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Problem-solving and reasoning involve mental exploration and navigation in sparse relational
spaces. A physical analogue is spatial navigation in structured environments such as a network of
burrows. Recent experiments with mice navigating a labyrinth show a sharp discontinuity during
learning, corresponding to a distinct moment of ‘sudden insight’ when mice figure out long, direct
paths to the goal. This discontinuity is seemingly at odds with reinforcement learning (RL), which
involves a gradual build-up of a value signal during learning. Here, we show that biologically-
plausible RL rules combined with persistent exploration generically exhibit discontinuous learning.
In tree-like structured environments, positive feedback from learning on behavior generates a ‘rein-
forcement wave’ with a steep profile. The discontinuity occurs when the wave reaches the starting
point. By examining the nonlinear dynamics of reinforcement propagation, we establish a quan-
titative relationship between the learning rule, the agent’s exploration biases and learning speed.
Predictions explain existing data and motivate specific experiments to isolate the phenomenon. Ad-
ditionally, we characterize the exact learning dynamics of various RL rules for a complex sequential
task.

INTRODUCTION

As we walk the streets of a city, we rapidly figure
out paths to new spots after a few times visiting them.
For nesting animals, foraging between new locations and
their nests in structured environments is an essential as-
pect of their survival. Rats constantly navigate within
a complex underground network of burrows to expand
their stores of food [1]. Navigating from point A to point
B in a structured space requires different strategies com-
pared to a similar task on a flat, open field. In the latter,
navigation often involves geometric calculations of dis-
tances and angles based on celestial cues, compasses or
landmarks. In a burrow, on the other hand, a rat needs
to learn which way to turn at each intersection and ben-
efits from understanding the relationship between places
within the network.

The relational structure of mazes offers a well-
controlled experimental paradigm to identify biologi-
cal algorithms for navigating structured environments.
Early laboratory experiments on learning algorithms,
and animal behavior at large, involved rats navigating
a maze [2–7]. Rats rapidly learn to navigate to a reward-
ing location within the maze, which often develops into a
habitual action sequence resistant to subsequent changes
such as the addition of a shortcut. These experiments
and others led to the hypothesis that learning entailed
the fixation of stimulus-response relationships due to a
reward [6–9]. A parallel set of experiments showed that
the structure of the maze could be learned during ex-
ploration without any significant reward, termed as la-
tent learning [10]. Latent learning presumably proceeds
through the formation of a ‘cognitive map’, which can be
flexibly re-used when the animal needs to generalize to a
novel situation [11–13]. This dichotomy between behav-
ioral stereotypy and flexibility is analogous to the modern

dichotomy in computational reinforcement learning (RL)
between direct and indirect learning, often implemented
using model-free and model-based methods respectively
[14–16]. However, the specific learning algorithms that
animals use to navigate and the circumstances under
which one system or the other is employed remain un-
clear.

Recent developments in deep-learning-based behav-
ioral tracking methods [17–19] allow for following mice
in labyrinthine mazes for extended periods of time. In
an elegant experiment [20], mice were allowed to navi-
gate (in the dark) an unfamiliar maze structured as a
depth-six binary tree (Figure 1a). In each experiment,
a mouse moves freely between a cage (marked as home
in Figure 1a) and the maze. Markerless pose estima-
tion [17] is used to track its movements continuously over
seven hours. Ten of the twenty mice were water-deprived
and a water reward was renewed every 90 seconds from a
port at one end of the maze (marked as a water droplet
in Figure 1a). Results recapitulate aforementioned stud-
ies: mice exhibit rapid learning and eventually execute
a quick action sequence from home to the water port.
In addition, mice persistently explore the maze with ex-
ploration biases which are remarkably consistent across
rewarded and unrewarded animals.

Intriguingly, the probability that mice take a direct
path of > 6 correct binary choices towards the water
port exhibits a sharp discontinuity, similar to an ‘a-ha’
moment of sudden insight (Figure 1b), and persists for
the rest of the experiment. This moment can occur well
after the animal acquires reward for the first time, which
distinguishes this phenomenon from one-shot learning.
Discontinuous learning curves have also been measured
in a variety of other behavioral experiments [21]. RL al-
gorithms reinforce correct actions in increments through
accumulated experience. This intuition would suggest
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that RL-based learning is presumably incompatible with
step-like learning curves. The availability of the full his-
tory of decisions made by mice within the maze presents
a unique opportunity to identify the mechanism behind
step-like learning curves.

In this manuscript, we use numerics and analytical cal-
culations to rationalize the empirically observed discon-
tinuous learning curves, and identify environmental ar-
chitectures where we should generically expect such dis-
continuities. We present four main contributions. First,
we use inverse reinforcement learning to decouple and
analyze the influence of reward-based learning on the ex-
ploratory behavior measured in ref. [20]. In this set-
ting, we show using agent-based simulations that persis-
tent exploration combined with simple RL rules repro-
duce discontinuous learning. Second, we develop a gen-
eral framework for RL-based sequence learning on tree-
structured relational graphs. We use this framework to
explain why RL algorithms will generically lead to discon-
tinuous learning curves in such structured environments.
Third, we develop a nonlinear, continuous-time model,
which accurately captures the dynamics of reinforcement
propagation in different exploration regimes. This model
extends to commonly used model-free and model-based
variants of RL, whose dynamics are analytically quan-
tified. Finally, a re-analysis of experimental data lends
further support for the theory and motivates specific ex-
periments to isolate the phenomenon.

RESULTS

Discontinuous learning in RL simulations

We begin by specifying an RL model closely following
the experimental setup of [20] (Figure 1a). The model is
defined by the states (s), how the state changes when a
certain action (a) is taken and the expected reward for
each state-action pair, r(s, a). The states determine the
information the agent can use to make a decision. Consis-
tent with the history-dependence of exploratory behav-
ior measured in experiments, we assume the agent knows
which specific intersection it is currently at and where
it is coming from. That is, the states are the directed
edges of the graph that delineates the maze in Figure 1a.
When the agent arrives at an intersection along a certain
corridor, it has three choices: it can either choose to go
along any of the corridors at that intersection or back
where it came from. A fixed reward (r) is delivered in
the corridor leading to water.

Upon finding the reward, the agent is reset at the start-
ing point (marked in Figure 1a) and the simulation is
repeated. This episodic formulation departs from the ex-
perimental setting; we find that an agent placed in an en-
vironment with delayed reward renewal (as in the exper-
iment) often learns a degenerate policy which oscillates
back and forth at the water port for the rest of the simu-
lation. Of course, a mouse recognizes that water does not
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FIG. 1. Discontinuous learning curves in mice experiments
and RL simulations. (a) A schematic of the depth-6 binary
tree maze used in experiments [20] and RL simulations. In
each episode of the simulation, the agent begins at home and
navigates the directed graph delineated by the maze (red)
until it finds the reward. Three intersections (orange, green,
yellow) that the mice have to pass through when executing
a direct path of length > 6 are marked. (b) The cumulative
number of direct paths of length > 6 (red) and acquired re-
wards (green) from an individual mouse. The rate of direct
paths shows a discontinuity at a distinctive moment (black
arrow). The dashed red line corresponds to length > 6 direct
paths to control nodes. (c) Same as in (b) for RL simulations.
See Figure S2 for more examples.

immediately reappear after it has been consumed (even
if it does not know the precise renewal time) and explores
the maze before eventually returning to the water port.
For simplicity, we have used an episodic formulation in-
stead of explicitly modeling this time delay.

An RL model is specified by the policy and the learn-
ing rule. We use a modified version of the standard
softmax policy [14], which chooses actions with a log-
probability proportional to their expected long-term re-
ward or value, q(s, a), of taking action a at state s.
Specifically, actions are chosen randomly with probability
π (a|s) ∝ eqε(s,a)+qr(s,a) upto a normalization constant.
Here, we have split q(s, a) into two terms, qε(s, a) and
qr(s, a). qε is the intrinsic value the agent receives on
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taking an action at that state and is kept fixed through-
out learning. qr is the extrinsic value, which is initially
set to zero and is modulated by reward-based learning.
Before learning, the agent makes stochastic exploratory
choices based on qε(s, a), which is presumably set by
an innate bias or guided by knowledge external to the
present task. This term is included in our RL model to
explain the observed exploratory behavior of unrewarded
and rewarded mice. As learning progresses, these ex-
ploratory choices are influenced by the reward, which bi-
ases the agent towards rewarding actions (or avoids costly
ones). The randomness of the policy is set by the mag-
nitudes of qε and qr, whereas the influence of the reward
on exploration is set by their ratio.

This split between intrinsic and extrinsic rewards al-
lows us to examine in silico the influence of a learning
rule on natural behavior. We first determine qε from the
behavior of unrewarded mice in experiments using max-
imum entropy inverse reinforcement learning (MaxEnt
IRL [22, 23], Figure S1a). MaxEnt IRL finds the maxi-
mum entropy policy and the associated reward function
that best explain observed behavioral trajectories (see
Methods and SI for a brief overview of MaxEnt IRL).
Next, we enable learning by specifying a biologically-
plausible temporal-differences learning rule [14, 24–27].
Specifically, qr is updated using the learning rule:

qr(s, a) → qr(s, a) + αδ, where (1)

δ = r − qr(s, a), at the goal state,

δ = γ⟨qr(s′, .)⟩π − qr(s, a), otherwise.

δ is the reward prediction error and the expectation above
is with respect to the policy the agent uses at the next
state (s′). The discount factor γ, which takes values be-
tween 0 and 1, is commonly used to introduce an effective
time horizon and regularize the value function. Since our
stochastic policy implicitly regularizes the value, we set
γ = 1 throughout this paper. By comparing the best fit
q values obtained from MaxEnt IRL for rewarded and
unrewarded mice, we estimate the reward as r ≈ 2 (Fig-
ure S1c,d). The remaining free parameter, α, scales the
rate of learning. Similar to the learning curves from ex-
periments shown in Figure 1b we track the cumulative
number of rewards acquired by the agent and the cumu-
lative number of long direct paths (length > 6) to the
goal from distant locations in the maze.

Simulated RL agents exhibit rapid learning similar to
those observed in experiments. Importantly, the rate of
taking a long direct path deviates discontinuously from
the default rate (i.e., as expected from pure exploration)
at a distinctive moment during learning, reproducing the
‘sudden insight’ phenomenon observed in experiments
(Figure 1c). This phenomenon is reproduced during re-
runs with variability comparable to the variability ob-
served across mice in experiments (Figure S2a). Fitting
the rate of direct paths using a logistic function, we find
that the transition can be localized to within fewer than
three trials in about half of the runs (Figure S2b).
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FIG. 2. Reinforcement waves during sequence learning on
relational graphs. (a) We consider a task where the agent
traverses the directed edges of a relational graph to navigate
from start (green) to goal (red). The direct path from start
to goal is highlighted in red. (b,c) A discontinuous learning
curve for a balanced ternary tree and a smooth learning curve
for a Manhattan-like 6 × 6 grid. In all simulations, we use
a standard softmax policy (qε = 0) with α = 0.1, r = 5.
The colors show the qr value of the best action at each state
(directed edge). The gray edges have maximum qr value less
than 10−3.

Goal-oriented navigation on tree-like relational
graphs

To identify the mechanism that underpins the sharp
transition in learning, we now develop a framework for
goal-oriented navigation on tree-like relational graphs.
We use this framework to reproduce the discontinuous
learning phenomenon, develop a mathematical theory
that captures the learning dynamics and highlight the
essential ingredients that lead to the phenomenon.

In this task, the agent traverses a relational graph (a
directed graph whose edge labels specify the action or
relationship between two states) from a fixed starting
point to a goal where it receives a reward (Figure 2a). We
track its progress in finding the direct path (highlighted
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in Figure 2a) by accumulating experience across multiple
episodes. We wish to consider graphs that capture the
core features of a structured environment such as roads
on a university campus or abstract knowledge graphs [28].
Specifically, we require: 1) discrete decision points and
choices, 2) the graph is sparse, namely, the number of
paths of comparable length to the direct path is small
(unlike a Manhattan-like grid), and 3) long, branching
side paths which lead to dead-ends.

A large class of graphs that satisfy the above three
requirements and yet sufficiently simple to allow for an
in-depth quantitative analysis are tree-structured graphs
(Figure 2a), which include the maze architecture from
the experiments. Simulating an RL agent in a balanced
ternary tree (Figure 2b), we find a sharp discontinuity in
the rate of taking the direct path from the start to the
goal. Examining the dynamics of reinforcement propaga-
tion shows that the reinforcement signal primarily prop-
agates along the direct path (Figure 2b) and that the dis-
continuity occurs precisely when the reinforcement signal
reaches the start (Movie S1). In contrast, an RL agent
in a Manhattan-like 6 × 6 grid leads to diffuse propaga-
tion of the reinforcement signal and a smooth learning
curve (Figure 2c, Movie S2). In Figures S3 and Movies
S3, S4 we present the learning curves for four additional
architectures: a binary tree where the length of the corri-
dors agent is explicitly modeled, a binary tree where the
agent is allowed to reverse its direction and two random
graphs with different sparsities. We observe discontinu-
ous learning curves for all of these architectures except
for the dense random graph, highlighting that the task
structure plays a role in whether discontinuous learning
curves are observed.

The structure of tree-like graphs enables us to identify
elements of the graph topology and learning dynamics
that lead to discontinuous learning. The key insight is
that the full complexity of sequence learning on a tree-like
graph can be reduced to analyzing the learning dynamics
on a simpler linear track with side paths represented as
single nodes, as shown in Figure 3a. Specifically, recall
that for tree-like graphs, the side paths necessarily lead to
dead-ends. On encountering a dead-end, the agent will
turn back and eventually re-encounter the direct path.
The agent’s movements in a side path can thus be repre-
sented as a single node noting that if the agent goes in,
it will surely return back. When the agent returns back
from the side path, it can either choose to go towards or
away from the goal.

We emphasize two points that allow this simplifica-
tion. First, even though we have used a single node with
reflecting boundaries to represent the side paths (Fig-
ure 3a), an agent may spend a considerable amount of
time exploring each of these side paths. Since the time
spent within the side path does not influence reinforce-
ment propagation on the direct path, we can safely as-
sume the agent spends a single step on the side path.
Note that the discontinuity in learning is sharper if we
suppose the agent spends longer than a single step in

each side path. Second, as long as the side path is suf-
ficiently long, it is unlikely that the reinforcement signal
will propagate through the entire side path and bias the
agent to go into the side path. Therefore, we may ignore
the details of the dynamics within the side path and as-
sume that the qr value of going into the side path remains
at zero. It is important to note that the agent may still
learn to turn towards the goal when exiting a side path.
The agent’s exploration biases (specified by qε) play an

important role in determining the qualitative character
of the learning dynamics. A key parameter is the prob-
ability of continuing towards the goal along the direct
path whose corresponding qε value we denote ε (Fig-
ure 2b). We have assumed a homogeneous ε for sim-
plicity. The discontinuous learning phenomenon is still
observed if this assumption is relaxed (see for example
Figure 1c where the empirically derived qε values are het-
erogeneous). By varying ε, we examine how the agent’s
initial exploration and learning dynamics depends on the
agent’s bias towards taking the correct actions. When
eε ≫ 1, the agent continues on the direct path for long
stretches and rapidly reaches the goal. In this trivial case,
the graph effectively reduces to a linear track without side
paths that stretches from the starting point to the goal.
In the opposite limit, e−ε ≫ 1, correct actions along the
direct path are rare. To make progress, the agent would
have to take constant detours towards the goal through
side paths, whose probability is set by the corresponding
value qε = ε′ (Figure 3a). Clearly, if the probability of
going towards the goal both along the direct path and
through side paths is small (e−ε′ , e−ε ≫ 1), the agent
is very unlikely to make it to the goal. Thus, whether
the agent makes any learning progress whatsoever will
depend on the exploration biases. We find that for large
graphs, the exploration statistics display three sharply
delineated regimes depending on the net probability of
going towards the goal vs back towards the start (SI). If
this net probability is negative, the ‘cautious’ agent con-
stantly returns to the starting point and does not learn
the task. When the net probability is positive, the ‘ad-
venturous’ agent on average ventures closer to the goal.
The marginal case of zero net probability leads to diffu-
sive exploration.

The mechanistic basis of discontinuous learning
curves

We now examine the learning dynamics generated by
the rule, (1), beginning with RL simulations on the re-
duced architecture shown in Figure 3a followed by a the-
oretical analysis. Since actions that lead the agent away
from the goal are never reinforced during learning, only
the qr values for continuing along the direct path to-
wards the goal (qn), and turning towards the goal when
exiting the side path (q′n) at each intersection n should
be tracked (we use n = 0 and n = N for the goal and
start respectively, see Figure 2b). Figure 3b shows qn
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and q′n at three time points (in units of 1/α episodes),
highlighting the wave-like propagation of the value, qn
(Movie S5). The learning curves show a sharp disconti-
nuity (Movie S5, Figure 3c), which occurs precisely when
this wave reaches the starting point. Total learning time
is determined by the wave’s speed, which we measure as
the number of intersections on the direct path the wave
crosses every 1/α episodes. Tracking the half-maximum
of qn, we find that the wave travels at a constant speed,
v (Movie S5). Simulations across a range of ε show the
speed saturating at v = 1 for ε ≳ 1, which decreases
to zero with decreasing ε (Figure 3d), hinting at distinct
regimes. The factors that determine the speed and profile
of the wave will be discussed in the following section.

The origin of discontinuous learning and ‘reinforce-
ment waves’ can be intuitively understood by examin-
ing how learning operates at each intersection. We high-
light three factors: 1) the correct action at an intersec-
tion is only reinforced if the action at the subsequent
intersection is reinforced, implying that the chain of re-
inforcement has to travel backwards from the goal, 2)
when an intersection is sufficiently reinforced, the proba-
bility of the correct action at that intersection increases
by a large factor as long as the reward is sufficiently large
(er+ε ≫ 1). Since the rate of traveling directly from start
to goal is the product of the probabilities of taking the
correct action at each intersection, this rate will increase
rapidly when the wave reaches the start, and 3) if the
agent is unlikely to take the correct action at a certain
intersection (e−qε ≫ 1 for that action), reinforcement
is applied through a few rare events until the intrinsic
bias is overcome, qr + qε > 0. Since the probability of
taking the correct action in turn increases rapidly with
reinforcement, the learning curve for taking the correct
action at each intersection will appear step-like.

The first factor emphasizes why we should expect the
reinforcement signal to propagate backwards from the
goal to the starting point. The second factor highlights
the fact that the observable (i.e., the probability of tak-
ing the direct path) is a steep, nonlinear function of the
underlying dynamical variables. The third point explains
why the wavefront has a steep profile (Figure 3c). Put
together, these three factors imply that when the task is
non-trivial, the wave of reinforcement marches backward
from the goal, reinforcing correct actions one intersec-
tion at a time with step-like learning at each intersection.
The observed discontinuous transition in learning occurs
when the wave reaches the starting point.

A nonlinear, continuous-time model accurately
captures the dynamics of reinforcement propagation

This intuitive picture can be made mathematically pre-
cise by examining the effects of the learning rule, (1), on
qn and q′n. We summarize the results here and refer to
the SI for full details. When α ≪ 1, we find that their
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FIG. 3. Wave-like reinforcement propagation during sequence
learning on treelike graphs. (a) An equivalent representation
of the tree-structured graph in Figure 2a highlighting the di-
rect path and the possible branches into side paths at each
intersection along the direct path. Note that while each side
path is shown as a single node with reflecting boundaries,
these represent long detours which will lead to a dead-end,
forcing the agent to turn back and eventually return to the di-
rect path. The exploration biases ε, ε′, ε′′ and the correspond-
ing reward-modulated biases qn, q

′
n, q

′′
n for the three cases of

going towards the goal on the direct path (left), towards the
goal from the side path (middle) and away from goal on the
direct path (right) are shown. (b) The learned values qn and
q′n for three snapshots showing the propagation of the rein-
forcement wave. (c) An illustration showing the discontinuity
in the probability of a direct path and the rate of rewards.
The discontinuity occurs the moment the wave hits the start-
ing point, see Movie S5. (d) The speed of the wave for a range
of ε. Smaller ε values correspond to more difficult tasks.

expected change, q̇n, q̇
′
n, over 1/α episodes is given by

q̇n = µn (σn−1qn−1 − qn) ,

q̇′n = µ′
n (σn−1qn−1 − q′n) , (2)

where µn, µ
′
n are the average number of times per episode

the agent crosses intersection n through the direct path
or the side path respectively, and σn is the probability
of continuing along the direct path at intersection n. In
general, µn and µ′

n depend on the transition probabili-
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ties and thus the values at every intersection in the graph.
The analysis is made tractable by noticing, first, that the
ratio µn/µ

′
n is determined by the relative probability of

taking the correct action at intersection n through the
direct path vs the side path. Second, no learning occurs
outside of the front and bulk of the wave. Lastly, learning
at the front of the wave only happens when subsequent
intersections are already sufficiently reinforced, which im-
plies that the agent is likely to go directly to the goal im-
mediately after crossing the front. Thus, in each episode,
the intersection at the wave’s front is crossed just once on
average, µn + µ′

n ≃ 1. This relation combined with the
expression for µn/µ

′
n fix µn, µ

′
n. The qn, q

′
n’s obtained

from numerical integration of (2) are in excellent agree-
ment with the ones from full-scale RL simulations (Figure
4a). An analysis of (2) reveals two qualitatively distinct
regimes of wave propagation with eε ≫ 1 and e−ε ≫ 1
as their asymptotic limits. We term these the expanding
and marching regimes respectively. Maze architectures
that could exhibit these two regimes are illustrated in
Figure 4b,c.

The expanding regime (eε ≫ 1) corresponds to the
trivial case where the agent is likely to traverse straight
from the starting point to the goal. (2) leads to linear
dynamics in this regime, which can be solved exactly.
We find qn(t) = rP (n, t), where P (n, t) is the regularized
lower incomplete gamma function. For large n, the half-
maximum is at n1/2 = t, which explains the speed v = 1
observed in simulations for ε ≳ 1, and the width of the
profile expands with time as

√
t.

In the marching regime (e−ε ≫ 1), the negative ε leads
to qualitatively different, non-trivial dynamics. Any step
on the direct path that has previously been reinforced
beyond |ε| is more likely to be traversed. When the re-
inforcement wave reaches an intersection p on the direct
path that is yet to be reinforced to |ε|, the reinforcement
of that step occurs through rare events until qp ≃ |ε|.
Meanwhile, the direct path for n < p is rapidly rein-
forced. The rare events at p combined with rapid re-
inforcement for n < p lead to a bottleneck at p and a
steep wave profile. Once qp reaches |ε|, it is subsequently
reinforced rapidly and qp+1 in turn begins to be slowly
reinforced through rare events. Thus, the wave ‘marches’
forward reinforcing one step at a time. Computing the
duration τ it takes to march one step will let us estimate
the speed of the wave, v = τ−1.

The duration τ can be calculated by examining the
nonlinear dynamics in the front (n = p) and bulk (n < p)
of the wave (SI). The full dynamics in the bulk plays
a role as the reinforcement received at the intersection
n = p depends on the temporal dynamics of qp−1, which
in turn depends on qp−2, and so on. However, it can
be shown that the dynamics in the bulk are linear and
exhibit self-similarity with period τ . Exploiting a con-
servation equation that results from these properties, we
compute the wave speed as

v = τ−1 =
r

r + e|ε| − 1
, (3)

which is in excellent agreement with the speed measured
in RL simulations (Figure 4d). The wave profile in the
bulk is given by qn−1(t) = r − β(r − qn(t)), where β =
−τ−1W (−τe−τ ) and W (x) is the Lambert W function.
Most of the learning at a certain intersection occurs in
≲ 1/α episodes (Figure 4e). Since the wave speed is
less than one in the marching regime, each intersection
is almost fully reinforced before the wave marches to the
next one, thus quantifying the aforementioned intuitive
argument that a step-like learning curve is observed at
each intersection.
The results are summarized in Figure 4f, which depicts

the expanding and marching regimes in addition to the
‘stalled’ regime corresponding to the exploration param-
eters where learning is largely absent.

Other learning rules lead to reinforcement waves
with altered speeds and profiles

Common variants of the SARSA rule [14] in (1) also
lead to discontinuous learning via reinforcement waves,
highlighting the generality of the phenomenon. A de-
tailed analysis of each of these variants is presented in
the SI, which we summarize here.
We find Watkins’ Q-learning, which uses a slightly

modified version of the rule (1), leads to largely sim-
ilar wave speeds and profiles. The advantage of Q-
learning is that the qr values can be learned off-policy,
i.e., the agent’s behavior is not necessarily derived from
the learned qr values. To decouple the influence of learn-
ing on behavior, we use Q-learning together with an ex-
plorative agent that disregards the learned qr values. We
find expanding waves irrespective of the exploration bias,
suggesting that expanding waves are the ‘default’ dynam-
ics without feedback in the structured environments con-
sidered here. Feedback due to learning leads to traveling
waves with steeper profiles as observed in the marching
regime. Both Q-learning and SARSA learn values from
local updates, which constrains the wave speed to be at
most one.
An alternative class of models build a model of the en-

vironment from experience, similar to a cognitive map,
and update the values offline by sampling from the model
(planning). We consider Dyna-Q, which implements a
simple version of this general idea. Specifically, Dyna-Q
first learns a model of future states and rewards for every
state-action pair it encounters during the task. At each
step, it samples np state-action-state-reward transitions
from the model and updates their corresponding values.
We show that Dyna-Q applied to our setting leads to
the same behavior as (1) with an enhanced learning rate
(1 + np)α. Intuitively, when the agent plans, learning
which otherwise occurs only through physical exploration
is sped up due to mental exploration. However, since
both physical and mental exploration employ the same
search process, the result is a simple scaling of the learn-
ing rate.
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FIG. 4. The expanding and marching regimes of wave propagation: numerics and theory (a) A snapshot of qn and q′n for
ε = ±2, shown in red and blue from RL simulations and from numerically integrating (2) respectively. (b,c) Illustrations of
how mazes with eε ≫ 1 (b) and e−ε ≫ 1 (c) can be constructed. (d) The theoretical prediction for the speed (dashed lines)
closely aligns with the speed measured in the full RL simulations. The red and blue dashed lines are aligned. (e) The change
in qn(t) when the wave passes through intersection n, shown here for ε = −2. The x-axis is centered at the moment when the
probability of taking the correct action, σ(ε+ qn) = 1/2. Note that learning at this intersection is localized to ≲ 1/α episodes.
(f) The distinct learning regimes for a range of exploration parameters. Here N = 20, ε′′ = 0. We use r = 15 for panels a,e and
r = 12 for panel f.

Another common variant with non-local updates is
SARSA combined with eligibility traces, which are an
efficient, biologically-plausible mechanism for enhancing
learning speed when rewards are sparse [14, 29]. Instead
of updating the value of the current state-action pair, el-
igibility traces effectively use the current reward predic-
tion error to also update the k most recent state-action
pairs. The exact learning dynamics can be calculated (SI)
and are qualitatively similar to the SARSA case. In the
expanding regime, eligibility traces scale the wave speed
by a factor 1+k. The speed in the marching regime has a
non-trivial, sub-linear relationship with k (Figure S4b),
which can be computed from the theory using a self-
consistent equation (SI). Intuitively, the speed increases
with k since the front of the wave receives reinforcement
from the intersection 1 + k steps along the direct path,
which has a larger value compared to the subsequent in-
tersection. In the limit k → ∞, we show that the speed
converges to a maximum v∞ = r/(|ε|+ e|ε| − 1).

The theoretical predictions for the various learning
rules are verified in simulations (Figures S4,S5).

EXPERIMENTAL TESTS

In addition to reproducing the discontinuous learning
curves observed in experiments, the theory provides pre-
dictions which can be immediately tested by re-analyzing
the data from ref. [20]. Specifically, note that the learn-
ing curves in Figure 1b correspond to the number of di-
rect paths greater than a certain length, namely, six. If
the discontinuity in the learning curves is due to a re-
inforcement wave, this discontinuity should occur at a
later time for direct paths beginning from farther nodes.
This prediction should be contrasted with an alternative
mechanism where sudden insight corresponds to the sin-
gular moment when the mouse has figured out the global
structure of the environment and uses this knowledge
to find direct paths from distant sections of the maze.
The experimental data lends support for the former hy-
pothesis, which show that the discontinuity is delayed for
longer direct paths (Figure 5a). The time delay between
these discontinuities provides an estimate of the wave
speed. The smaller rate of taking direct paths for longer
paths observed in Figure 5a can also be explained in our
framework. The reward (estimated as r ≈ 2 previously)
is not sufficiently large to fully overcome the stochas-
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FIG. 5. Wave propagation is consistent with experimental
data. (a) Theory predicts that the reinforcement wave reaches
locations further away from the goal at later times. Shown
here are the cumulative number of direct paths of lengths
at least 6, 8, 10 and 12 in orange, red, pink and purple re-
spectively for two mice. The dashed lines are direct paths to
control nodes. (b) Stochasticity in exploration and learning
dynamics can lead to the wave reaching different intersections
at different moments during learning. Shown here are direct
paths of length > 6 from three distinct intersections in the
maze (marked in Figure 1a with their respective colors) for
two mice.

tic, exploratory drive of the agent, leading to a signifi-
cantly smaller probability of taking a longer direct path.
This decreasing probability provides an estimate for the
range of wave propagation, Nrange. The theory predicts
that Nrange and the speed of wave propagation should
increase with increasing reward for e−ε ≫ 1, which can
be tested in future experiments. An intriguing possibility
is to observe the transition in speed from the expanding
to marching regimes by manipulating the exploration bi-
ases, for example by modifying the inclinations of the
T-junctions in a complex maze (as illustrated in Figure
4b,c) or manipulating the number of branches at each
intersection.

A potentially important confounding factor for observ-
ing a single, distinct discontinuity in the learning curves
is when multiple paths of length comparable to the di-
rect path are available. The speed at which the wave
propagates along these competing paths depends on a
number of factors, including their number, lengths and
the exploration statistics within each path. If a compet-
ing path is fully reinforced earlier than the direct path,
it can interfere with learning the direct path. Multiple
paths can explain the variability observed in experimen-
tal trajectories. Indeed, the learning curves in Figure

1b,5 effectively average over all direct paths of certain
lengths. If paths of similar lengths from distant nodes
exhibit discontinuities with only slight delays, the aver-
aged curve will appear smoother than when each path is
observed separately. Consistent with this intuition, con-
sidering paths from specific locations in the experiment
highlights the variability across mice in which of these
paths contributes most to the discontinuity (Figure 5b).
Additional experiments designed similar to our setting

in Figure 2a will provide crucial data to resolve sources
of variability. Specifically, our analysis suggests exam-
ining direct paths between two specific start and goal
locations in an episodic setting or equivalent. This will
ensure that the measured learning curves do not reflect
contributions from different locations in the maze, and
highlight the passage of the wave along the direct path
between these two nodes. Further, learning via reinforce-
ment is not necessarily monotonic in the experimental
setup of ref. [20], which makes it challenging to infer
the progression of learning at each intersection directly
from data. For example, if the animal samples the water
port when reward is absent, the resulting reinforcement
can be negative which leads to un-learning of the path
towards reward. This non-monotonicity is absent in an
episodic setting, and will lead to a clearer interpretation
of the learning curves at each intersection.

DISCUSSION

The discontinuous learning phenomenon observed in
complex mazes and other learning tasks clashes with
the intuition that RL-based algorithms make learn-
ing progress by incrementally reinforcing rewarding ac-
tions. Here, we have shown that a standard biologically-
plausible RL rule consistently reproduces this phe-
nomenon in simulations designed to reflect maze exper-
iments and more generally during goal-oriented naviga-
tion in large, tree-like relational graphs. In such envi-
ronments, the value signal propagates as a steep, trav-
eling reinforcement wave, which sequentially reinforces
correct actions along the path towards the goal. ‘Sud-
den insight’ occurs the moment the wave reinforces all
the correct actions along the main path. Discontinuous
learning curves arise due to a combination of the effec-
tively one-dimensional task structure in tree-like struc-
tured environments, the local propagation of reinforce-
ment and the positive feedback of reinforcement on be-
havior. These factors together with the agent’s innate ex-
ploration biases determine the dynamics of wave-like re-
inforcement propagation, including its speed and profile.
The exploration biases play an important role as they
determine if any learning occurs in the first place (the
stalled regime), and if learning does progress, whether
the learning dynamics are limited by the learning rule
(expanding regime) or due to the low probability of tak-
ing the correct action (marching regime). While common
model-free and model-based variants of the RL rule may
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enhance the learning speed and alter the wave’s profile,
the qualitative characteristics of wave propagation are
preserved.

Whether and under what contexts animals learn
correct actions directly from experience or indirectly
through a learned model of the environment is a long-
standing debate. The ‘a-ha’ moment observed in the ex-
periments of ref. [20] would naively appear to support
the latter hypothesis. We have shown here that existing
experimental data is consistent with the propagation of
a reinforcement wave (Figure 5), and thus RL-based di-
rect learning cannot be ruled out. Further experiments
should reveal and verify the generality of the discontin-
uous learning phenomenon. The framework presented in
this manuscript should help guide specific experiments to
delineate direct and indirect learning (see Experimental
Tests for further discussion).

We emphasize that the backward propagation of rein-
forcement arises as a straightforward consequence of the
local RL rule applied in an environment where the goal
state is the sole source of reward. However, as illustrated
in Figure 2c and Figure S3d, not all graph architectures
will display discontinuous learning under these RL rules.
We have shown that the topology of large tree-like mazes
(with appropriate exploration biases) supports discontin-
uous learning, but we expect to observe the phenomenon
more generally if the graph satisfies certain notions of
‘sparsity’ (Figure S3c). This is because the sharp transi-
tion in learning is most salient in highly complex mazes
where the direct path is non-trivial and paths other than
the direct path are present but are poor solutions.

Competing paths lead to additional complexity, analo-
gous to when a multitude of local minima compete with
the global solution in non-convex optimization problems.
Easily accessible competing paths which are of compara-
ble length to the direct path may lead to non-trivial ex-
clusion effects, effectively average out the learning curves
and amplify variability due to minor differences in explo-
ration biases across animals. Sudden, delayed improve-
ments in generalization performance have been recently
observed when neural networks are trained to solve small
algorithmic tasks, a phenomenon that has been termed
‘grokking’ [30]. Preliminary theoretical work [31] sug-
gests that the task structure imposes highly specific con-
straints on the representations that can achieve perfect
generalization, and ‘sudden insight’ occurs when these
constraints are fulfilled. This work and ours suggest that
non-trivial constraints on good solutions imposed due to
task structure might play an important role in the emer-
gence of sudden learning phenomena.

Our analysis provides a complete characterization of
the learning dynamics of various RL rules for a non-trivial
sequential decision-making task, which is currently lack-
ing. A key challenge in the theoretical analysis of RL
algorithms is the feedback of learning on behavior, which
makes the data distribution inherently non-stationary.
In our setting, the non-stationarity is reflected by the
dynamics of the wave during learning. We have shown

that the front of the wave effectively acts as an absorb-
ing boundary, which simplifies the analysis considerably.
The learning speed is determined by the number of times
the learning rule updates the value at the nose of the
wave. Since this number itself depends on the value at
the nose, the dynamics are nonlinear. In turn, since the
value of the subsequent action depends on the value of
the later actions within the bulk, the full interactions
between the nose and the bulk of the wave will influ-
ence learning speed. We show that the learning speed
cannot exceed a certain value due to the locality of the
learning rule. Relaxing the locality constraint using el-
igibility traces enhances the learning speed by widening
the value differential between the unreinforced action and
the distal action from which it receives reinforcement. A
model-based method which uses planning scales up the
speed simply by scaling up the number of times it up-
dates each action rather than due to a qualitative change
in how reinforcement is propagated.

In specifying our model, we have made certain simplifi-
cations that do not capture the full complexity of animal
learning. First, we have considered a discretized model
of the state and action spaces. While this is a standard
approximation, animals use continuous spatial represen-
tations and motor control. Standard computational RL
rules, such as (1), have been fruitfully extended to deal
with continuous state and action spaces, for instance, us-
ing function approximation and policy gradient methods
[14]. Biologically plausible variants of these extensions
have been proposed [32], including for mental exploration
in simple mazes [33]. We expect the core intuition behind
discontinuous learning to hold even for a more realistic
model with continuous state and action spaces. A de-
tailed analysis of RL dynamics for a model which takes
these various factors into account is beyond the scope
of current work (see Figure S3a, Movie S3 for prelimi-
nary results). Second, we have assumed that the animal
has a unique representation of each corridor in the maze
from the outset. Of course, this representation would
have to be learned before the animal can assign and up-
date the value of taking different actions at each corridor
[34]. Our results should still apply if the timescale for
“mapping” the environment is faster than the timescale
for reinforcement learning. The hierarchical structure of
neural network-based function approximators enables si-
multaneous learning of representations and values [35],
but the timescales on which these processes operate in
animals are unknown and presumably much shorter. An
exciting future direction is to extend our framework to
spatial navigation tasks with other graph topologies or
when learning of proper actions is intertwined with the
learning of continuous state representations.
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METHODS

Extracting exploration statistics from data and
hyperparameters for RL simulations

We use MaxEnt IRL (see SI for a brief introduction) to
infer the exploration biases of unrewarded mice. As dis-
cussed in the Results section, the state space was chosen
as the directed edges of the graph that delineate the maze
in experiments, where the root of the tree corresponds to
‘home’. We pooled trajectories from all unrewarded mice,
set γ = 0.8 and split the trajectories to length T = 12 (T
should be at least the effective horizon ∼ (1 − γ)−1 = 5
and choosing a large T slows inference). The choice of γ
was motivated by the analysis in [20], which showed that
a variable length Markovian model typically chooses ≲ 5
previous states to predict mice behavior. The qε val-
ues are obtained from maximum likelihood estimation,
specifically, from log pλ,0(s, a) after optimizing for λ (SI).
Note that due to normalization the qε values are deter-
mined only up to a constant additive term for each state.

To estimate r, we apply the above procedure to both
unrewarded and rewarded mice. We calculate the dif-
ference between rewarded and unrewarded animals in
the differences of the correct action’s q value and the
effective q values of the other two incorrect ones (note
qeff(s,A) = log

(∑
a∈A eq(s,a)

)
). A subset of these val-

ues are shown in Figure S1, which shows that the cor-
rect actions leading to reward have a value differential of
≈ 2. Since the values of actions close to the reward after
learning saturate at r, the value differential is an esti-
mate of the reward, r ≈ 2. To ensure that this estimate
is not significantly influenced by the habitual paths that
go directly from home to goal, we repeat the above pro-
cedure excluding these paths (Figure S1). The estimate
decreases slightly to r ≈ 1.5. In the RL simulations of
the depth-6 binary tree maze, we use r = 2 and α = 0.33.

Setup and notation for the RL framework for
navigation on tree-structured graphs

A tree-structured graph can be cast as a linear track,
as argued in the Results section and illustrated in Figure
2a,b. The linear track consists of N − 1 nodes on the
direct path, n = 1, 2, . . . , N − 1. The agent starts each
episode at node n = N and the reward is at the goal
node n = 0. In addition to these nodes, the nodes from
n = 1 to N − 1 each have a side path, which we label
as 1b, 2b, . . . , (N − 1)b. The state space of the Markov
decision process is the set of directed edges that connect
the various nodes and the side paths as shown in Figure
2b. In other words, both the agent’s location in the graph
and the direction in which it is headed matter. We denote
(n1, n2) as the directed edge from n1 to n2.
The transition dynamics P (s′|s, a) are deterministic

(note however that the policy π(a|s) is stochastic). At
each directed edge, the agent can choose to go along the

directed edges emanating from its current node, except
for turning back, for e.g., the transition (n + 1, n) →
(n, n+1) is disallowed. This simplifying assumption does
not affect the results as the agent can effectively turn
back by going into a side path and returning (n+1, n) →
(n, nb) → (nb, n) → (n, n + 1). The episode begins with
the agent at the directed edge (N,N − 1). The directed
edge pointing towards the goal node, (1, 0), is an ab-
sorbing state, i.e., the agent receives a reward r and the
episode ends once the agent traverses that edge. We im-
pose reflecting conditions at edges going into the side
paths (n, nb) and the start node (N − 1, N).
The agent receives identical intrinsic exploration re-

wards at every intersection on the direct path. There are
three directed edges leading to any node n, and we thus
consider three cases at each node. These three cases are
shown pictorially in Figure 2b. Since the agent can take
two actions at each step and the policy only depends on
differences of q values, we specify the q values for only
one of the actions. The notation used for the three cases
is introduced (see also Figure 2b).

1. the agent is on the direct path and going towards
the goal, (n+1, n): for the action corresponding to
the agent continuing towards the goal (n+1, n) →
(n, n− 1), we denote qε ≡ ε, qr ≡ qn.

2. the agent is on the side path nb and going towards
n, (nb, n): for the action corresponding to the agent
turning towards the goal (nb, n) → (n, n − 1), we
denote qε ≡ ε′, qr ≡ q′n.

3. the agent is on the direct path and going towards
the start, (n−1, n): for the action corresponding to
the agent continuing towards the start (n−1, n) →
(n, n+ 1), we denote qε ≡ ε′′, qr ≡ q′′n.

The probabilities of taking the action described in each
of three cases is denoted σn ≡ σ(ε + qn), σ

′
n ≡ σ(ε′ +

q′n), σ
′′
n ≡ σ(ε′′ + q′′n), where σ(x) = 1/(1 + e−x) is the

logistic function.
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APPENDIX

1. Maximum entropy inverse reinforcement
learning

In this Section, we present a brief introduction to Max-
imum Entropy Inverse Reinforcement Learning (MaxEnt
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IRL). See refs. [22, 23] and references therein for more de-
tails. MaxEnt IRL aims to find a reward function r(s, a)
for each state-action pair (s, a) that guides a policy con-
sistent with a set of L observed behavioral trajectories
D = {d1, d2, ..., dL}. Each trajectory has T + 1 state-
action pairs: di = {si0, ai0, si1, . . . , aiT−1, s

i
T , a

i
T }. The

transition matrix P (s′|s, a) is assumed to be known.
While the end goal is to estimate r(s, a), MaxEnt IRL

proceeds by formulating an unsupervised learning task.
Specifically, consider a generative model which assigns a
probability p(τ) for trajectory τ such that the expected

discounted reward, ⟨∑T−1
t=0 r(st, at)γ

t⟩τ from the model
matches the empirical discounted reward (note 0 ≤ γ < 1
is the standard RL discount factor). To do this, it is
sufficient to ensure that the expected frequencies of all
s, a pairs appropriately discounted match the empirical
ones: ∑

τ

p(τ)1τ (s, a) =
1

L

L∑
i=1

1di(s, a) (A1)

where the sum over τ is over all possible
trajectories with T + 1 state-actions pairs,

1d(s, a) ≡ ∑T
t=0 δ(s, st)δ(a, at)γ

t for a trajectory
d = (s0, a0, s1, a1, . . . , sT , aT ) and δ is the indicator
function. Since multiple reward functions satisfy (A1),
the inverse RL problem is ill-posed without additional
constraints. MaxEnt IRL introduces an additional
constraint by choosing the generative model p(τ) which
satisfies (A1) and minimizes the relative entropy between
p(τ) and a model u(τ) whose trajectories are generated
by a random policy. In other words, MaxEnt IRL selects
the “most random” policy which also satisfies (A1).

p(τ) is found by minimizing a variational objective
with constraints imposed using Lagrange multipliers:

C =
∑
τ

p(τ) log
p(τ)

u(τ)
−
∑
s,a

λ(s, a)

(∑
τ

p(τ)1τ (s, a)

)

− µ

(∑
τ

p(τ)− 1

)
,

=
∑
τ

p(τ) log
p(τ)

u(τ)
−
∑
τ

p(τ)

(
T∑

t=0

λ(st, at)γ
t

)

− µ

(∑
τ

p(τ)− 1

)
, (A2)

where u(τ) is defined below, the λ(s, a)’s are Lagrange
multipliers which enforce (A1) and µ enforces normaliza-
tion. Minimizing C w.r.t p(τ) gives

p(τ) =
u(τ)e

∑T
t=0 γtλ(st,at)

Z
, where

Z =
∑
τ

u(τ)e
∑T

t=0 γtλ(st,at),

u(τ) = p(s0)

T−1∑
t=0

P (st+1|st, at), (A3)

and p(s0) is the probability of the initial state. u(τ) is
(up to a constant factor) the probability of trajectory τ
under a policy which picks actions with equal probabil-
ity. Observe that the discounted sum in the exponent of
p(τ) is precisely the discounted long-term reward along
τ . The Lagrange multipliers λ are thus interpreted as
the rewards, r(s, a) → λ(s, a) for each s, a. p(τ) implic-
itly places an exponentially larger weight on policies that
lead to rewarding trajectories relative to the uniform ran-
dom policy corresponding to u.

The rewards λ are obtained by maximizing the log-
likelihood L of the model over the sample trajectories:

L =
1

L

L∑
i=1

log pλ(di), (A4)

=
1

L

L∑
i=1

(
T∑

t=0

γtλ(sit, a
i
t) + log u(di)

)
− logZλ (A5)

where the subscript λ is introduced to highlight the de-
pendence on λ. From (A3), we find

∂L
∂λ(s, a)

=
1

L

L∑
i=1

1di
(s, a)−

T∑
t=0

γtpλ,t(s, a), (A6)

where pλ,t(s, a) is the marginal probability of encounter-
ing state-action pair s, a at time t w.r.t p. The Marko-
vianity of the process enables efficient calculation of
pλ,t(s, a) using a forward-backward algorithm (described
below) similar to the one used to train Hidden Markov
Models (HMM). When L attains its optimum, we observe
from (A6) that the constraint (A1) is automatically sat-
isfied.

The forward-backward equations are similar to the
HMM case except for an exponential weight:

αk(s, a) =
∑
s′,a′

P (s|s′, a′)eγkλ(s,a)αk−1(s
′, a′),

βk(s, a) =
∑
s′,a′

P (s′|s, a)eγT−kλ(s,a)βk−1(s
′, a′) (A7)

for k > 0 and α0(s, a) = p0(s)e
λ(s,a), β0(s, a) = eγ

Tλ(s,a).
We have

pλ,t(s, a) =
αt(s, a)βT−t−1(s, a)

Zλ
, Zλ =

∑
s,a

αT (s, a).

(A8)

In practice, we compute the logarithm of the var-
ious quantities and use log

∑
x e

x = max(x) +

log
(
1 +

∑
x̸=max(x) e

x−max(x)
)

to prevent under-

flow/overflow. The λs are obtained using gradient ascent
on L using standard optimization methods.
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2. The dynamics of sequence learning on
tree-structured relational graphs

In this Section, we expand on the dynamics of learning
in the goal-oriented navigation task introduced in the
main text. The dynamics are analyzed in full detail for
the SARSA learning algorithm used in the main text
and other commonly used RL rules. These alternative
rules also display wave-like propagation of the value
signal, with differences in the speed and front profiles
for certain variants. Part of this Section is reproduced
in the Methods, and is included here for completeness.

Learning framework. An RL algorithm is defined
by the learning rule and the (possibly non-stationary
and stochastic) policy executed during learning. We
consider a stochastic policy, where for each state-action
pair (s, a), we have lnπ(a|s) = q(s, a) − lnZ(s), where
q(s, a) = qε(s, a) + qr(s, a) and Z(s) is a normalization
constant. qε(s, a) represents fixed intrinsic rewards that
drive exploration and determine the agent’s exploratory
biases. The extrinsic rewards qr(s, a) (initially set
to zero) are modulated by the learning rule. At the
beginning of learning, the agent’s behavior depends
solely on its exploratory biases. As learning proceeds
and the agent acquires rewards, its behavior is modified
by the increasing effect of the extrinsic rewards. We
consider the learning dynamics for various learning rules
discussed further below.

Setup and notation. The linear track consists of N−1
nodes on the direct path, n = 1, 2, . . . , N − 1. The agent
starts each episode at node n = N and the reward is at
the goal node n = 0. In addition to these nodes, the
nodes from n = 1 to N − 1 each have a side path, which
we label as 1b, 2b, . . . , (N − 1)b. The state space of the
Markov decision process is the set of directed edges that
connect the various nodes and the side paths as shown in
Figure 2b. In other words, both the agent’s location in
the graph and the direction in which it is headed matter.
We denote (n1, n2) as the directed edge from n1 to n2.

The transition dynamics P (s′|s, a) are deterministic
(note however that the policy π(a|s) is stochastic). At
each directed edge, the agent can choose to go along the
directed edges emanating from its current node, except
for turning back, for e.g., the transition (n + 1, n) →
(n, n+1) is disallowed. This simplifying assumption does
not affect the results as the agent can effectively turn
back by going into a side path and returning (n+1, n) →
(n, nb) → (nb, n) → (n, n + 1). The episode begins with
the agent at the directed edge (N,N − 1). The directed
edge pointing towards the goal node, (1, 0), is an ab-
sorbing state, i.e., the agent receives a reward r and the
episode ends once the agent traverses that edge. We im-
pose reflecting conditions at edges going into the side
paths (n, nb) and the start node (N − 1, N).

The agent receives identical intrinsic exploration re-
wards at every intersection on the direct path. There are

three directed edges leading to any node n, and we thus
consider three cases at each node. These three cases are
shown pictorially in Figure 2b. Since the agent can take
two actions at each step and the policy only depends on
differences of q values, we specify the q values for only
one of the actions. The notation used for the three cases
is introduced (see also Figure 2b).

1. the agent is on the direct path and going towards
the goal, (n+1, n): for the action corresponding to
the agent continuing towards the goal (n+1, n) →
(n, n− 1), we denote qε ≡ ε, qr ≡ qn.

2. the agent is on the side path nb and going towards
n, (nb, n): for the action corresponding to the agent
turning towards the goal (nb, n) → (n, n − 1), we
denote qε ≡ ε′, qr ≡ q′n.

3. the agent is on the direct path and going towards
the start, (n−1, n): for the action corresponding to
the agent continuing towards the start (n−1, n) →
(n, n+ 1), we denote qε ≡ ε′′, qr ≡ q′′n.

The probabilities of taking the action described in
each of three cases is denoted σn ≡ σ(ε + qn), σ

′
n ≡

σ(ε′ + q′n), σ
′′
n ≡ σ(ε′′ + q′′n), where σ(x) = 1/(1 + e−x) is

the logistic function.

Dynamics of exploration. We first consider the dy-
namics of exploration with no learning. An important
byproduct of the calculation is the identification of the
values of ε, ε′, ε′′ for which the agent finds the goal within
a reasonable amount of time. These values delineate the
parameter regime where learning occurs (the marching
and expanding regimes in Figure 3c) vs the regime in
which no learning occurs as the agent rarely finds the
goal in the asymptotic limit N ≫ 1 (the stalled regime
in Figure 3c). The upshot is that in these two cases the
agent on average either drifts linearly towards the goal or
constantly reverts back to the start. The marginal case
corresponds to diffusive behavior.
To identify these regimes, we calculate the expected

time for the agent, starting at (N−1, N), to find the goal
state. We additionally calculate the expected number of
times the agent visits each state which is used further be-
low for the analysis of learning dynamics. The calculation
of both of these quantities is simplified by considering the
dynamics of a simpler, equivalent Markov chain. Specif-
ically, we observe that when the agent enters a node n,
say along (n + 1, n), regardless of whether it goes into
the side path or not, it either continues along its path,
(n, n − 1), or turns back (n, n + 1). The probability of
the former possibility, k+, is the sum of the probability
that it moves to (n, n − 1) along the direct path, σ(ε),
and the probability that it takes a detour through the
side path, (1 − σ(ε))σ(ε′). The probability of turning
back is 1 − k+. Similarly, the probability of continuing
towards the start state when the agent is at (n− 1, n) is
k− = σ(ε′′) + (1− σ(ε′′))(1− σ(ε′)), and the probability
of turning back to (n, n− 1) is 1− k−. In summary, the
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probabilities that the agent continues towards the goal
and towards the start are

k+ = σ(ε) + (1− σ(ε))σ(ε′),

k− = σ(ε′′) + (1− σ(ε′′))(1− σ(ε′)) (A9)

respectively. The dynamics of the Markov chain defined
by these two parameters are easily computed.

(a) Expected time to the goal. Let the expected time
to the goal starting from (n, n − 1) and (n − 1, n) be
denoted T+(n) and T−(n) respectively. We aim to com-
pute T+(N) with an absorbing boundary at (1, 0), so
that T+(1) = 0. The reflecting boundary conditions at
(N − 1, N) imply T−(N) = T+(N) + 1. We have

T+(n) = 1 + k+T+(n− 1) + (1− k+)T−(n), (A10)

T−(n) = 1 + k−T−(n+ 1) + (1− k−)T+(n), (A11)

for 1 < n ≤ N and 1 < n < N respectively. Expressing
T−(n) and T−(n+1) in terms of T+(n−1), T+(n), T+(n+
1) using (A10) and plugging into (A11), we obtain the
second-order difference equation

k+ (T+(n)− T+(n− 1))− k− (T+(n+ 1)− T+(n))

= 2− k+ − k−, (A12)

for 1 < n < N . Defining U(n) = T+(n+1)−T+(n) gives

U(n− 1) =
2− k+ − k−

k+
+

k−
k+

U(n). (A13)

Since T−(N) = T+(N) + 1, setting n = N in (A10)
gives U(N − 1) = −1 + 2/k+. Multiplying both sides
by (k−/k+)

n−1 and summing from n+1 to N−1, we get

U(n)

(
k−
k+

)n

=
2− k+ − k−

k+

N−2∑
n′=n

(
k−
k+

)n′

+
2− k+
k+

(
k−
k+

)N−1

,

(A14)

which after simplification leads to

U(n) =
2− k+ − k−
k+ − k−

+
2(1− k+)

k− − k+

(
k−
k+

)N−n

, (A15)

for k− ̸= k+. Summing U(n) from n = 0 to N − 1 and
using T+(0) = 0, we obtain the mean time to find the
goal

T+(N) =

(
2− k+ − k−
k+ − k−

)
N

+
2k−(1− k+)

(k− − k+)2

((
k−
k+

)N

− 1

)
. (A16)

If k− > k+, the agent takes time exponential in N , which
is infeasible for large N . For k− < k+, the agent travels

linearly towards the goal with drift J = 2−k+−k−
k+−k−

. The

marginal case of k− = k+ leads to diffusive behavior. In
this case, from (A14), we have

U(n) =
2(1− k+)

k+
(N − 1− n) +

2− k+
k+

(A17)

Summing from n = 0 to N − 1 gives T+(N) ≃ 1−k+

k+
N2.

(b) Expected number of visits. We calculate the ex-
pected number of times per episode the agent visits each
state on the direct path. Denote the expected number of
times the agent visits states (n + 1, n) and (n, n + 1) as
M+(n) and M−(n) respectively. We have

M+(n) = (1− k−)M−(n) + k+M+(n+ 1), (A18)

M−(n) = k−M−(n− 1) + (1− k+)M+(n), (A19)

We observe that setting n → n+ 1 in (A19) and adding
(A18) gives a conservation equation, M+(n) + M−(n +
1) = M−(n) + M+(n + 1). At the boundaries we have
M−(1) = (1−k+)M+(1) andM+(N−1) = M−(N−1)+1.
Combining the latter boundary condition and the conser-
vation equation, we see that M+(n) = M−(n) + 1 for all
n. Plugging this into the former boundary condition then
leads to M+(1) = 1/k+ and into (A18) leads to

M+(n+ 1) =
1− k−
k+

+
k−
k+

M+(n). (A20)

Dividing both sides by (k−/k+)
n+1, summing from 1 to

n and simplifying gives

M+(n) =
1− k−
k+ − k−

−
(
k−
k+

)n
1− k+
k+ − k−

(A21)

for k− ̸= k+. When k− = k+, we have
M+(n) = 1 + n(1− k+)/k+.

Dynamics of learning. We now analyze the dynamics
of reinforcement propagation for five learning rules,
beginning with the SARSA rule considered in the main
text. Throughout, we consider the slow-learning limit
α ≪ 1. In this limit, we can compute the learning
dynamics averaged over the agent’s behavior in each
episode. Simulations show that the analytical results
are accurate up to α ≲ 0.1, with wave-like propagation
of the reinforcement signal observed for even larger
α. In all cases analyzed below, we set the standard
discount factor in RL (γ) to unity. This discount factor
introduces an effective length scale for the influence of
the reward and regularizes the Bellman equation, which
are not necessary in our setting due to the regularization
and effective horizon provided by the exploration-based
stochastic policy. In our analysis below, it is easy to see
that the effective horizon is Nrange ≃ (− lnσ(ε + r))−1.
For N ≪ Nrange, the reinforcement signal propagates
as a wave. The wave slows down and the reinforcement
signal eventually decays to zero at steady state when
N ≫ Nrange. We consider the 1 ≪ N ≪ Nrange limit
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in our analysis below, which thus requires that ε + r be
appropriately large. In the linear track setting, reward
is acquired only when the agent reaches the goal state.
This is set by the boundary condition q0 = r (see the
setup and notation section above). The initial conditions
are qn = q′n = q′′n = 0 for n > 0. Also note that q′′n, i.e.,
the qr value corresponding to going away from the goal
is never reinforced and stays fixed at q′′n = 0. We thus
consider the dynamics of qn and q′n in what follows.

(a) SARSA. Whenever the agent makes a state-
action-state transition st, at, st+1, the SARSA(0) (state-
action-reward-state-action) learning rule updates the cor-
responding qr values as

qr(st, at) → qr(st, at) + αδt, where (A22)

δt = rt + ⟨qr(st+1, .)⟩π(.|st+1) − qr(st, at), if st+1 is not the goal

δt = rt − qr(st, at), if st+1 is the goal.

Here 0 < α < 1 is the learning rate, rt is the reward
obtained at time t and the expectation is over future ac-
tions drawn from the policy π. As discussed previously,
lnπ(a|s) = qε(s, a) + qr(s, a) − lnZ(s). Note that the
learning rule described above is strictly speaking the “ex-
pected SARSA” rule [14], which is an efficient variant of
the SARSA(0) rule. The 0 in the parenthesis corresponds
to the eligibility trace parameter λ = 0, which converts
the local SARSA(0) rule to a non-local rule for λ > 0.
We discuss eligibility traces further below.

Applying the SARSA rule (A22), the expected change
∆qn and ∆q′n in each episode is given by

∆qn = αµn (σn−1qn−1 − qn) ,

∆q′n = αµ′
n (σn−1qn−1 − q′n) , (A23)

for n > 1 and ∆q1 = αµ1 (r − q1) ,∆q′1 = αµ′
1 (r − q′1).

The σn−1qn−1 term is the expected value of qr at the sub-
sequent state, i.e., once the agent crosses node n. Here
µn and µ′

n are the expected number of times per episode
the agent crosses node n towards the goal along the direct
path or by making a detour through the side path at n,
respectively. The relative probability of these two events
determines their ratio, µn/µ

′
n = σn/(1− σn)σ

′
n, and the

total expected crossings through node n towards the goal
determines their sum µn+µ′

n. The expected crossings at
each node depends in general on the qε and qr values at
all states. It is possible to calculate the expected cross-
ings recursively similar to the case of pure exploration
above. However, we note that for the nodes where learn-
ing occurs (near the front of the wave), we should expect
a single crossing, i.e., µn+µ′

n ≃ 1. As argued in the main
text, the key idea is that learning at node n only occurs
when σn−1qn−1 is non-negligible, i.e., the probability of
staying on the direct path is sufficiently reinforced at n−1
and thus also for n′ ≤ n− 1. Since these actions are re-
inforced, the agent is very likely to take the direct path
to the goal immediately after crossing n. Equivalently,
whenever the agent crosses n towards the goal, the prob-
ability of it cycling back to n′ > n and making another

attempt at crossing n is small, leading to µn + µ′
n ≃ 1.

We thus obtain

µn =
σn

σn + (1− σn)σ′
n

, µ′
n = 1− µn (A24)

We can convert the discrete dynamics equations above
to a continuous-time equation in the limit α ≪ 1, to get

q̇n = µn (σn−1qn−1 − qn) ,

q̇′n = µ′
n (σn−1qn−1 − q′n) , (A25)

where the dot represents a time derivative and the unit of
time is 1/α. Integrating the above equations over a unit
time interval ∆t = 1 corresponds to expected changes in
qn and q′n over 1/α episodes.
As shown in Figure 3a, integrating the equations (A25)

provides an accurate approximation of the values ob-
tained through full-scale RL simulations. We expand on
the analysis of (A25) presented in the main text. Be-
low, we consider exploration parameter values, ε, ε′, ε′′,
such that k− < k+, i.e., in the regime where the agent
consistently gets to the goal and learning occurs. We set
ε′′ = 0 and vary ε, ε′. The key parameter which deter-
mines the character of the wave is ε. ε′ is chosen such
that k− < k+. It is useful to consider the asymptotic
limits eε ≫ 1 (expanding regime) and e−ε ≫ 1 (march-
ing regime). The motivation for the names will become
apparent.

Expanding regime: The expanding regime has
straightforward linear learning dynamics. To see this,
note that when eε ≫ 1, we have σn ≃ 1 for all n. This
implies from (A24) that µn ≃ 1, µ′

n = 1−µn is negligible
and q′n thus remains at 0. From (A25)

q̇n = qn−1 − qn, (A26)

with boundary conditions q0(t) = r and initial conditions
qn(0) = 0 for n > 0. Defining q̃n(s) =

∫∞
0

qn(t)e
−stdt,

i.e., the Laplace transform of qn(t), (A26) leads to

(s+ 1)q̃n(s) = q̃n−1(s) + qn(0). (A27)

Multiplying both sides of the equation by (s+1)n−1 and
summing the recursion gives

(s+ 1)nq̃n(s) = q̃0(s) +
n∑

m=1

qm(0)(s+ 1)m−1. (A28)

Using q̃0(s) = r/s and performing the inverse Laplace
transform leads to

qn(t) = rP (n, t) +
n∑

m=1

tn−me−t

(n−m)!
qm(0), (A29)

where P (n, t) is the regularized lower incomplete gamma
function. Setting the boundary conditions, we have
qn(t) = rP (n, t). For large n it is well known that the
gamma distribution is approximated by a normal distri-

bution: P (n, t) ≈ Φ
(

t−n√
n

)
, where Φ is the standard nor-

mal cdf. The half-maximum of the propagating signal
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thus travels as n1/2 = t, i.e., with speed v0 = 1 corre-
sponding to 1 node every 1/α episodes. The width of the
front expands as

√
n1/2 =

√
t.

Marching regime: Qualitatively different behavior
is observed in the opposite asymptotic limit, e−ε ≫ 1.
In this case, the nonlinear dynamics of (A25) come into
play. We show below that the dynamics consist of a self-
similar wavefront which marches forward one node at a
time, with a fixed time interval, τ0, between each node
(and thus its speed is v0 = τ−1

0 ). We first present the
qualitative picture and then proceed to calculate τ0. It
turns out that a complete characterization of the wave
dynamics is feasible, which leads to analytical expressions
for τ0, the shape of the wavefront and the dynamics of
reinforcement at each node, qn(t).

Since e−ε ≫ 1, the probability that the agent takes the
direct path through node n, µn, is negligible before any
reinforcement occurs at node n. Any reinforcement that
occurs is due to rare events which gradually increase qn
provided that qn−1 > |ε|. This bottleneck remains until
qn itself gradually increases to qn ≃ |ε|. Meanwhile, all
the actions on the direct path for n′ < n are continu-
ously reinforced. This reinforcement is possible as the
agent can bypass crossing n through the direct path by
instead taking a detour through the side path at n. In-
deed, learning occurs (k− < k+) in the marching regime
only if ε′ is sufficiently large to allow for frequent de-
tours through the side path. As a consequence, while qn
is gradually being reinforced, q′n is sufficiently reinforced
so that σ′

n ≃ 1 and µn ≃ σn (from (A24)). The de-
tours through the side paths ensure that qn−1 is rapidly
reinforced and r ≫ |ε| implies that σn−1 displays switch-
like behavior once qn−1 > |ε|. Since qn−1 is increasing,
successive rare events through the direct path at node n
receive increasing amounts of reinforcement on qn. Cal-
culating the amount of reinforcement on qn thus requires
knowing the dynamics of qn−1. However, the dynamics
of qn−1 depend on the dynamics of qn−2, which in turn
depends on qn−3 and so on, leading to cascading depen-
dencies. The duration τ0 for qn to be reinforced from 0
to |ε| will thus depend on interactions with the bulk of
the wave. We now calculate τ0 by solving the equation
hierarchy. We will see that the solution is feasible due to
the linear dynamics in the bulk of the wave (A26), which
considerably simplify the analysis.

We begin (t = 0) from the moment when the wave has
just reached node n, i.e., qn−1(0) = |ε| and qn(0) = 0 be-
gins to be reinforced. τ0 is the time it takes for one cycle
to complete, which is when qn(τ0) = |ε| is reached and qn
begins to influence qn+1. From (A25), the (approximate)
evolution of qn during this interval is given by

q̇n = σnqn−1, (A30)

where we have used µn ≃ σn and σn−1 ≃ 1. Since r ≫ |ε|
implies qn ≪ qn−1 in this period, we have also ignored
the negative feedback due to qn. This argument can be
made rigorous by computing qn from (A30) (see below),
which will lead to an upper bound on qn, and showing

that this upper bound is ≪ qn−1. Integrating (A30) for
t ≤ τ0, we get∫ qn(t)

0

dqn
σn

=

∫ t

0

qn−1(t
′)dt′ = xt, (A31)

where xt ≡
∫ t

0
qn−1(t

′)dt′ is to be calculated. Plugging

in 1/σn = 1 + e|ε|−qn and integrating gives

qn(t) + e|ε|
(
1− e−qn(t)

)
= xt. (A32)

The solution of the above equation is expressed in terms
of the Lambert W function [36], W (x),

qn(t) = W
(
e|ε|+e|ε|−xt

)
+ xt − e|ε|. (A33)

Since qn(τ0) = |ε|, τ0 is obtained from solving

|ε|+ e|ε| − 1 = xτ0 . (A34)

We now calculate xt. In the bulk (m < n), we have

q̇m = qm−1 − qm. (A35)

From (A29),

qm(t) = rP (m, t) +
m∑

m′=1

tm−m′
e−t

(m−m′)!
qm′(0). (A36)

Note that the initial conditions qm′(0) here are the un-
known values of qm′ when qn−1 = |ε| and qn = 0, which
are to be computed self-consistently under the marching
dynamics with time step τ0. Using the series expansion
of P (m, t) and m′ → m−m′, we re-write the above equa-
tion as

(r − qm(t)) =

m−1∑
m′=0

tm
′
e−t

m′!
(r − qm−m′(0)). (A37)

Here increasing values of m′ correspond to the nodes re-
inforced in earlier stages of the learning process. Thus,
the terms r− qm−m′(0) are decreasing in magnitude and
the terms of large m′ do not matter for τ0 > 1. We may
then take the sum to infinity in the equation above.
To solve for qm(0) for m < n, we notice that the

self-similarity of the wavefront with period τ0 implies
qm(τ0) = qm−1(0). Plugging t = τ0 into (A37), using
qm(τ0) = qm−1(0), we get

g(m− 1) =
∞∑

m′=0

τm
′

0 e−τ0

m′!
g(m−m′), (A38)

where g(m) ≡ 1− qm(0)/r. This difference equation ap-
plies for all m < n. Since the difference equation has con-
stant coefficients, solutions are of the form g(m) = cbm,
where c is a constant [37]. We have

bm−1 =
∞∑

m′=0

τm
′

0 e−τ0

m′!
bm−m′

= bme−τ0eτ0/b. (A39)

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 23, 2022. ; https://doi.org/10.1101/2022.05.06.490910doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.06.490910
http://creativecommons.org/licenses/by-nc-nd/4.0/


16

Thus b satisfies

beτ0/b = eτ0 (A40)

which leads to

b =
−τ0

W (−τ0e−τ0)
, (A41)

where W is the non-trivial branch of the Lambert W
function (the trivial branch evaluates to 1). Evaluating
(A37) for m = n− 1 then yields

qn−1(t) = r

(
1− c

n−1∑
m′=0

tm
′
e−t

m′!
bn−1−m′

)
= r

(
1− cbn−1e−t+t/b

)
. (A42)

Since qn−1(0) = |ε|, we get cbn−1 = 1 − |ε|/r. The evo-
lution of qn−1(t) is thus

qn−1(t) = r − (r − |ε|)e−βt, (A43)

where β ≡ 1 − 1/b = 1 + τ−1
0 W (−τ0e

−τ0), which deter-
mines the wave profile at any instant t since the period-
icity implies qn−n′(t) = qn−1(t+ (n′ − 1)τ0).
Note thatW (x) is real-valued for x ≥ −1/e, which cor-

responds to τ0 ≥ 1. For τ0 = 1, using W (−1/e) = −1 we
see that β = 1 and the power solution g(m) = cβm can-
not be used. It can be checked that g(m) = cm satisfies
the recursion (c is again a constant). The initial condi-

tions yield c = 1−|ε|/r
n−1 , whose dependence on n violates

the self-similarity of the wavefront. Thus, the dynamics
when τ0 = 1 cannot be described by a self-similar trav-
eling wave. Indeed, as shown in the expanding regime
section, when τ0 = 1 the width of the wavefront expands
as

√
t.

Using the identity eW (x) = x/W (x), we obtain xτ0 =∫ τ0
0

qn−1(t)dt = r(τ0 − 1) + |ε|. Plugging this into (A34),
we finally have

τ0 =
r + e|ε| − 1

r
. (A44)

An interesting alternative derivation of τ0 exploits a
conservation equation for xτ0 . Since q̇n−1 = qn−2− qn−1,
integrating both sides from 0 to τ0 and re-arranging yields∫ τ0

0

qn−1dt =

∫ τ0

0

qn−2dt− (qn−1(τ0)− qn−1(0))

=

∫ τ0

0

qn−3dt− (qn−2(τ0)− qn−2(0))

− (qn−1(τ0)− qn−1(0))

=

∫ τ0

0

qn−3dt− (qn−2(τ0)− qn−1(0)).

(A45)

where we have used the periodicity in the bulk, qn−2(0) =
qn−1(τ0) in the last step. Repeating this sequence of

steps, we are lead to

∫ τ0

0

qn−1dt =

∫ τ0

0

q0dt−(q0(τ0)−qn−1(0)) = r(τ0−1)+|ε|.
(A46)

(b) Eligibility traces. In RL, eligibility traces are
used to enhance learning speed by efficiently propagat-
ing errors backwards in time. Specifically, the method
uses the reward prediction error (δt in (A22)) at the cur-
rent state-action pair to update the qr values of recently
visited state-action pairs, in addition to the qr values of
the current state-action pair. The resultant qr update
of the state-action pair visited j steps before the current
one is

qr(st−j , at−j) → qr(st−j , at−j) + α(γλ)jδt, (A47)

where 0 ≤ λ < 1 is the eligibility traces parameter and γ
is the discount factor (recall that γ is set to 1 through-
out our analysis). λ sets the effective number of previous
state-action pairs which are affected by the update at the
current state-action pair. We consider a slightly modi-
fied version of this learning rule, where λ is set to 1 and
instead a fixed number k of previous state-action pairs
are updated according to (A47).

Let us examine the effect of this rule when updating qn
(the case of q′n follows). If, after crossing node n towards
the goal, the agent goes into the side path at n− 1, then
since all the “hidden” state-action pairs inside the side
path have qr = 0 and the side paths are assumed to be
long detours (≫ k), the updates within the side path and
after exiting the side path do not update qn. In this case,
qn is updated just as in (A25). If the agent, instead of
turning into the side path at n − 1, continues along the
direct path towards node n− 2, and if k ≥ 1, then qn is
updated as

∆qn = α ((σn−1qn−1 − qn) + (σn−2qn−2 − qn−1)) ,
(A48)

where the first term in the parenthesis is the δ-error from
when the agent crosses node n and the second term is
from when the agent crosses n− 1 along the direct path.
If, at this point, the agent turns into the side path at
n − 2, there are no further updates of qn for the same
reason stated above. Similarly, if it instead continues
along the direct path to n−3 and k ≥ 2, then qn is again
updated using the δ-error at that transition. Extending
this argument, we see that qn (and q′n by the same ar-
gument) receives non-local updates as long as the agent
continues along the direct path without taking turns into
side paths. In the limit of α ≪ 1, we take expectations
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to get

q̇n = µn

(
(σn−1qn−1 − qn)+

k∑
k′=1

 k′∏
k′′=1

σn−k′′

 (σn−k′−1qn−k′−1 − qn−k′)

)
,

= µn

((
k+1∏
k′=1

σn−k′

)
qn−k−1 − qn

)
,

q̇′n = µ′
n

((
k+1∏
k′=1

σn−k′

)
qn−k−1 − q′n

)
(A49)

The product,
∏k

k′=1 σn−k′ , corresponds to the probabil-
ity of taking k contiguous steps along the direct path.
The second equation is obtained by noticing that all the
terms except the ones involving qn and qn−k−1 cancel
out. We verify the validity of (A49) by comparing to full
RL simulations (Figure S3a).

As in the SARSA case, we consider the asymptotic
limits eε ≫ 1 and e−ε ≫ 1. For eε ≫ 1, we have σn ≃
1, µn ≃ 1 for all n and the sums in (A49) collapse into
the simple set of linear equations

q̇n = qn−(1+k) − qn, q̇′n = 0. (A50)

For convenience, we assume n = ℓ(1 + k) where ℓ is an
integer. Similar results with minor modifications are ob-
tained for the other cases. Taking the Laplace transform,
we get

(s+ 1)q̃ℓ(1+k) = q̃(ℓ−1)(1+k)(s) + qℓ(1+k)(0), (A51)

which after following steps similar to the SARSA case
leads to

qℓ(1+k)(t) = rP (ℓ, t) +
ℓ∑

ℓ′=1

tℓ−ℓ′e−t

(ℓ− ℓ′)!
qℓ′(1+k)(0). (A52)

For the initial conditions qn(0) = 0 for n > 0, we have

qn(t) = rP (ℓ, t) = rP
(

n
1+k , t

)
≈ Φ

(
(1+k)t−n√

(1+k)n

)
for large

n. From here, we obtain the speed, vk = 1 + k, and the
width of the wavefront at time t, (1+k)

√
t. Thus, eligibil-

ity traces enhance the speed of reinforcement propagation
by breaking the locality constraint of SARSA.

In the marching regime, e−ε ≫ 1, suppose, as in the
SARSA case, that the wave has just reached node n,
i.e., qn−1(0) = |ε|, qn(0) = 0. We compute the time τk it
takes for qn to be reinforced to |ε|. When qn−1 ≥ |ε|, from
(A41), the product of σ’s equals 1 and qn(t) subsequently
evolves as

q̇n ≃ σnqn−k−1. (A53)

τk can be calculated by integrating the above equation
from t = 0 to t = τ , which gives

|ε|+ e|ε| − 1 =

∫ τ

0

qn−(1+k)(t)dt (A54)

The integral
∫ τk
0

qn−(1+k)(t) is determined by the dynam-
ics in the bulk of the wave, which are governed by (A50).
The Laplace transform of (A50) leads to a relationship
similar to (A37) for m = ℓ(1 + k) < n:

(r− qℓ(1+k)(t)) =
ℓ−1∑
ℓ′=0

tℓ
′
e−t

ℓ′!
(r− q(ℓ−ℓ′)(1+k)(0)). (A55)

Defining h(ℓ) ≡ 1−qℓ(1+k)(0)/r and using the periodicity
of the wave w.r.t τk, qℓ(1+k)((1 + k)τk) = q(ℓ−1)(1+k)(0),
we have

h(ℓ− 1) =
ℓ−1∑
ℓ′=0

((1 + k)τk)
ℓ′e−((1+k)τk)

ℓ′!
h(ℓ− ℓ′). (A56)

It can be checked that h(ℓ) = (1 − |ε|/r)bℓ−(n−1)/(1+k)
k

with

bk =
−(1 + k)τk

W (−(1 + k)τke−(1+k)τk)
(A57)

satisfies the above recursion and the boundary conditions
qn−1(0) = |ε|. Defining βk ≡ 1− 1/bk, we obtain

qn−1(t) = r − (r − |ε|)e−βkt. (A58)

From (A54), we have

|ε|+e|ε|−1 = rτk−(r−|ε|)e
−kβkτk − e−(k+1)βkτk

βk
, (A59)

which upon rearranging leads to

τk =
|ε|+ e|ε| − 1

r
+

(
1− |ε|

r

)
e−kβkτk − e−(k+1)βkτk

βk
.

(A60)
This implicit equation can be solved numerically for τk.
We verify the result by comparing our analytical calcu-
lation to RL simulations (Figure S3b,c). Importantly, it
can be shown that the second term on the right-hand-
side goes to zero as k → ∞. This limit corresponds to
the situation in which the node n effectively receives re-
inforcement from future states that have already been
fully reinforced to r (i.e.,

∫ τk
0

qn−(k+1)(t)dt = rτk). From
here, we obtain the upper bound on the speed,

v∞ = τ−1
∞ =

r

|ε|+ e|ε| − 1
. (A61)

(c) Dyna-Q. Dyna-Q (tabular) is a model-based RL
algorithm which combines “planning” and Q-learning. It
is useful to examine the learning dynamics of a model-
based learning algorithm when applied to our setting.
The Dyna-Q agent learns a model of the environment,
P (s′, r|s, a), corresponding to the distribution of subse-
quent rewards and states for every state-action pair. At
every step during navigation, in addition to updating its
q-values using (A63) for the current state-action pair, the
agent also randomly samples np previously visited state-
action pairs from memory, draws the subsequent state
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and reward from its learned model, and updates the cor-
responding q-values.

Dyna-Q does not significantly influence the learning
dynamics in our setting due to the deterministic state
transitions and rewards. Its effect is to simply scale
the learning rate compared to SARSA. This scaling is
because the probability, p(s, a), that a particular state-
action pair, (s, a), is reinforced during each of the addi-
tional np planning steps is proportional to the number
of times (s, a) is expected to be traversed in an episode,
say, n(s, a). The number of times (s, a) is reinforced in a

single planning step is then npp(s, a) = np
n(s,a)∑

s′,a′ n(s′,a′) =

np
n(s,a)
nsteps

, where nsteps is the total number of state-action

pairs visited in each episode. Since this planning step
is applied at each step, the total additional number of
times, qr(s, a) is updated per episode is npn(s, a), in ad-
dition to the n(s, a) regular SARSA updates. This cal-
culation implies that (s, a) is updated by a factor np + 1
compared to the plain SARSA case, which can be inter-
preted as a scaling of the learning rate α → (1 + np)α.
Here, we have assumed that the memory of the Dyna-Q
agent is not much larger than α−1 so that n(s, a) does
not change significantly over a timescale comparable to
the memory size. We confirm this prediction in RL sim-
ulations of Dyna-Q agents (Figure S4a).

(d) Q-learning. Watkins’ Q-learning rule is closely
related to SARSA with an important difference that en-
ables off-policy learning, i.e., the agent learns the optimal
q values while executing an arbitrary policy. This rule is
defined by

qr(st, at) → qr(st, at) + αδt, where (A62)

δt = rt +max
a

qr(st+1, a)− qr(st, at), if st+1 is not the goal

δt = rt − qr(st, at), if st+1 is the goal.

Note the max instead of the expectation in δt. We con-
sider Q-learning using the stochastic policy considered
for SARSA above. The equivalent of (A25) follows by
replacing σn−1qn−1 in (A25) with max(0, qn−1) = qn−1

since the alternative action of turning into the side path
has qr = 0 and qn−1 ≥ 0. We thus have

q̇n = µn (qn−1 − qn) ,

q̇′n = µ′
n (qn−1 − q′n) . (A63)

The σn−1 prefactor does not play a significant role, and

the results obtained for SARSA are directly applicable
in both the expanding and marching regimes, which we
verify through RL simulations (Figure S4b).

(e) Q-learning (pure exploration). Next, we con-
sider Q-learning with a purely explorative policy that is
independent of the learned qr values. Specifically, the
policy is fixed and is given by lnπ(a|s) = qε(s, a) −
lnZ(s), where qε(s, a) are the intrinsic rewards as in the
previous cases. This case is useful to understand the ef-
fects of the learning rule in isolation, without the effects
of the feedback on behavior due to learning coming into
play.
The dynamics of qn and q′n are given by (A63). How-

ever, the factors µn are no longer the ones in (A24). Re-
call that µn is the expected number of times per episode
the agent performs the action of traversing towards the
goal at node n on the direct path. This number is the
expected visits to state (n+ 1, n), M+(n) (from (A21)),
multiplied by the probability, σ(ε), that the agent takes
the action leading to (n, n − 1). We thus have µn =
σ(ε)M+(n) and, similarly, µ′

n = (1 − σ(ε))σ(ε′)M+(n).
Since µn’s are constant over time, the differential equa-
tions (A63) are linear and can be exactly solved for qn(t)
in the Laplace domain. We obtain

qn(t) = r

1−
n∑

m=1

 ∏
m′ ̸=m

µm′

µm′ − µm

 e−µmt

µm

 ,

(A64)
which unfortunately does not yield much insight. In-
stead, we consider the evolution of qn(t) for n large when

k− < k+. From (A21), we have that µn = σ(ε) 1−k−
k+−k−

≡
µ is a constant. The equations q̇n = µ(qn−1− qn) lead to
qn(t) ≈ rP (n, µt). This relation is approximate as µn is
not constant for small n. The reinforcement signal thus
propagates with speed

v = µ = σ(ε)
1− k−
k+ − k−

, (A65)

which is verified in simulations (Figure S4c). This anal-
ysis further highlights that when learning is decoupled
from behavior, similar to the eε ≫ 1 expanding regime,
the propagation of the signal is simply constrained by the
local learning rule with speed proportional to the number
of times the learning rule is applied at each state-action
pair.
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FIG. S1. We estimate the qr values from experimental data using MaxEnt IRL by comparing the behavior of rewarded and
unrewarded mice. Shown here are a subset of the qr values for the state-action pairs leading to the reward (blue cross). For
example, the color of the edge immediately after taking a right turn from home represents the qr value of taking a left turn at
the next junction. To ensure habitual direct runs from home to goal do not significantly bias the estimated qr values close to
the reward, we show the estimates from data when runs from home are included (left) and excluded (right).
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FIG. S2. (a) Learning curves from ten random runs of the RL simulations. The dashed lines and solid fill correspond to the
average ± one standard deviation in the rate of direct paths for unrewarded agents. (b) To quantify the variability across
realizations, we repeat the RL simulations for 200 runs and fit the rate of the direct path for each run to a logistic function,
r(t) = ri + ∆rσ

(
t−tsi
∆t

)
using the maximum likelihood method described in ref. [20]. The histograms for the best fit tsi and

∆t are shown. Note the sharp peak at ∆t ≈ 150 steps (≈ 3 episodes).
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FIG. S3. Numerics and theory for RL with eligibility traces. (a) The qn, q
′
n from RL simulations align closely with numerics

(A49). (b) The speed from RL simulations and theory for a range of values of k, ε, r. (c) The shape of the wave front from
numerics matches the theory prediction (A58). Here k = 2, ε = −2, r = 15.
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FIG. S4. Theoretical predictions of the speed for various RL rules compared to those obtained from simulations.
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