
division 

of 
mother 

cells

M-1 ✓ ✓ ✓ ✓ ✓ ✕ ✓
M-2 ✓ ✓ ✕ ✕ ✕ ✕ ✓
M-3 ✓ ✕ ✓ ✕ ✕ ✕ ✓
M-4 ✓ ✕ ✓ ✓ ✓ ✕ ✓
M-5 ✓ ✓ ✓ ✕ ✕ ✕ ✓
M-6 ✕ ✓ ✓ ✓ ✓ ✕ ✓

Model 
Type

Complete set 
of 

deterministic 
network 

interactions
(Table S2)

Nature of Fluctuations 

Intrinsic 
fluctuation

Extrinsic fluctuations

Picking Transcription 
rates from the log-

normal distributions 
(for each transcripts) 

for the starting 
mother cell in each 

lineage

Transcription rate 
variation for each 

cell 
(in S-phase)

Transcription 
rate variation for 

each cell  
(in M-phase)

Equal 
division 

of 
mother 

cells

Unequal 
division 

of 
mother 

cells

M-1 ✓ ✓ ✓ ✓ ✓ ✓ ✕
M-2 ✓ ✓ ✕ ✕ ✕ ✓ ✕
M-3 ✓ ✕ ✓ ✕ ✕ ✓ ✕
M-4 ✓ ✕ ✓ ✓ ✓ ✓ ✕
M-5 ✓ ✓ ✓ ✕ ✕ ✓ ✕
M-6 ✕ ✓ ✓ ✓ ✓ ✓ ✕
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