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 2 

Abstract 24 

The Neurovisceral Integration Model posits that shared neural networks support the 25 

effective regulation of emotions and heart rate, with heart rate variability (HRV) serving 26 

as an objective, peripheral index of prefrontal inhibitory control. Prior neuroimaging 27 

studies have predominantly examined both HRV and associated neural functional 28 

connectivity at rest, as opposed to contexts that require active emotion regulation. The 29 

present study sought to extend upon previous resting-state functional connectivity 30 

findings, examining HRV and corresponding amygdala functional connectivity during 31 

a cognitive reappraisal task. Seventy adults (52 old and 18 young adults, 18-84 years, 32 

51% male) received instructions to cognitively reappraise negative and neutral 33 

affective images during functional MRI scanning. HRV measures were derived from a 34 

finger pulse signal throughout the scan. During the task, young adults exhibited a 35 

significant inverse association between HRV and amygdala-medial prefrontal cortex 36 

(mPFC) functional connectivity, in which higher HRV was correlated with weaker 37 

amygdala-mPFC coupling, whereas old adults displayed a slight positive, albeit non-38 

significant correlation. Furthermore, voxelwise whole-brain functional connectivity 39 

analyses showed that higher HRV was linked to weaker right amygdala-posterior 40 

cingulate cortex connectivity across old and young adults, and in old adults, higher 41 

HRV positively correlated with stronger right amygdala – right ventrolateral prefrontal 42 

cortex connectivity. Collectively, these findings highlight the importance of assessing 43 

HRV and neural functional connectivity during active regulatory contexts to further 44 

identify neural concomitants of HRV and adaptive emotion regulation. 45 

 46 

Keywords: Heart rate variability, neurovisceral integration model, amygdala, medial 47 

prefrontal cortex, functional connectivity 48 
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1. Introduction 49 

The ability to flexibly respond to ongoing and complex changes in our 50 

environment, in both a timely and contextually appropriate manner, is crucial for 51 

successful adaptation to environmental challenges and emotion regulation (Aldao et 52 

al., 2015; Thompson, 1994). Responses to such situational demands generates a 53 

cascade of changes at both subjective (e.g., emotional states, expressions) and 54 

physiological (e.g., elevations or reductions to heart rate, sweating, heightened neural 55 

responding) levels. Heart Rate Variability (HRV), physiologically defined as the 56 

variation in time intervals between consecutive heart beats, has increasingly been 57 

employed as an objective, peripheral measure to capture individual differences in 58 

adaptive autonomic responding and self-regulatory capacity, including emotion 59 

regulation (Appelhans & Luecken, 2006).  60 

HRV reflects the predominance of the parasympathetic branch of the 61 

autonomic nervous system (ANS). Both the sympathetic and parasympathetic 62 

branches directly innervate the heart via the stellate ganglia and vagus nerve 63 

respectively (Berntson et al., 1997). Dynamic interplay between both branches 64 

produces complex variations in the heart rate period that is captured by HRV, but it is 65 

the fast, modulatory impact of the parasympathetic nervous system (via the vagus 66 

nerve) that reportedly exhibits the strongest influence on the heart’s pace maker (i.e., 67 

sinoatrial node) and subsequent variation in heart rate, particularly at rest (Berntson 68 

et al., 1997). Typically, the higher the HRV, the more adaptive and responsive the 69 

cardiovascular system is, supporting fast and flexible alterations in physiological 70 

responses to effectively manage stressors, as well as maintaining homeostasis 71 

(Shaffer & Ginsberg, 2017; but see Kogan et al., 2013 for discussion on the quadratic 72 

nature of HRV). 73 
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Several models discuss the role of HRV in adaptive psychophysiological 74 

responding (Grossman & Taylor, 2007; Laborde et al., 2018; Porges, 2007, 2011; 75 

Smith et al., 2017; Thayer & Lane, 2000, 2009). In particular, the Neurovisceral 76 

Integration Model (NIM; Smith et al., 2017; Thayer & Lane, 2000, 2009) outlines a 77 

complex and reciprocal network of neural regions that overlap to support autonomic, 78 

cognitive and affective regulatory processes. At the heart of the NIM is the ‘central 79 

autonomic network’ (CAN; Benarroch, 1993), which encompasses higher cortical 80 

structures (ventromedial prefrontal cortex, anterior cingulate cortex), subcortical limbic 81 

regions (central nucleus of the amygdala, hypothalamus) and brainstem structures 82 

(periaqueductal gray, parabrachial nucleus), forming a vital, coordinated network that 83 

facilitates autonomic function and regulation (Benarroch, 1993; Thayer et al., 2009a). 84 

The NIM posits that the prefrontal cortex exerts tonic inhibitory control over subcortical 85 

structures, and by extension the vagus nerve. As such, resting HRV is proposed to 86 

serve as an index of the effective functioning of inhibitory cortical-subcortical 87 

connectivity and CNS-ANS integration, in turn promoting adaptive self-regulation 88 

(Thayer & Lane, 2000, 2009; Thayer et al., 2009a).  89 

A growing body of neuroimaging research lends support for the NIM and the 90 

link between HRV and emotion regulation-related brain function (Mather & Thayer, 91 

2018; Sakaki et al., 2016; Schumann et al., 2021a; Steinfurth et al., 2018). Consistent 92 

with the notion that HRV serves as a measure of effective, inhibitory cortical-93 

subcortical connectivity, individuals with higher HRV exhibit stronger resting medial 94 

prefrontal cortex (mPFC)-amygdala functional connectivity (Nashiro et al., 2022; 95 

Sakaki et al., 2016). Furthermore, compared to older adults in this sample, young 96 

adults with higher HRV were discovered to have stronger amygdala-ventrolateral 97 

prefrontal cortex (vlPFC) connectivity (Sakaki et al., 2016). Relatedly, a study 98 
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conducted by Kumral et al. (2019) found that young adults with higher resting HRV 99 

exhibited stronger bilateral ventromedial prefrontal cortex (vmPFC) connectivity, with 100 

this vmPFC seed demonstrating further extended functional connectivity with several 101 

CAN regions. Increasing HRV via biofeedback (e.g., slow breathing, Lehrer & Gevirtz, 102 

2014) has also been shown to elevate resting-state functional connectivity of the 103 

prefrontal cortex to neural regions implicated in emotional processing (Schumann et 104 

al., 2021a). Specifically, increasing HRV via an 8-week HRV biofeedback intervention 105 

was reported to enhance resting-state functional connectivity between the vmPFC and 106 

various regions outlined in the NIM, including the amygdala, middle cingulate cortex, 107 

anterior insula, and lateral PFC (Schumann et al., 2021a). Interestingly, only a few 108 

studies to date have assessed HRV and associated neural activity during tasks that 109 

require emotional or self-regulatory processes. One study discovered that higher 110 

resting HRV was related to increased vmPFC activation during an effortful self-control 111 

dietary task in young adults (Maier & Hare, 2017). Using a voluntary emotion 112 

regulation paradigm, Steinfurth et al. (2018) reported that young adults with higher 113 

HRV more effectively recruited the dorsal medial prefrontal cortex to modulate 114 

amygdala responses via reappraisal. In summary, many of the brain areas identified 115 

in HRV neuroimaging studies overlap with regions involved in supporting automatic 116 

and voluntary emotion regulatory processes (Morawetz et al., 2020; Wager et al., 117 

2008).  118 

Nonetheless, it is evident that previous research has largely focused on HRV 119 

and neural functional connectivity predominantly during rest (i.e., in the absence of an 120 

explicit task), with considerably fewer studies focusing on explicit emotion regulation. 121 

Resting-state paradigms have recently received criticism in the literature, especially in 122 

relation to the utility, interpretability and reliability of neural findings observed under 123 
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resting-state contexts (Finn, 2021). Indeed, the state of ‘rest’ is increasingly being 124 

recognised as a ‘task’ in and of itself, with many unconstrained, internal state factors 125 

contributing to diverse cognitive states (Finn, 2021). Recent evidence has highlighted 126 

the potential advantage of demands imposed by task engagement, and how such 127 

demands may constrain underlying neural functional connectivity to reduce variance 128 

related to aforementioned internal state factors, in turn increasing sensitivity to detect 129 

individual differences of interest (Finn & Bandettini, 2021). Crucially, since the NIM 130 

emphasises the role of the inhibitory cortical-subcortical circuitry in supporting 131 

adaptive self-regulation, examining HRV and associated functional connectivity in 132 

contexts that require active engagement of emotion regulatory processes may help to 133 

further our understanding of heart-brain function in supporting emotion regulation. 134 

In the current study, we sought to extend on previous resting-state functional 135 

connectivity findings, examining associations between pulse-derived HRV and neural 136 

functional connectivity whilst participants actively engaged in a voluntary emotion 137 

regulation task in the scanner. On the basis of prior findings, we hypothesised that 138 

HRV would be positively associated with functional connectivity between the 139 

amygdala and a region of the mPFC previously associated with HRV (Sakaki et al., 140 

2016). Specifically, we predicted that old and young adults with higher HRV would 141 

exhibit stronger positive amygdala-mPFC functional connectivity during a cognitive 142 

reappraisal task. Given that pulse recordings were obtained concurrently in the 143 

scanning session with the reappraisal task, our primary focus was to examine the 144 

relationship between HRV and amygdala connectivity in an emotion regulation 145 

context, adopting a functional connectivity analysis similar to that performed on 146 

resting-state data (e.g., calculating functional connectivity during the reappraisal task). 147 

However, for conceptual replication and comparative purposes, we further assessed 148 
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pulse-derived HRV and associated resting-state functional connectivity acquired 149 

during an initial scanning session that took place 1-2 weeks prior to the session where 150 

the HRV measures were obtained (further details and results are presented in the 151 

Supplementary Material). 152 

 153 

2. Materials and Method 154 

2.1. Participants 155 

Participants in the current study were derived from a larger sample of 91 156 

subjects (71 old adults, 20 young adults) previously recruited as part of an ageing 157 

research project (Lloyd et al., 2021; https://openneuro.org/datasets/ds002620). All 158 

participants were recruited via the University of Reading’s Older Adult Research Panel 159 

and through local poster and newspaper advertisements in Reading. Participants 160 

received financial compensation (£7.50 per hour) for their participation. From the 161 

overall sample, 74 participants (55 old adults, 19 young adults) had both emotion 162 

regulation task-based functional magnetic resonance imaging (fMRI) and pulse data. 163 

Figure 1 illustrates the participant selection and exclusion process. Following 164 

exclusion, 70 participants (52 old and 18 young adults, aged 18-84 years, M age = 165 

58.27 years, SD = 20.33; 51% male) were considered for analyses (see Table 1 for 166 

details per age group). 167 

All participants were right-handed and reported no history of neurological 168 

disorder. Medical history and medication details were obtained for the older adults 169 

only. Of the older adults included in the study (N = 52), 15 disclosed taking regular 170 

medication for blood pressure and/or cardiovascular health: statins (N = 8), 171 

angiotensin-converting enzyme inhibitors (N = 2), angiotensin receptor blockers (N = 172 

2), calcium channel blockers (N = 2) and beta-blockers (N = 1). The remaining 37 173 
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participants did not report use of medication related to cardiovascular health. 174 

Furthermore, 21 participants reported having experienced a cardiovascular health 175 

condition: high blood pressure (N = 12), high cholesterol (N = 6) and mini-stroke (N = 176 

3). Given that we did not observe significant differences in HRV between those taking 177 

cardiovascular medication (t(50) = -0.46, p = .647, d = -0.14) and those who disclosed 178 

a history of cardiovascular disease (t(50 = -0.70, p = .485, d = -.20), with participants 179 

that did not report use of cardiovascular medication and/or a history of cardiovascular 180 

disease, we opted to retain these older adults in the analyses. 181 

The research study from which the current sample was derived was carried out 182 

in accordance with the Declaration of Helsinki (1991, p.1194). The study’s procedures 183 

were given a favourable ethical opinion of conduct by the University of Reading’s 184 

Ethics Committee and NHS Research Ethics Service. Participants provided written 185 

informed consent prior to their participation. 186 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Participant selection and exclusion process. Participants were selected from a larger pool 
of subjects recruited as part of a wider ageing study.   
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2.2. Materials and Procedure 187 

2.2.1. Cognitive Reappraisal Task 188 

Participants engaged in a voluntary emotion regulation task during the scan, 189 

which followed an established cognitive reappraisal paradigm employed by previous 190 

research (e.g., van Reekum et al., 2007). A detailed description of the reappraisal task 191 

and stimuli can be found in Lloyd et al. (2021). 192 

The cognitive reappraisal task comprised of 96 trials in total, in which 72 193 

negative and 24 neutral pictures obtained from the International Affective Picture 194 

System (IAPS; Lang et al., 2008) were presented. On a given trial, participants were 195 

instructed to either “suppress” (decrease), “enhance” (increase), or “maintain” their 196 

emotional response and attend to the negative image presented (neutral images were 197 

always paired with the “maintain” instruction). The “suppress” instruction involved 198 

imagining an outcome less negative than the participant’s original thoughts and/or 199 

feelings towards the image, whilst “enhance” required imagining a worse or more 200 

negative outcome than originally experienced. In the “maintain” condition, participants 201 

were instructed to simply attend to the image and sustain their emotional response. 202 

Following the presentation of the picture and engagement in the relevant auditory 203 

regulation instruction, participants were asked to rate the picture via a 4-button MR-204 

compatible button box held in the participant’s right hand. 205 

 The scanning procedure was distributed across four identical runs, with 24 206 

trials in each run. The duration of each run was approximately 7 minutes, with rest 207 

breaks offered between runs, leading to an overall task duration of approximately 30 208 

minutes.  209 

 210 

2.2.2. General Procedure 211 
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Participants were invited to attend two different sessions within the Centre for 212 

Integrative Neuroscience and Neurodynamics (CINN) at the University of Reading. 213 

The first session comprised an initial scanning protocol to obtain anatomical T1-214 

weighted (T1w) structural scans, localisers and a resting-state scan, whereby 215 

participants were instructed to maintain their gaze on a fixation cross presented in the 216 

middle of the screen (rsfMRI scan duration of 10 minutes, 11 seconds). Participants 217 

also engaged in several cognitive tasks outside of the scanner which are summarised 218 

elsewhere (Lloyd et al., 2021). The first session had an overall duration of 219 

approximately three hours (1 hour scanning time). Participants were invited back for a 220 

second session which took place a few days (two weeks maximum) after the first 221 

session. In the second session, further anatomical (T1w) scans were acquired and 222 

participants performed two tasks whilst in the scanner: the cognitive reappraisal 223 

(emotion regulation) task and an emotional faces processing task. The participant’s 224 

pulse was recorded throughout the scan. The overall duration of the second session 225 

was approximately two hours (1 hour scanning time). 226 

 227 

2.3. Data Reduction and Analysis 228 

2.3.1. HRV Processing and Analysis 229 

A pulse signal was continuously recorded via an MRI-compatible pulse 230 

oximeter clip attached to the participant’s left finger throughout the scanning session, 231 

including breaks (sampling rate = 50 Hz). The pulse oximeter was integrated with the 232 

Siemens Magnetom Trio MRI scanner, from which the raw pulse signal was 233 

subsequently extracted. 234 

The raw pulse files underwent visual inspection for quality and usability prior to 235 

pre-processing and were formatted to read into LabChart software (version 8.1.11; AD 236 
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Instruments, Oxford, UK). Initial manual edits within LabChart involved cutting the 237 

beginning and/or end of the file where flatlines and/or obvious calibration and motion-238 

related noise were visually detected. Subsequently, LabChart files were converted and 239 

exported into LabChart text files to ensure compatibility with Kubios HRV Analysis 240 

software (version 2.2; Biosignal Analysis and Medical Imaging Group, University of 241 

Kuopio, Finland; Tarvainen et al., 2014). Further processing of the pulse signal and 242 

calculation of HRV measures were performed within Kubios. Taking into consideration 243 

variation in breaks between runs and tasks, alongside the quality of the pulse signal, 244 

participants had somewhat varying durations of pulse signal for analysis (range 17-76 245 

minutes, M duration = 51 minutes). Occasionally, the automated peak detection 246 

feature either misplaced or missed the peak, thus resulting in manual corrections to 247 

either place or (re)move markers to the peak of the pulse waveform. Following manual 248 

corrections, data were artefact-corrected using the “low” threshold setting (350 ms) 249 

across all participants to retain as many natural variations between heart beats as 250 

possible.  251 

The Root Mean Square of Successive Differences (RMSSD), measured in 252 

milliseconds, and High-Frequency HRV (HF-HRV), defined using a frequency band of 253 

0.15 – 0.40 Hz, measured in absolute power (ms2, Fast Fourier Transform) were 254 

calculated within Kubios. Both measures were natural log transformed (ln) to correct 255 

for positive skew within RStudio (version 1.4.1106) using the ‘log’ command from the 256 

base package (v3.5.2). Despite variation in pulse duration, this did not demonstrate a 257 

significant correlation with either raw RMSSD (r = -.04, p = .747) or natural log 258 

transformed RMSSD (r = .02, p = .840) values across participants (N = 70). Whilst 259 

RMSSD and HF-HRV metrics reflect parasympathetic vagal control, the RMSSD is a 260 

primary and robust measure of vagal tone (Kleiger et al., 2005), that is generally less 261 
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susceptible to physiological noise, including respiratory influence (Hill et al., 2009). 262 

Also, given that both natural log transformed HRV measures exhibited a strong 263 

positive association in the current study (r = .98, p < .001), we proceeded with the 264 

(ln)RMSSD as our primary HRV metric for all analyses.  265 

 266 

2.3.2. MRI Image Acquisition 267 

Structural and blood oxygenation level dependent (BOLD) functional imaging 268 

data were acquired using a 3T Siemens Magnetom Trio MRI scanner with a 12-269 

channel head coil (Siemens, Healthcare, Erlangen, Germany) contained within the 270 

CINN at the University of Reading. For each participant, a 3D structural MRI was 271 

obtained via a T1-weighted sequence (Magnetization Prepared Rapid Acquisition 272 

Gradient Echo (MPRAGE)), repetition time (TR) = 2020 ms, echo time (TE) = 3.02 ms, 273 

inversion time (TI) = 900 ms, flip angle 9°, field of view (FOV) = 250 x 250 x 192 mm, 274 

resolution = 1 mm isotropic, acceleration factor = 2, averages = 2, acquisition time = 275 

9 minutes, 7 seconds). The emotion regulation fMRI data were obtained in four blocks 276 

of identical procedure, using an echo planar imaging (EPI) sequence (211 whole-brain 277 

volumes, 30 sagittal slices with P>A phase encoding, slice thickness = 3.0 mm, slice 278 

gap = 33%, TR = 2000 ms, TE = 30 ms, flip angle = 90°, FOV = 192 x 192 mm2, 279 

resolution = 3 mm isotropic, acquisition time = 7 minutes 10 seconds per block). The 280 

structural and emotion regulation fMRI task data are publicly available on OpenNeuro: 281 

https://openneuro.org/datasets/ds002620/versions/1.0.0. 282 

 283 

2.3.3. MRI Data Pre-processing 284 

Functional imaging data were pre-processed and analysed using FMRIB’s 285 

Software Library (FSL, version 6.0; www.fmrib.ox.ac.uk/fsl; Jenkinson et al., 2012; 286 
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Woolrich et al., 2009; Smith et al., 2004) and Analysis of Functional NeuroImages 287 

(AFNI, version 19.3.03; http://afni.nimh.nih.gov/afni; Cox, 1996). Initial pre-processing 288 

steps included: skull stripping (non-brain removal) using FSL’s brain extraction tool 289 

(BET; Smith, 2002), motion correction using MCFLIRT (Jenkinson et al., 2002), field-290 

map correction to correct for potential magnetic field inhomogeneity distortions, spatial 291 

smoothing using a Gaussian kernel with a full-width half maximum (FWHM) of 5 mm 292 

and high-pass temporal filtering (Gaussian-weighted least squares straight line fitting 293 

with sigma = 50 s). Each subject’s native image was normalised to Montreal 294 

Neurological Institute (MNI) space via co-registration to their high resolution T1-295 

weighted image. 296 

Application of FSL’s MELODIC Independent Components Analysis (ICA; 297 

Beckmann & Smith, 2004) separated the fMRI BOLD signal into a set of spatial maps 298 

(independent components) representing neural signal and/or noise. Independent 299 

components containing structured temporal noise, including scanner and hardware 300 

artefacts, physiological artefacts (respiratory and/or cardiac noise), and motion-related 301 

noise were identified via visual inspection and removed using the FSL command line 302 

tool ‘fslregfilt’ for each emotion regulation task run (Griffanti et al., 2017). An average 303 

percentage of 72.07% components were removed across the four runs. This is 304 

generally in line with previous research that has typically identified >70% noise versus 305 

signal components in standard sequences at 3T (Griffanti et al., 2017).  306 

Following ICA filtering, low bandpass filtering was applied to the fMRI data 307 

using AFNI’s ‘3dBandpass’ tool (Cox, 1996) to further remove confounding signals 308 

below 0.009 Hz and above 0.1 Hz. Prior to analysis, each subject’s corresponding 309 

mean functional timeseries image was added back to the bandpass filtered data using 310 

fslmaths to ensure compatibility with FSL’s FMRI Expert Analysis Tool (FEAT).  311 
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2.3.4. Functional Connectivity Analysis 312 

Regions of interest (ROIs) were separate right and left amygdala seeds, and 313 

an area of the mPFC previously found to be correlated with HRV (Sakaki et al., 2016). 314 

Separate amygdala ROIs were selected given recent discrepancies in amygdala 315 

lateralisation with the mPFC as a function of HRV (Nashiro et al., 2022; Sakaki et al., 316 

2016), and also observed lateralisation effects highlighted in previous research 317 

concerning emotion processing and regulation (Baas et al., 2004; Yang et al., 2020). 318 

Amygdala ROI masks were defined using the Harvard-Oxford Subcortical Probability 319 

atlas and thresholded at 80% probability. The mPFC ROI employed by Sakaki et al. 320 

(2016) and in the present study was derived from a significant cluster previously 321 

correlated with memory positivity (Sakaki et al., 2013), containing voxels from anterior 322 

cingulate cortex (ACC) and paracingulate gyrus (Harvard-Oxford atlas), thresholded 323 

at 25% probability.  324 

All ROI masks (right and left amygdala, mPFC) were first transformed to each 325 

participant’s native functional space using FSL’s Apply FLIRT Transform ‘ApplyXFM’ 326 

and binarised. Subsequently, the mean time series for each ROI was extracted from 327 

the four separate emotion regulation runs for each participant using ‘fslmeants’.  328 

Separate first-level regression analyses were performed for each ROI using 329 

FEAT (Woolrich et al., 2001). Similar to a functional connectivity analysis typically 330 

performed on resting-state data, individual FEAT models included the mean time 331 

series extracted from the specific ROI and regressors of no interest, specifically: FSL’s 332 

six standard head-motion parameters, and average white matter and ventricular (CSF) 333 

signal. Average signal from white matter and CSF was extracted from masks 334 

generated via segmentation of each participant’s high resolution T1w image using 335 

FSL’s FAST algorithm (Zhang et al., 2001).  336 
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Inclusion of global signal regression (GSR) has received scrutiny in the 337 

literature (Murphy et al., 2009; Murphy & Fox, 2017; Uddin, 2017). Given the 338 

controversy and lack of consensus surrounding GSR, we decided not to include GSR 339 

as a regressor in the model. Importantly, we did not include the task design as a 340 

regressor in our model either. It is recognised that not including the task design as a 341 

regressor in task-based functional connectivity analyses can result in spurious 342 

correlations and systematic inflation of functional connectivity estimates due to task-343 

induced coactivations (Cole et al., 2019). However, the overarching aim of the present 344 

study is to examine HRV and associated neural functional connectivity in a voluntary 345 

emotion regulation context. Since HRV is closely related to, and considered a metric 346 

of, regulatory processes, including the task design as a regressor would remove 347 

variance of interest and relevance to the aim of our study. Furthermore, not regressing 348 

the task design has been reported to increase the reliability of functional connectivity 349 

measures (Cho et al., 2021), whilst other studies have found that inclusion versus non-350 

inclusion of the task design in task-based connectivity analyses does not appear to 351 

significantly change the overall pattern of the functional connectivity findings reported 352 

(Cao et al., 2018; Finn, 2021; Kraus et al., 2021). 353 

Prior to group-level analyses, a second-level fixed effects analysis using FSL’s 354 

FEAT was applied to the emotion regulation task-based fMRI data to collapse the ROI 355 

connectivity maps across the four task runs1. This generated positive and negative 356 

mean contrast of parameter estimates (COPE) images for input to higher-level 357 

analyses. 358 

 359 

 
1 Two participants were missing the final run of the emotion regulation task (run 4), so ROI 
connectivity maps were averaged across the three available task runs (runs 1-3) for these 
participants. 
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2.3.5. Amygdala-mPFC Functional Connectivity Analyses 360 

Beta values from right and left amygdala (positive COPE) connectivity maps 361 

were extracted using FSL’s Featquery, with the mPFC seed as the reference mask. 362 

The corresponding mean parameter estimates served as an index of amygdala-mPFC 363 

connectivity strength.  364 

 365 

2.3.6. Whole-Brain Functional Connectivity Analyses 366 

Given the heterogeneous neurological profiles often observed in ageing brains 367 

(Chen et al., 2016), and the larger sample of older adults recruited in the current study, 368 

we performed whole-brain functional connectivity analyses for all ROIs across the 369 

whole sample, including age as a blocking factor in the analyses, and further 370 

performed separate whole-brain analyses restricted to the older adult sample only. 371 

This allowed us to be more inclusive in our search for functionally-relevant regions 372 

associated with HRV that may have been excluded or otherwise missed using a ROI 373 

approach. Furthermore, the decision to run separate whole-brain connectivity 374 

analyses restricted to the old adult sample was primarily driven by the unequal number 375 

of old relative to young adults (and the comparative small sample size of the young 376 

adult group), along with the strong effect of biological age on HRV (Agelink et al., 2001; 377 

Russoniello et al., 2013). 378 

Whole-brain group analyses were performed using FSL’s FEAT (Woolrich et 379 

al., 2004). Separate FMRIB’s Local Analysis of Mixed Effects (FLAME) whole-brain 380 

analyses were carried out for each seed region. The general linear model (GLM) 381 

included four explanatory variables: group mean and three predictors, HRV 382 

(lnRMSSD, centred), age (effect coded using +1 and -1 to define old and young adult 383 

groups respectively) and a HRV by age interaction term (lnRMSSD centred x age 384 
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group). Seven contrasts were entered into the model: group mean, HRV, age and the 385 

HRV by age interaction term (positive and negative contrasts for each EV). Clusters 386 

surviving a threshold of Z > 3.1 and correction for multiple comparisons with Gaussian 387 

random field theory (cluster significance: p = 0.05-corrected) were identified (Worsley, 388 

2001). The locations of significant clusters that survived correction were labelled using 389 

the Harvard Oxford Cortical Structural and Subcortical atlases in MNI space within 390 

FSL. Mean parameter estimate (beta) values from significant clusters that emerged 391 

as a main effect of HRV were extracted for visualisation purposes.  392 

 393 

3. Results 394 

3.1. Descriptive Statistics 395 

Table 1 summarises general descriptives for the whole sample and for old and 396 

young adult age groups separately. HRV significantly differed by age group, such that 397 

older adults demonstrated significantly reduced HRV as indexed by lower (ln)RMSSD 398 

values (M = 3.92, SD = 0.55), in comparison to young adults (M = 4.29, SD = 0.44), 399 

F(1,66) = 6.06, p = .016, ηp
2 = 0.08. However, there was no significant difference in 400 

(ln)RMSSD values between females (M = 4.07, SD = 0.52) and males (M = 3.96, SD 401 

= 0.57) across the whole sample, F(1,66) = 0.09, p = .764, ηp
2 = 0.00, nor was there a 402 

significant interaction between age group and sex on (ln)RMSSD values, F(1,66) = 403 

0.15, p = .698, ηp
2 = 0.00. Thus, no significant differences in HRV related to sex were 404 

observed in the present study (see Figure S1 in the Supplementary Material). 405 

Additionally, there was a significant difference in the mean RR interval (t(68) = 2.06, p 406 

= .044, d = 0.56), but no significant difference in mean heart rate (t(18) = -1.64, p = 407 

.117, d = -0.68) between old and young adults. 408 
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3.2. HRV and Amygdala-mPFC Functional Connectivity Analysis 409 

Multiple regression analyses were employed to examine associations between 410 

HRV and amygdala-mPFC functional connectivity strength in the whole sample. 411 

Separate multiple regression models were tested with (i) right amygdala-mPFC 412 

connectivity and (ii) left amygdala-mPFC connectivity values as dependent variables. 413 

A segregation in age (years) was observed between the old and young adults, leading 414 

to a natural formation of two separate age groups (see Figure S2 in the Supplementary 415 

Material). We therefore entered age as a categorical predictor in the regression 416 

models. The following predictors were entered into the regression model: age group 417 

(1 = old adults, 0 = young adults), (ln)RMSSD (centered), and a HRV x age interaction 418 

Table 1 

Descriptive Statistics for Age, Sex, HRV-Related Metrics and Amygdala-mPFC Connectivity Across the 

Whole Sample and for Old and Young Adult Sub-Samples  

 

 

 

Whole Sample (N = 70) 

M (SD) 

 

Old Adults (N = 52) 

M (SD) 

 

Young Adults (N = 18) 

M (SD 

 

Age 

 

58.27 (20.33) 

 

69.34 (8.08) 

 

26.28 (4.75) 

Age Range 18 – 84 years 55 – 84 years 18 – 35 years 

Sex (%) 49% female, 51% male 44% female, 56% male 61% female, 39% male 

lnRMSSD (ms) 4.01 (0.54) 3.92 (0.55) 4.29 (0.44) 

Heart Rate (BPM) 67.60 (17.64) 64.61 (9.78) 76.24 (29.48) 

RR Interval (ms) 937.73 (156.19) 959.80 (141.43) 873.97 (182.24) 

Right amygdala-mPFC 

Connectivity (Parameter estimate) 

0.03 (0.13) 0.02 (0.11) 0.05 (0.16) 

Left amygdala-mPFC Connectivity 

(Parameter estimate) 

0.03 (0.11) 0.02 (0.10) 0.05 (0.11) 
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term2. In each model, age group and HRV were entered first (step 1), followed by the 419 

HRV x age interaction predictor (step 2). Standardised beta coefficients are reported 420 

for all predictors. 421 

 422 

3.2.1. HRV and Right Amygdala-mPFC Functional Connectivity 423 

Neither age (β = -0.12, t = -0.94, p = .350) or HRV (β = -0.02, t = 0.14, p = .886) 424 

contributed significantly to the overall regression model, F(2,67) = 0.45, p = .637, 425 

explaining only 1.3% of the variance in right amygdala-mPFC functional connectivity. 426 

Entering the HRV x age interaction term into the model improved the proportion of 427 

variance explained in right amygdala-mPFC connectivity (ΔR2 = 0.13, F(3,66)= 3.62, 428 

p = .018). The interaction between HRV and age was found to significantly predict 429 

right amygdala-mPFC functional connectivity strength (β = 0.86, t = 3.14, p = .003). 430 

Follow-up regression models indicated that the younger adults appeared to drive this 431 

interaction, such that young adults with higher HRV exhibited significantly weaker right 432 

amygdala-mPFC functional connectivity (β = -0.54, t = -2.54, p = .022), whereas old 433 

adults demonstrated a slight positive, albeit non-significant, association between HRV 434 

and right amygdala-mPFC connectivity during the task (β = 0.17, t = 1.24, p = .222) 435 

(Figure 2a). 436 

 437 

3.2.2. HRV and Left Amygdala-mPFC Functional Connectivity 438 

Similar to the right amygdala-mPFC functional connectivity findings, HRV (β = 439 

-0.03, t = -0.26, p = .797) and age (β = -0.09, t = -0.73, p = .466) did not contribute 440 

significantly to the overall model, F(2,67) = 0.27, p = .764, and explained very minimal 441 

 
2 To reduce the influence of multicollinearity that can occur between the original variables and the 
subsequent interaction that is comprised of those variables, the HRV x age interaction term was 
calculated by multiplying the centered (ln)RMSSD scores by the dummy coded age group.  
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variance (0.8%) in left amygdala-mPFC functional connectivity strength. However, 442 

when the HRV x age interaction term was entered into the model, this improved the 443 

proportion of variance explained in left amygdala-mPFC connectivity (ΔR2 = 0.08), 444 

although the overall model remained non-significant, F(3,66) = 2.07, p = .112. The 445 

HRV x age interaction was found to predict left amygdala-mPFC connectivity strength 446 

(β = 0.67, t = 2.38, p = .020). Follow-up regression models per age group revealed 447 

younger adults to drive this significant interaction, whereby greater HRV significantly 448 

predicted weaker left amygdala-mPFC functional connectivity in young adults (β = 449 

0.51, t = -2.37, p = .031). Conversely, a non-significant, weak positive association 450 

between HRV and left amygdala-mPFC connectivity strength was observed in old 451 

adults (β = 0.10, t = 0.74, p = .461) (Figure 2b). 452 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R 

X = -1 

Y = -4 R 

X = -1 

Y = -4 

A)  B)  

Figure 2. HRV and amygdala-mPFC functional connectivity during the reappraisal task. A) mPFC seed (top) 
and right amygdala seed (bottom). Significant HRV x age interaction for right amygdala-mPFC connectivity 
strength. In young adults (light green), higher HRV significantly predicted weaker connectivity between the right 
amygdala and mPFC, whereas a slight positive, albeit non-significant, association between HRV and right 
amygdala-mPFC connectivity was observed in the old adults (purple). B) mPFC seed (top) and left amygdala 
seed (bottom). Significant HRV x age interaction for left amygdala-mPFC connectivity strength. Similar to the 
right amygdala connectivity findings, in young adults, greater HRV significantly predicted weaker left amygdala-
mPFC connectivity, whereas a non-significant, weak positive association between HRV and left amygdala-
mPFC connectivity was observed in the old adults during the reappraisal task. (ln)RMSSD; natural log 
transformed root mean square of successive differences. 
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3.3. Whole-Brain Functional Connectivity Analyses 453 

3.3.1. Right Amygdala Whole-Brain Functional Connectivity 454 

Significant clusters surviving correction as a main effect of HRV for the right 455 

amygdala whole-brain functional connectivity analyses are displayed in Table 2. 456 

Across old and young adults, higher HRV was associated with weaker right amygdala 457 

connectivity between the right angular gyrus (extending into right superior lateral 458 

occipital cortex), and bilateral posterior cingulate gyrus (Z > 3.1, p = 0.05-corrected). 459 

A scatterplot displaying beta values extracted from the bilateral posterior cingulate 460 

gyrus cluster with HRV are displayed in Figure 3. No other clusters survived correction 461 

for the positive HRV contrast, nor for positive or negative HRV by age interaction 462 

contrasts across the whole sample. 463 

 

 

 

 

 

 

 

 

 

 

 

 

 

R X = 6 Z = 32 

5.0 

3.1 

A)  B)  

Figure 3. A) Significant bilateral posterior cingulate cortex (PCC) cluster that survived correction as a main effect for the 
negative HRV contrast in the right amygdala whole-brain analysis (Z > 3.1, p = 0.05-corrected). B) Scatterplot displays 
the inverse association between HRV ((ln)RMSSD) values and standardised beta values depicting right amygdala-
bilateral PCC connectivity strength in the whole sample during the reappraisal task in old and young adults (N = 70). Note 
that the different colours assigned to old (purple) versus young (light green) adult age groups are depicted for display 
purposes only. (ln)RMSSD; natural log transformed root mean square of successive differences. 
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Repeating this analysis on the old adult sample only, a significant main effect 464 

of HRV emerged, such that higher HRV was positively correlated with stronger 465 

functional connectivity between the right amygdala and the right inferior frontal gyrus, 466 

a cluster forming part of the right ventrolateral prefrontal cortex (vlPFC). A scatterplot 467 

displaying beta values extracted from this right vlPFC cluster with HRV are displayed 468 

in Figure 4. Moreover, for the HRV negative contrast, higher HRV was associated with 469 

weaker right amygdala connectivity with several regions, including bilateral superior 470 

lateral occipital cortex extending into left angular and supramarginal gyrus, and 471 

bilateral precuneus.  472 

 

 

 

 

 

 

Figure 4. A) Significant right inferior frontal gyrus (vlPFC) cluster that survived correction as a main effect for the 
positive HRV contrast in the right amygdala whole-brain analysis restricted to the old adult sample (Z > 3.1, p = 0.05-
corrected). B) Scatterplot displays the positive association between HRV ((ln)RMSSD) values and standardised beta 
values depicting right amygdala – right vlPFC connectivity strength in the old adult sample (controlling for age). 
(ln)RMSSD; natural log transformed root mean square of successive differences. 

5.0 

3.1 R X = 46 Z = 14 

A)  B)  
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Table 2  

Neural Regions and Local Maxima for Right Amygdala Whole-Brain Connectivity   

    MNI 

Coordinates 

 

Region H Cluster 

Size 

BA x y z Z 

        

HRV + (old and young adults)        

No significant results        

HRV - (old and young adults)        

Angular Gyrus extending into 

Superior Lateral Occipital Cortex R 103 

 

39 

 

40 -58 16 5.89 

 R   56 -66 24 3.30 

Posterior Cingulate Gyrus R 87 23 6 -40 32 5.12 

 R   2 -42 34 4.59 

 L   0 -38 26 4.29 

 R/L   0 -40 30 4.06 

 L   -4 -48 34 3.59 

HRV x Age Interaction + (old and young 

adults) 
  

 
    

No significant results        

HRV x Age Interaction – (old and young 

adults) 
  

 
    

No significant results        

HRV + (old adults)        

Inferior Frontal Gyrus  R 111 46 46 32 14 4.16 

 R   52 34 10 3.82 

Frontal Pole R   48 44 2 3.76 

 R   58 38 12 3.76 

Inferior Frontal Gyrus R  45 54 24 12 3.49 

 R  44 52 20 12 3.25 

HRV - (old adults)        
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3.3.2. Left Amygdala Whole-Brain Functional Connectivity 473 

No significant clusters survived correction as a function of HRV for left 474 

amygdala functional connectivity in the whole sample (Z > 3.1, p = 0.05-corrected), 475 

suggesting that HRV did not covary with left amygdala whole-brain functional 476 

connectivity across old and young adults throughout the reappraisal task.  477 

When the left amygdala voxelwise whole-brain search was restricted to the old 478 

adult sample, a significant positive main effect of HRV was observed, in which higher 479 

HRV was correlated with stronger left amygdala connectivity with the right inferior 480 

frontal gyrus (vlPFC) and more extensively with the right precentral gyrus (Z > 3.1, p 481 

= 0.05-corrected). Furthermore, significant clusters also survived correction for the 482 

 

Superior Lateral Occipital Cortex 

extending into Angular Gyrus  

L 359 

 

39 -38 -62 46 4.86 

 L   -36 -76 36 4.43 

 L   -36 -70 34 4.35 

Supramarginal Gyrus L   -50 -46 46 4.33 

Angular Gyrus extending into 

Supramarginal Gyrus 
L  

 
-44 -48 38 4.26 

 L   -44 -54 44 4.24 

Precuneus R/L 159 7 2 -74 60 5.41 

 R/L   0 -64 48 3.90 

Superior Lateral Occipital Cortex R   10 -78 54 3.33 

 Neural regions that demonstrated associations with right amygdala as a function of HRV (Z = 3.1; cluster 

significance: p < 0.05, corrected). Local maxima are listed for clusters containing more than one peak. Cluster size 

refers to the number of voxels contained within a specific cluster. Coordinates (MNI space) represent location of 

clusters and their maximum Z-scores (bold) and the location of local maxima within significant clusters and their 

associated Z-statistic. The Harvard Oxford Structural Cortical and Subcortical atlases within FSL were used to label 

significant clusters. BA refers to the Brodmann Area for each cluster. The ‘R’ package label4MRI (v1.2) was used 

to generate the BA label based on the MNI coordinates. H = hemisphere (L = left, R = right). 
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negative HRV contrast, such that higher HRV correlated with reduced left amygdala – 483 

left lateral occipital cortex connectivity. Other brain regions that survived correction as 484 

a main effect of HRV for the left amygdala whole-brain functional connectivity analyses 485 

in the old adults are displayed in Table 3. 486 

 487 

3.3.3. MPFC Whole-Brain Functional Connectivity 488 

No clusters survived correction as a main effect of HRV for the mPFC seed in 489 

a voxelwise whole-brain search in the whole sample, nor when the analysis was 490 

restricted to the old adult sample (Z > 3.1, p = 0.05-corrected). Therefore, HRV did not 491 

significantly predict functional connectivity of this particular area of the mPFC during 492 

the reappraisal task.  493 
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Table 3  

Neural Regions and Local Maxima for Left Amygdala Whole-Brain Connectivity   

    MNI 

Coordinates 

 

Region H Cluster 

Size 

BA x y z Z 

        

HRV + (old and young adults)        

No significant results        

HRV - (old and young adults) 

No significant results 
  

 
    

HRV x Age Interaction + (old and young 

adults) 
  

 
    

No significant results        

HRV x Age Interaction – (old and young 

adults) 
  

 
    

No significant results        

HRV + (old adults)        

Inferior Frontal Gyrus  R 78 44 48 12 30 4.10 

Precentral Gyrus R  46 38 0 32 3.99 

 

Precentral Gyrus extending into 

Middle Frontal Gyrus 

R  

 

8 44 8 34 3.71 

Precentral Gyrus R  6 46 4 28 3.65 

 R   48 6 32 3.39 

 R  8 32 0 34 3.28 

HRV - (old adults)        

Superior Lateral Occipital Cortex L 156 39 -42 -68 44 4.25 

 L   -48 -78 36 4.14 

 L   -38 -68 40 3.87 

 L   -40 -70 36 3.83 

Angular Gyrus L   -44 -56 46 3.66 
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3.4. Resting-state Functional Connectivity 494 

In this study, resting-state fMRI was collected approximately a week prior to the 495 

emotion regulation task and associated HRV, which is not optimal to infer HRV-resting 496 

state associations. Nonetheless, for the purpose of comparing results in the task-497 

based data to resting-state, and to findings reported previously by others (Kumral et 498 

al., 2019; Nashiro et al., 2022; Sakaki et al., 2016), we have included the amygdala-499 

mPFC functional connectivity findings and a full report of whole-brain connectivity with 500 

the BOLD response in left and right amygdala ROIs in the Supplementary Material 501 

(see Tables S1-S3). The whole-brain connectivity results partially replicated prior 502 

findings, with higher HRV associated with positive left amygdala-mPFC coupling, 503 

albeit that this association did not survive thresholding or correction for multiple 504 

comparisons. 505 

 506 

4. Discussion 507 

The principal aim of the present study was to examine the relationship between 508 

HRV and neural functional connectivity whilst old and young adults engaged in a 509 

voluntary emotion regulation task. Based on the NIM (Smith et al., 2017; Thayer & 510 

Lane, 2000, 2009), we hypothesised that higher HRV would positively correlate with 511 

Angular Gyrus extending into 

Posterior Supramarginal Gyrus 
L  

 
-48 -52 42 3.59 

 Neural regions that demonstrated associations with left amygdala as a function of HRV (Z = 3.1; cluster significance: 

p < 0.05, corrected). Local maxima are listed for clusters containing more than one peak. Cluster size refers to the 

number of voxels contained within a specific cluster. Coordinates (MNI space) represent location of clusters and 

their maximum Z-scores (bold) and the location of local maxima within significant clusters and their associated Z-

statistic. The Harvard Oxford Structural Cortical and Subcortical atlases within FSL were used to label significant 

clusters. BA refers to the Brodmann Area for each cluster. The ‘R’ package label4MRI (v1.2) was used to generate 

the BA label based on the MNI coordinates. H = hemisphere (L = left, R = right).  
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stronger functional coupling between the amygdala and mPFC in an active regulatory 512 

context. In old adults, we observed a slight positive, but non-significant, association 513 

between HRV and amygdala-mPFC connectivity, partially supporting our hypothesis. 514 

Conversely, young adults displayed a stronger, inverse association, whereby higher 515 

HRV was linked to reduced functional connectivity between the amygdala and mPFC. 516 

Furthermore, in a voxelwise whole-brain search, we discovered that old and young 517 

adults with higher HRV exhibited weaker right amygdala-PCC connectivity. 518 

Interestingly, in old adults, higher HRV was associated with stronger coupling between 519 

the right amygdala and right vlPFC. Our findings indicate that HRV covaries with 520 

amygdala functional connectivity during emotion regulation, and more crucially 521 

highlight the importance of assessing HRV and brain function during an active emotion 522 

regulatory context. 523 

Functional connectivity between the amygdala and mPFC is proposed to 524 

support adaptive emotion regulation, with HRV posited to serve as a peripheral index 525 

of prefrontal inhibitory control (Thayer & Lane, 2000, 2009; Thayer et al., 2009a). In 526 

line with this proposition, prior studies have reported positive associations between 527 

HRV and amygdala-mPFC connectivity strength irrespective of age (Nashiro et al., 528 

2022; Sakaki et al., 2016). However, within the context of the emotion regulation task, 529 

we found significant interactions between age and HRV to predict both right and left 530 

amygdala coupling with the mPFC. The direction of the effect was unexpected, with 531 

the young adults driving the interaction, but in whom higher HRV was linked to weaker, 532 

rather than a strong positive, coupling between the amygdala and mPFC. It is possible 533 

that this particular region of the mPFC is more heavily recruited during rest, compared 534 

to an active emotion regulation context. Indeed, during rest, we found a sub-threshold 535 

cluster within the mPFC close to our ROI that demonstrated increased functional 536 
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connectivity with the left amygdala as a function of higher HRV across old and young 537 

adults (see Figure S3 in the Supplementary Material). Recently, Nashiro et al. (2022) 538 

also found that increases in HRV via biofeedback were correlated with stronger left, 539 

but not right, amygdala coupling with the mPFC at rest. Furthermore, prior work has 540 

found inverse amygdala-mPFC coupling when using reappraisal to decrease negative 541 

affect in a student-aged population (Lee et al., 2012). Hence, the inverse association 542 

reported here in young adults may be driven by the decrease conditions throughout 543 

the task, although at this stage these findings would require replication using a more 544 

targeted event-related connectivity analysis, which is beyond the scope of this 545 

manuscript. Taken together, our findings potentially suggest that the regulatory 546 

context can affect both the laterality and directionality of amygdala-mPFC functional 547 

connectivity associations with HRV.  548 

Furthermore, higher HRV was significantly associated with weaker right 549 

amygdala connectivity between the right angular gyrus and bilateral PCC across the 550 

emotion regulation task in old and young adults. Both the angular gyrus and PCC form 551 

major nodes of the default mode network (DMN), a neural hub implicated in 552 

autobiographical memory (Buckner & Carroll, 2007), and self-referential processing 553 

(Raichle et al., 2001). Weaker resting-state functional connectivity between the right 554 

amygdala and PCC has previously been linked to greater reappraisal success (i.e., 555 

effective down-regulation of negative emotion) in young adults (Uchida et al., 2015), 556 

whereas increased amygdala-PCC resting-state functional connectivity has been 557 

observed following exposure to an acute stressor (Veer et al., 2011). More recently, 558 

Baez-Lugo et al. (2021) reported that greater right amygdala-PCC functional 559 

connectivity following exposure to videos containing highly negative emotional content 560 

(i.e., people suffering) was significantly correlated with higher rumination, anxiety and 561 
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stress in elderly individuals (Baez-Lugo et al., 2021). Critically, those older adults who 562 

self-reported more frequent negative thoughts while watching the negative emotional 563 

videos were those who also exhibited stronger right amygdala-PCC connectivity. 564 

Considering that lower HRV has been linked to both increased rumination and emotion 565 

dysregulation (Visted et al., 2017; Williams et al., 2017), the observation of weaker 566 

right amygdala-PCC connectivity in old and young adults with higher HRV in our study 567 

may therefore reflect an increased ability to effectively engage with the emotion 568 

regulation task at hand. 569 

Finally, we found that older adults with higher HRV exhibited stronger functional 570 

connectivity between the amygdala and right vlPFC in a reappraisal context. This 571 

finding is particularly interesting since Sakaki et al. (2016) reported a similar 572 

association between HRV and amygdala-vlPFC connectivity during rest in young, but 573 

not old adults, suggesting that young adults with higher HRV were more likely to 574 

spontaneously recruit neural regions involved in explicit emotion regulation. The vlPFC 575 

has increasingly been identified as a pivotal neural region involved in emotion 576 

regulatory processes (Wager et al., 2008; Zhao et al., 2021), and is an area in which 577 

age-related differences have been reported during reappraisal (Opitz et al., 2012; 578 

Winecoff et al., 2011). The vlPFC, and lateral prefrontal cortex more broadly, is 579 

particularly vulnerable to structural and functional atrophy in healthy ageing (Fjell et 580 

al., 2009; Raz et al., 2004). The present finding suggests that higher HRV in older age, 581 

at least in a voluntary emotion regulation context, may support increased engagement, 582 

and possibly functional preservation, of lateral prefrontal cortex, specifically the right 583 

vlPFC, facilitating effective response inhibition and reappraisal of negative emotions. 584 

Although the left vlPFC has been more frequently reported in reappraisal studies 585 

(Berboth & Morawetz, 2021; Buhle et al., 2014), involvement of the right vlPFC here 586 
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may be characterised by dominance of the right hemisphere in supporting inhibitory-587 

related processes for affective, cognitive and physiological regulation more broadly 588 

(Lane et al., 2009; Thayer et al., 2009b, 2012). Irrespective of any laterality, our 589 

findings build on the extant literature on prefrontal mechanisms in reappraisal by 590 

highlighting that elevated HRV is associated with positive coupling between the 591 

amygdala and vlPFC, which may have implications for psychological wellbeing and 592 

resilience in later life.  593 

A few important limitations should be considered when interpreting our findings. 594 

Our sample comprised a larger pool of old relative to young adults, leading to an 595 

unequal age distribution. Although age was included as a predictor in our regression 596 

models, the small sample of young adults rendered any findings specific to the young 597 

group as possibly spurious and requiring replication in a larger sample. Furthermore, 598 

HRV was derived from a finger pulse oximeter whilst participants were lying down in 599 

the scanner and whilst engaging in emotion-related tasks, predominantly reappraisal. 600 

Both factors have previously been shown to elevate heart rate and HRV (Butler et al., 601 

2006; Cacioppo et al., 1994), and the use of photoplethysmography to derive HRV 602 

metrics, especially RMSSD (Schumann et al., 2021b), could have further resulted in a 603 

higher HRV estimate. Additionally, other lifestyle factors known to influence HRV 604 

measures, including smoking status, general fitness/activity level, caffeine intake and 605 

body mass index (Hayano et al.,1990; Karason et al., 1999; Sammito & Böckelmann, 606 

2016) were not obtained, therefore we cannot rule out the influence of these factors 607 

on the current findings. Future research should aim to acquire reliable heart rate 608 

recordings to derive HRV metrics both inside and outside of the scanner (Schumann 609 

et al., 2021b), alongside potential aggregation of HRV measures across contexts, to 610 
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capture variance that more strongly represents ‘trait-like’ HRV (see Bertsch et al., 611 

2012).  612 

Whilst our study augments prior findings which have heavily relied on 613 

associations between HRV and functional connectivity during rest by assessing heart-614 

brain function in an active emotion regulatory context, the current study and the 615 

majority of prior work have typically relied on relatively static functional connectivity 616 

techniques. Although a few studies have examined transient HRV changes and 617 

functional connectivity using dynamic functional connectivity (dFC) techniques such 618 

as the sliding window approach (Chand et al., 2020; Chang et al., 2013; Schumann et 619 

al., 2021a), this method is limited by its reliance on arbitrary selection of truncated time 620 

windows to assess both functional connectivity and HRV, with the latter particularly 621 

affected by the shorter duration of the measurement period (Shaffer & Ginsberg, 2017; 622 

TaskForce, 1996). It would therefore be fruitful for future research to employ novel and 623 

alternative dFC methods that overcome existing constraints (e.g., co-activation pattern 624 

analysis; Liu et al., 2013, 2018) to determine associations between HRV and dynamic 625 

neural networks underlying adaptive and flexible regulation across the lifespan. 626 

In conclusion, the current study extends prior resting-state findings by 627 

highlighting that HRV covaries with amygdala-cortical functional connectivity in the 628 

context of a voluntary emotion regulation task. Particularly, whilst our findings partially 629 

replicate amygdala-mPFC connectivity during rest to be coupled to HRV, the task-630 

based covariation between functional connectivity of amygdala-vlPFC and amygdala-631 

PCC and HRV provide further, and more direct, support of the NIM. Furthermore, the 632 

findings support the notion that HRV is linked to neural mechanisms that facilitate 633 

adaptive emotion regulation, which could have implications for wellbeing and 634 

resilience in later life. Collectively, our findings highlight the importance of assessing 635 
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neurovisceral circuitry during active regulatory contexts to further elucidate core neural 636 

mechanisms involved in supporting adaptive self-regulation as a function of HRV more 637 

broadly. 638 
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