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Abstract 8 

Sexual dimorphism in complex traits is suspected to be in part due to widespread gene-by-sex 9 
interactions (GxSex), but empirical evidence has been elusive. Here, we infer the mixture of ways 10 
polygenic effects on physiological traits covary between males and females. We find that GxSex 11 
is pervasive but acts primarily through systematic sex differences in the magnitude of many 12 
genetic effects (“amplification”), rather than in the identity of causal variants. Amplification patterns 13 
account for sex differences in trait variance. In some cases, testosterone may mediate 14 
amplification. Finally, we develop a population-genetic test linking GxSex to contemporary natural 15 
selection and find evidence for sexually antagonistic selection on variants affecting testosterone 16 
levels. Taken together, our results suggest that the amplification of polygenic effects is a common 17 
mode of GxSex that may contribute to sex differences and fuel their evolution.  18 
 19 
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Introduction 21 

Genetic effects can depend on context. If the distribution of contexts differs between groups of 22 

people, as they do for males and females, so should the average genetic effects on traits1,2. In 23 

particular, such gene-by-sex interaction (GxSex) may be a result of sex differences in bodily, 24 

environmental and social contexts or epistatic interaction with sex chromosomes. Sex differences 25 

in genetic effects on complex traits are clearly of high evolutionary3–8 and translational9–17 26 

importance. Yet with the exception of testosterone levels18–21, the basis of sexual dimorphism in 27 

complex traits is not well understood13. To date, empirical evidence for GxSex in GWAS data—28 

whether focused on identifying large GxSex effects at individual loci or by estimating genetic 29 

correlations between the sexes for polygenic traits—has been lacking. 30 

Here, we set out to study governing principles of GxSex in complex human traits and 31 

explain why current approaches for characterizing GxSex may be lacking for this goal. We then 32 

suggest a mode of GxSex that may have gone largely underappreciated: A systematic difference 33 

in the magnitude of effect of many variants between the sexes, which we refer to as 34 

“amplification”22. Amplification can happen for a large set of variants regulating a specific pathway 35 

if the pathway responds to a shared cue23–26. In classic hypothesis-testing approaches that test 36 

for a GxSex effect separately in each variant, the signal of amplification may be crushed under 37 

the multiple hypothesis burden. On the other hand, even state-of-the-art tools designed with 38 

complex traits in mind may miss amplification signals: They often treat genetic correlation 39 

(between GWAS estimates based on samples from two environments) as a litmus test for whether 40 

effects are the same in two groups27–31, but correlations are scaleless and thus may entirely miss 41 

amplification effects.   42 

We developed a new approach for flexibly characterizing a mixture of male-female genetic 43 

covariance relationships and applied it to 27 physiological traits in the UK Biobank. We found that 44 

amplification is pervasive across traits, and that considering amplification helps explain sex 45 

differences in phenotypic variance. Finally, we consider an implication of polygenic GxSex for 46 

sexually antagonistic selection: Our model confirms that variants that affect traits may be subject 47 

to sexually antagonistic selection when male and female trait optima are very different or, 48 

surprisingly, even if the trait optima are very similar. We developed a novel test for sexually 49 

antagonistic polygenic selection, which connects GxSex to signals of contemporary viability 50 
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selection. Using this test, we find subtle evidence of sexually antagonistic selection on variants 51 

affecting testosterone levels. 52 

 53 

Results 54 

The limited scope of single-locus analysis. We conducted GWASs stratified by sex 55 

chromosome karyotype for 27 continuous physiological traits in the UKB using a sample of ~150K 56 

individuals with two X chromosomes and another sample of ~150K individuals with XY, and a 57 

combined sample that included both the XX and XY samples. We chose to analyze traits with 58 

SNP heritabilities over 7.5% in the combined sample, to have higher statistical power. While there 59 

is not a strict one-to-one relationship between sex chromosome karyotype and biological sex, we 60 

label XX individuals as females and XY individuals as males, and view these labels as capturing 61 

group differences in distributions of contexts for autosomal effects, rather than as a 62 

dichotomy14,17,32. Throughout, we analyze GWAS on the raw measurement units as provided by 63 

UKB. (See note on the rationale behind this choice in the section Amplification of genetic 64 

effects is the primary mode of GxSex). 65 

Among the 27 traits, we observed substantial discordance between males and females in 66 

associations with the trait only for testosterone and waist:hip ratio (whether or not it is adjusted 67 

for BMI; Fig. S1). For testosterone, as noted in previous analyses, associated genes are often in 68 

separate pathways in males and females18,20. This is reflected in the small overlap of genes 69 

neighboring top associations in our GWAS. For example, in females, the gene CYP3A7 is 70 

involved in the hydroxylation of testosterone, resulting in its inactivation. In males, FKBP4 plays 71 

a role in the downstream signaling of testosterone on the hypothalamus. Both genes, to our 72 

knowledge, do not affect testosterone levels in the other sex. 73 

For waist:hip ratio, we saw multiple associations in females only, such as variants near 74 

ADAMTS9, a gene involved in insulin sensitivity33. As previous work established18,20,21, 75 

testosterone and waist:hip ratio are the exception, not the rule: Most traits did not display many 76 

sex differences in top associations. For instance, arm fat-free mass, a highly heritable dimorphic 77 

trait, showed near-perfect concordance in significant loci (Fig. S1). A previous study21 examining 78 

the concordance in top associations between males and females found few uniquely-associated 79 

SNPs (<20) across the 84 continuous traits they studied; waist:hip ratio was an exception with 80 
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100 associations unique to one sex. Considering the evidence for the polygenicity of additive 81 

genetic variation affecting many complex traits34–36, it stands to reason that looking beyond lead 82 

associations, through a polygenic prism, may aid in the characterization of non-additive effects 83 

(such as GxSex) as well.  84 

 85 

The limited scope of analyzing GxSex via heritability differences and genetic correlations. 86 

We therefore turned to consider the polygenic nature of GxSex, first by employing commonly-87 

used approaches: comparing sex-specific SNP heritabilities and examining genetic correlations. 88 

We used LD Score Regression (LDSC)31,37 to estimate these for each trait. In most traits (17/27), 89 

males and females had a genetic correlation greater than 0.9. Testosterone had the lowest 90 

genetic correlation of 0.01, which suggests very little sharing of signals between males and 91 

females (see similar results by Flynn et al.20 and Sinnott-Armstrong et al.18).  92 

For the majority of traits (18/27), male and female heritabilities were both greater than the 93 

heritability in a sample that included both sexes. For instance, in arm fat-free mass (right), the 94 

heritability in the both-sex sample was 0.232 (± 0.009), while the heritabilities for male and female 95 

were 0.279 (± 0.012) and 0.255 (± 0.011), respectively. In particular, all body mass-related traits, 96 

excluding BMI-adjusted waist:hip ratio, had greater sex-specific heritabilities (Fig. 1).  97 

In addition, we noticed a trend in which, as the genetic correlation decreased, the 98 

difference between the heritabilities within each sex and in the sample combining both sexes 99 

tended to become larger (Pearson r = -0.88, paired t-test p-value = 10-10, Fig. 1). Nonetheless, 100 

several traits with genetic correlation above 0.9 also present relatively large sex differences in 101 

heritability: For example, diastolic blood pressure and arm fat-free mass (left) had differences of 102 

5.2% (two-sample t-test p-value = 3 ⋅ 10!") and 3.4% (two-sample t-test p-value = 0.04), 103 

respectively. These examples are incompatible with a model of pervasive uncorrelated genetic 104 

effects driving sex-specific genetic contributions to variation in the trait (Table 1, second model).  105 

We therefore considered two other alternative hypotheses under a simple additive model 106 

of variance in a trait. Differences in heritability are either due to sex differences in genetic variance, 107 

in environmental variance, or both. If genetic effects are similar, differences in environmental 108 

variance alone could cause heritability differences (Table 1, first model). But as we show in the 109 

Methods section, under such a model, the heritability in the combined sample cannot be smaller 110 

than both sex-specific heritabilities. 111 
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Therefore, the observation of higher sex-specific heritabilities for most traits suggests that 112 

the genetic variance must differ between males and females. Given the random segregation of 113 

autosomal alleles, independent of an individual’s sex chromosome karyotype, and assuming, 114 

further, that there is little-to-no interaction of sex and genotype affecting participation in the UKB38, 115 

UKB allele frequencies in males and females are expected to be very similar. Thus, this 116 

observation suggests that causal genetic effects differ between males and females for most traits 117 

analyzed. 118 

A last hypothesis that might tie together the observations in Table 1 is a less appreciated 119 

mode of GxSex, amplification. Namely, that the identity and direction of effects are largely shared 120 

between sexes (leading to high genetic correlation), but the magnitude of genetic effects differs—121 

e.g., larger genetic effects on blood pressure in females—which in turn lead to differences in 122 

genetic variance (Table 1, third model).  123 

We can test the hypothesis that amplification acts systematically—across a large fraction 124 

of causal variants—by examining the effects of polygenic scores (PGSs), genetic predictors of a 125 

complex trait. Under this hypothesis, regardless of whether the PGS is estimated in a sample of 126 

males, females, or a combined sample of both males and females, it should be predictive in both 127 

sexes, since the causal variants and the direction of their effects are shared and the magnitude 128 

is correlated (Table 1, third model). At the same time, in the sex for which genetic effects are 129 

larger, the effect of the PGS is expected to be larger. To evaluate evidence for the systematic 130 

amplification model, we estimated PGSs based on our sex-specific GWASs, and examined their 131 

effect in both sexes. For some traits, like albumin and lymphocyte percentage, the effects of the 132 

same PGS on trait value in males and females were statistically indistinguishable (Fig. 2A,E,I,J). 133 

In a few other traits, such as diastolic blood pressure, the result was contingent on the sample in 134 

which the PGS was estimated (Fig. 2C,G,I,J). However, for roughly half of the traits examined, 135 

regardless of the sample in which the PGS was derived, the effect of the PGS was predictive in 136 

both sexes yet significantly larger in one of the sexes (17/27 traits with t-test p-value < 0.05 using 137 

the PGS derived from the males sample; 13/27 using the PGS derived from the females sample; 138 

Fig. 2B,D,F,H,I,J). These observations are consistent with systematic amplification.  139 

The results presented in Figs. 1,2 suggested to us that various modes of polygenic GxSex 140 

ought to be jointly evaluated. None of the hypothesized rules of thumb (Table 1) for interpreting 141 

genetic correlations and sex differences in heritability worked across all traits (see also relevant  142 
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 143 
Figure 1: Heritabilities and Genetic Correlations Cannot Fully Distinguish Models of GxSex. (A) Genetic 144 
correlations between the male and females, estimated using bi-variate LD Score Regression, are shown in descending 145 
order. (B) The x-axis represents the relative heritability, i.e., the SNP heritability divided by the SNP heritability 146 
estimated in the sample with both sexes combined. Red asterisks show body-mass related traits with greater 147 
heritabilities in both sex-specific samples than in the sample combining both sexes. 148 
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 149 
Table 1. Polygenic Models of GxSex. We examine different models of the nature of GxSex in complex traits that link 150 
to previous studies and motivations. Each model leads to different expectations from the analysis of heritability and 151 
genetic correlations (Fig. 1). The illustrations in the third column depict examples of directions and magnitudes of 152 
genetic effects, corresponding to each model. ℎ!" , ℎ#" and ℎ" denote narrow-sense heritabilities in males, females, and 153 
a combined sample, respectively. 154 
 155 

discussion in Khramtsova et al.14). This motivated us to estimate the covariance between genetic 156 

effects in males and females directly. Another reason to treat covariance of genetic effects 157 

themselves as the estimand of interest is that multiple, distinct GxSex patterns may exist across 158 

subsets of genetic factors affecting a trait (Table 1, fourth model). 159 

 160 

Flexible model of sex-specific genetic effects as arising from a mixture of covariance 161 

relationships.  We set to infer the mixture of covariance relationships of genetic effects 162 

among the sexes directly. We analyzed all traits in their raw measurement units as provided by 163 

the UKB. In particular, we did not normalize or standardize phenotypes within each sex before 164 

performing the sex-stratified GWAS, because sex differences in trait variance may be partly due 165 

to amplification. Standardization would have therefore resulted in masking amplification signals 166 

that may exist in the data. In some cases, this is indeed the purpose of standardization39. More 167 

generally, while each scaling choice has it merits, we view the measurement of genetic effects in 168 

their raw units as the most biologically interpretable. 169 
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 170 
Figure 2: Evaluating evidence for systematic amplification. (A-D) We regressed trait values in males (green) and 171 
separately in females (orange) on a polygenic score estimated in an independent sample of males. Points show mean 172 
values in one decile of the polygenic score; the fitted line and associated effect estimate and 𝑅" correspond to 173 
regressions on the raw, non-binned data. In some traits, like Albumin (A), the polygenic score has a similar effect on 174 
the trait in both sexes. In other traits (B,D), the estimated effect of the polygenic score differs significantly, consistent 175 
with a substantial difference in the magnitude of genetic effects of sites included in the polygenic score. (E-H) Same 176 
analysis as A-D, but with a polygenic score pre-estimated in an independent sample of females. (I-J) Summary of the 177 
ratio of the effect of the polygenic score on the trait (±2 SE) in males to the effect in females across physiological traits. 178 
See results for other traits in Fig. S12. 179 
 180 
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We used multivariate adaptive shrinkage (mash)40, a tool that allows the inference of 181 

genome-wide frequencies of genetic covariance relationships. Namely, we model the marginal 182 

SNP effect estimates as sampled (with SNP-specific, sex-specific noise) from a mixture of zero-183 

centered Normal distributions with various prespecified covariance relationships (2x2 Variance-184 

Covariance matrices for male and female effects; Eq. 1 in Urbut et al.40). Our prespecified 185 

covariance matrices (“hypothesis matrices”) span a wide array of amplification and correlation 186 

relationships, and use mash to estimate the mixture weights. Loosely, these weights can be 187 

interpreted as the proportion of variants that follow the pattern specified by the covariance matrix 188 

(Fig. 3A). Our covariance matrices ranged from -1 to 1 in between-sex correlation, and 10 levels 189 

of relative magnitude in females relative to males, including matrices corresponding to no effect 190 

in one or both sexes (Fig. S2).   191 

We first focus on testosterone, for which previous research sets the expectation for 192 

polygenic male-female covariance. In terms of magnitude, the vast majority of effects should have 193 

much greater effect in males. In terms of correlation, we expect a class of genetic effects acting 194 

through largely independent and uncorrelated pathways alongside a class of effects via shared 195 

pathways18. Independent pathways include the role of hypothalamic-pituitary-gonadal axis in male 196 

testosterone regulation and the contrasting role of the adrenal gland in female testosterone 197 

production. Shared pathways involve sex hormone-binding globulin (SHBG), which decreases the 198 

amount of bioavailable testosterone in both males and females. As expected, we found that 199 

mixture weights for testosterone concentrated on greater magnitudes in males and largely 200 

uncorrelated effects. Out of the 32% total weights on matrices with an effect in at least one sex, 201 

98% of the weights were placed on matrices representing larger effects in males, including 20.4% 202 

(± 0.7%) having male-specific effects (Fig. 3, S5). 203 

 204 

Amplification of genetic effects is the primary mode of GxSex. The only trait of the 27 205 

where a large fraction (≥10%) of non-zero effects were negatively correlated was testosterone 206 

(17%). Most effects were instead perfectly or near-perfectly correlated. For example, diastolic 207 

blood pressure and eosinophil percentage had 66% (Fig. 3) and 68% (Fig. S5) of effects being 208 

perfectly correlated, respectively. Overall, the low weights on matrices representing negative 209 

correlation do not support opposite directions of effects being a major mode of GxSex (Fig. S8). 210 
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In some traits, such as hemoglobin A1C or diastolic blood pressure, previously considered non-211 

sex-specific because of high genetic correlations between sexes and a concordance in top GWAS 212 

hits, we find evidence for substantial GxSex through amplification (Fig. 3B,F; Fig. S5)20,21. 213 

Furthermore, about half (13/27) of the traits analyzed had the majority of weights placed on 214 

greater effects in just one of the sexes (x-axis in Fig. 4A). For instance, 92% of effects on BMI-215 

adjusted waist:hip ratio were greater in females and 92% of effects on (right) arm fat-free mass 216 

were greater in males. Both traits had mixture weights concentrated on highly correlated effects 217 

(Fig. 3). We confirmed, using a simulation study, that this summary of sex-biased amplification 218 

indeed captures sex differences in the magnitude of genetic effects and that it is not due to 219 

differences in the extent of estimation noise (e.g., variation in environmental factors independent 220 

of genetic effects; Figs. S6-7; Methods).  221 

Across traits, the difference between the fraction of male-larger effects and the fraction of 222 

female-larger effects correlates strongly with male-to-female phenotypic variance ratio (Pearson 223 

r = 0.873, p-value = 6⋅10-9 after removing testosterone as an outlier; Fig. 4A). This observation is 224 

consistent with our hypothesis of amplification leading to differences in genetic variance between 225 

sexes and thereby contributing substantially to sex differences in phenotypic variance. Together, 226 

these observations point to amplification, rather than uncorrelated effects, as a primary mode of 227 

polygenic GxSex.  228 

Another important question about the implication of pervasive amplification is whether it 229 

is a major driver of mean phenotypic differences. The ratio between male and female phenotypic 230 

means is correlated with the difference between male-larger and female-larger amplification 231 

(Pearson r = 0.75; p-value = 2 ⋅ 10!" after removing testosterone and BMI-adjusted waist:hip ratio 232 

as outliers). Though this correlation is intriguing, within-sex GWAS aims to explain individual 233 

differences from the mean of the sex, and such GWAS results do not dictate the values of the sex 234 

means. Further, both the ratio of mean trait values between sexes and the difference in 235 

amplification are strongly correlated with phenotypic variance ratios (Fig. 4A; Fig. S9; see also 236 

Karp et al.8), , and many different causal accounts could explain these correlations. 237 

Finally, the pervasiveness of GxSex, alongside the mixture of covariance relationships 238 

across the genome for many traits, may be important to consider in phenotypic prediction. We 239 

compared the prediction accuracy of PGSs that consider the polygenic covariance structure to  240 
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 241 
Figure 3: Polygenic covariance structure between males and females. (A) Our analysis of the polygenic covariance 242 
between males and females is based on sex-stratified GWAS. We modelled the sex-stratified GWAS estimates as 243 
sampled with error from true effects arising from a mixture of possible covariance relationships between female and 244 
male genetic effects. As an example, shown are illustrations for three possible relationships of the same qualitative 245 
nature—perfectly correlated effects which are also larger in females—and the mixture weights estimated for each in 246 
the case of diastolic blood pressure. (B-F) Each box shows the sum of weights placed on all covariance relationships 247 
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of the same qualitative nature, as specified by relative magnitude (horizontal axis) and correlation (vertical axis) 248 
between male and female effects. The full set of pre-specified covariance matrices is shown in Fig. S2, and the weights 249 
placed on each of them for each trait are shown in Fig. S5. All weights shown are percentages of non-null weights, i.e., 250 
the weight divided by the sum of all weights except for the one corresponding to no effect in either sex.  251 
 252 

that of additive models, that ignore GxSex, as well as models that include GxSex but do not 253 

consider the polygenic covariance structure (Supplementary Materials; Fig. S13). Indeed, for 254 

most traits, models that consider the polygenic covariance structure outperform all other models 255 

(18/27 traits, 𝑝 < 0.05 for a conservative two-sample t(1)-test for 7/27 traits). Traits which showed 256 

better prediction accuracy using the model that considered polygenic covariance structure 257 

included many body mass-related traits such as BMI and whole body fat mass that also tended 258 

to have higher sex-based amplification (Fig. 4B; Pearson 𝑟	 = 	0.62, 𝑝	 < 	0.001 between sex-259 

biased amplification and prediction accuracy ratio). These results point to the utility of considering 260 

polygenic covariance structure in context-aware polygenic score prediction. 261 

 262 

Testosterone as an amplifier. Thus far, we treated the genetic interaction as discretely 263 

mediated by biological sex. One mechanism that may underlie GxSex is a cue or exposure that 264 

modulates the magnitude (and less often, the direction) of genetic effects, and varies in its 265 

distribution between the sexes. A plausible candidate is testosterone. Testosterone may be a key 266 

instigator since the hormone is present in distinctive pathways and levels between the sexes and 267 

a known contributor to the development of male secondary characteristics, so therefore could 268 

modulate genetic causes on sex-differentiated traits.  269 

To test this idea, we first binned individuals of each sex by their testosterone levels. Then, 270 

for each trait and within the bin, we quantified the magnitude of total genetic effect as the linear 271 

regression coefficient of trait to a PGS for the trait (Methods; see Fig. S15 for results obtained 272 

using sex-specific PGS). For BMI, testosterone (mean per bin) and the magnitude of genetic 273 

effect were correlated for both males and females (Pearson p-value < 0.05; Fig. 5A). For all body-274 

mass-related traits, there was a negative correlation between the magnitude of genetic effect and 275 

testosterone levels for males and a positive correlation for females (Fig. 5B). Since the 276 

relationship with testosterone remains contingent on sex, a model of testosterone as the sole 277 

driver of the observed sex-specificity would be invalid. These observations may help explain 278 
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 279 

Figure 4. (A) Phenotypic variance strongly correlates with amplification. The x-axis summarized the “sex-biased 280 
amplification” of polygenic effects and is calculated by taking the difference between the sum of weights on matrices 281 
with male effects greater in magnitude than female effects (M>F) and the sum of weights of M<F matrices. The solid 282 
gray line shows a linear fit across traits, excluding testosterone as an outlier. (B) Utility of polygenic GxSex model 283 
for trait prediction. The x-axis shows the relative prediction accuracy estimated from the incremental R2 ratio of a 284 
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GxSex model informed by polygenic covariance patterns and an additive model. The phenotypes are ordered by the 285 
relative prediction accuracy. The size of each point corresponds to the degree of sex-biased amplification as described 286 
in (A). Blue points correspond to traits with a significant difference based on a two-sample t-test with p-value < 0.05 287 
(Text S8) between the covariance-aware GxSex model and the additive model, one way or the other.   288 

  289 

 290 
Figure 5. Amplification of total genetic effect in relation to testosterone levels. (A) The relationship between 291 
testosterone level bins and estimated magnitude of genetic effect on traits is shown for three traits. The magnitude of 292 
genetic effect is estimated using the slope of the regression of phenotypic values to polygenic scores in that bin. The 293 
units on the y-axis are effect per standard deviations (SD) of the polygenic scores across all individuals in all bins. The 294 
hollow data points are bins with overlapping testosterone ranges between males and females; these are based on 295 
fewer individuals (~800 compared to ~2200 in other bins) and not included in the regression. Fig. S14 show all other 296 
traits analyzed. (B) The correlation for each sex (90% CI) are shown for all 27 traits. Traits are ordered in descending 297 
order of male-female differences in Pearson correlation.  298 
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previous reports of positive correlations between obesity and free testosterone in women, and 299 

negative correlations in men41. We conclude that in body-mass related traits, testosterone may 300 

be modulating genetic effects in a sexually antagonistic manner. 301 

We performed two additional analyses designed to control for possible caveats to the 302 

association of testosterone and the magnitude of polygenic effect: An association test that 303 

controls for possible confounding with age (Fig. S17) and a test that mitigates confounding with 304 

other variables or reverse causality (wherein the magnitude of genetic effect affecting the focal 305 

trait causally affecting testosterone levels; Fig. S16). The evidence for an effect of testosterone 306 

on the magnitude of polygenic effect did not remain significant in either of these tests. It is 307 

possible, however, that this was due to low statistical power (Methods). 308 

 309 

Are polygenic and environmental effects jointly amplified? Our results thus far suggest 310 

that polygenic amplification across sexes is pervasive across traits; and that the ratio of 311 

phenotypic variance scales with amplification (Fig. 4A). An immediate question of interest is 312 

whether the same modulators that act on the magnitude of genetic effects act on environmental 313 

effects as well (see also relevant discussion by Domingue et al.42). Consider the example of 314 

human skeletal muscle. The impact of resistance exercise varies between males and females. 315 

Resistance exercise can be considered as an environmental effect since it upregulates multiple 316 

skeletal muscle genes present in both males and females such as IGF-1, which in turn is involved 317 

in muscle growth43. However, after resistance exercise at similar intensities, upregulation of such 318 

genes is sustained in males, while levels return sooner to the resting state in females (Fig. S18). 319 

It is plausible that modulators of the effect of IGF-1, such as insulin44 or sex hormones45,46, drive 320 

a difference in the magnitude of effect of core genes such as IGF-1 in a sex-specific manner. To 321 

express this intuition with a model: If amplification mechanisms are shared, then amplification 322 

may be modeled as having the same scalar multiplier effect on genetic and environmental effects 323 

(Fig. 6A). In the Methods section, we specify the details of a null model of joint amplification, 324 

which yields the prediction that the male-female ratio of genetic variances should equal the 325 

respective ratio of environmental variances (blue line in Fig 6B).  326 

This expectation is qualitatively different from those of two longstanding theoretical “rules 327 

of thumb” predictions for sex differences in trait variance (Supplementary materials; Fig. S19A; 328 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 17, 2022. ; https://doi.org/10.1101/2022.05.06.490973doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.06.490973
http://creativecommons.org/licenses/by/4.0/


16 

 

of. Zajitschek et al.47): The "greater male variability” and “estrus-mediated variability” models, 329 

which provide a poor fit across the 27 physiological traits analyzed (Fig. S19B). 330 

We tested the fit of the theoretical prediction under pervasive joint amplification across 331 

traits. We used our estimates of sex-specific phenotypic variance and SNP heritabilities to 332 

estimate the ratios of genetic and environmental variances. We note that environmental variance 333 

is proxied here by all trait variance not due to additive genetic effects, and caution is advised with 334 

interpretation of this proxy. Twenty of the 27 traits were consistent with the null model of pervasive 335 

joint amplification (within 90% CI; Fig. 6B). This finding may suggest a sharing of pathways 336 

between polygenic and environmental effects for these traits (Fig. 6A). Interesting exceptions 337 

include diastolic blood pressure—which was the strongest outlier (p-value = 3.06 ∙ 10!#$, single-338 

sample z-test), excluding testosterone.  339 

 340 

Sexually antagonistic selection. A hypothesized cause of sexual dimorphism is sexually 341 

antagonistic selection, in which some alleles are beneficial in one sex yet deleterious in the 342 

other4,5,7,48,49. Sexually antagonistic selection is difficult to study using traditional population 343 

genetics methods because Mendelian inheritance equalizes autosomal allele frequencies 344 

between the sexes at conception, thereby erasing informative signals. One way around this 345 

limitation is to examine allele-frequency differences between the sexes in the current generation, 346 

known as “selection in real time”7,50,51. In this section, we consider a model of sexually antagonistic 347 

selection acting on a polygenic trait and use it to estimate the strength of contemporary viability 348 

selection acting on the 27 traits we analyzed. 349 

Most theoretical models of sexually antagonistic selection on a trait under stabilizing selection 350 

usually posit either highly distinct male and female fitness optima or genetic variants affecting 351 

traits antagonistically. Our findings on pervasive amplification suggest that variant effects on traits 352 

tend to have concordant signs. Yet, under pervasive amplification, a somewhat surprising intuition 353 

arises: Alleles affecting a trait may frequently experience sexually antagonistic selection—both in 354 

the case in which trait optima for males and females are very distinct (Fig. 7B) and for the case 355 

in which they are similar (Fig. 7A). 356 

We developed a theoretical model of sexually antagonistic viability selection on a single 357 

trait that builds on this intuition. The model relates sex-specific effects on a complex trait to the 358 

divergence in allele frequency between males and females (measured as 𝐹%&52,53) due to viability   359 
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 360 
Figure 6. Testing a model of pervasive, joint amplification of environmental and polygenic effects. (A) A model 361 
of equal amplification of genetic (G) and environmental (E) effect, that produces the sex differences in the distribution 362 
of the phenotype, Y. G and E both act through a core pathway that is amplified in a sex-specific manner. (B) The blue 363 
1:1 line depicts the theoretical expectation under a simple model of equal amplification of genetic and environmental 364 
effects in males compared to females. Error bars show 90% confidence intervals. Traits in blue are consistent (within 365 
their 90% CI) with the theoretical prediction. Fig. S19 shows the same data alongside the predictions under other 366 
theoretical models of male-female variance ratios. 367 

 368 

selection “in real time”, i.e., acting in the current generation between conception and the 369 

time of sampling. We derive the expected relationship for each site 𝑖, 370 

𝐹%&' ≈ 𝐴𝑉()%' , (1) 

where 371 

𝑉{()%}' = 2𝑝'(1 − 𝑝')8𝛽', − 𝛽'
-:
$
,  

and 𝑝' , 𝛽', and 𝛽'
- are the allele frequency of an allele at site 𝑖, its effect on the trait in males and 372 

its effect in females, respectively. 𝐴 is a constant parameter shared across all variants and can 373 

therefore be interpreted as the effect of sexually antagonistic selection on male-female divergence  374 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 17, 2022. ; https://doi.org/10.1101/2022.05.06.490973doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.06.490973
http://creativecommons.org/licenses/by/4.0/


18 

 

 375 

Figure 7. Testing for sexually antagonistic selection. (A,B) A model of sexually antagonistic selection. Selection 376 
coefficients, 𝑠! and 𝑠#, are linear with the additive effect on the trait in each sex. Sexually antagonistic selection acts 377 
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such that 𝑠! = −𝑠#. The model yields the prediction of Eq. 1. In (A), the effect of an allele tends to drive trait values 378 
towards the optimum in males, and away from the optimum in females. In (B), the fitness optima are farther in males 379 
and females; in both examples, selection on acts antagonistically (i.e., in opposite directions). (C) Two examples of the 380 
weighted least-squares linear regression preformed to estimate the strength of sexually antagonistic selection on 381 
variants associated with a trait (𝐴 in panel A and Eq. 1). Each point shows one SNP. Size is proportional to each point’s 382 
regression weight. (D) Z-scores (90% non-parametric bootstrap CI) estimated through 1000 resampling iterations of 383 
the weighted linear regression of panel B for each trait. The two colored estimates correspond to the examples in (B). 384 

 385 

at variants associated with the trait (Methods). We estimated 𝐹%&' for all sites 𝑖 across subsamples 386 

of various ancestry groups in the gnomAD dataset 54. To estimate 𝑉{()%}' at each site and for each 387 

trait, we used our sex-stratified GWAS results. Since there is large heterogeneity in uncertainty  388 

of GxSex-genetic variance estimates, we use a variance-weighted linear regression to estimate 389 

A (see Methods for the derivation of the variance of 𝑉{()%}' estimates and Supplementary 390 

Materials for further details).  391 

Recent work has shown that apparent sex differences in autosomal allele frequencies 392 

within a sample are often due to a bioinformatic artifact: The mismapping of sequencing reads 393 

from autosomes to sex chromosomes or vice versa48,55,56. We identified and excluded sites which 394 

are potentially vulnerable to this artifact (Supplementary Materials). In Fig. 7D, we only show 395 

results for gnomAD subsamples that are the closest in their genetic ancestry to our UKB sample57 396 

(results for other subsamples are shown in Fig. S20,21). Furthermore, given the concerns of study 397 

recruitment biases 38,55, we place higher confidence in results that replicate qualitatively across 398 

different subsamples, even though we note that subsample-specific selection signals may be real 399 

since sexually antagonistic selection may act heterogeneously across groups.  400 

With these conservative criteria considered, we only find evidence for sexually 401 

antagonistic polygenic selection on testosterone. In the non-Finnish sample, the largest of the 402 

three samples, the null hypothesis 𝐻.: 𝐴 = 0 in Eq. 1 is rejected (p-value < 0.05) only for 403 

testosterone (Z score = 2.2). Testosterone is among the three strongest signals in the two other 404 

samples as well, though none of the traits are statistically significant in these samples. 405 
 406 
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Discussion 407 

Departing from previous studies that sought GxSex through single loci or heritability analyses, we 408 

modelled GxSex as a mixture of polygenic relationships across the genome. Our analysis 409 

supports pervasive context-dependency of genetic effects on complex traits, acting largely 410 

through amplification. Surprisingly, even for some traits such as red blood cell count, previously 411 

considered non-sex-specific because of high genetic correlations between sexes and a 412 

concordance in top GWAS hits, we find evidence for substantial GxSex. The strong relationships 413 

we find between amplification, environmental variance and phenotypic variance further points to 414 

its potential importance for sex differences.  415 

We have shown that considering the polygenic covariance structure, including 416 

amplification signals, improves phenotypic prediction for most traits. Its incorporation in polygenic 417 

scores is straightforward. We therefore recommend its broad application and further building on 418 

our approach to improve clinical risk stratification and other applications of polygenic scores.  419 

Our findings may seem at odds with previous reports of GxSex primarily consisting of sex-420 

limited effects (i.e., no effect in one of the sexes) or antagonistic effects (differences in sign)58. In 421 

the Supplementary Materials and Table S6, we illustrate that these apparent discrepancies may 422 

be rooted in ascertainment biases. Therefore, limiting analyses to variants with outsized sex 423 

differences provides a clouded picture of polygenic GxSex. 424 

Localization of GxSex signals can provide clues into the modulators underlying 425 

amplification. Here, we proposed one such modulator, testosterone, and found a correlation 426 

between testosterone levels and the magnitude of genetic effect on whole body fat mass. The 427 

opposite signs of these correlations in females and males may reflect the discrepant relationship 428 

between testosterone and these traits at the phenotypic level.   429 

Our approach for studying GxSex in complex physiological traits can be adopted to study 430 

the moderation of polygenic effects by other environments. Starting out with sex as an 431 

environmental variable offers a methodological advantage. The study of context-dependency in 432 

humans is often complicated by study participation biases, leading to genetic ancestry structure 433 

that confounds genotype-phenotype associations38,59–61, reverse causality between the 434 

phenotype and environment variable, collider bias, gene-by-environment correlation and other 435 

problems62–64. Focusing on sex as a case study circumvents many of these “usual suspects” 436 

problems: For example, problems involving the phenotype causally affecting sex are unlikely. This 437 
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is an important benchmark for future studies of environmental modulation, both because of the 438 

methodological advantage of sex as an environmental variable and because sex is almost always 439 

measured; so insight into sex differences in genetic effects can be incorporated straightforwardly 440 

in future studies and in clinical risk prediction. Here, we showed that for most of the traits 441 

considered, modeling polygenic GxSex (as opposed to individually estimating sex-specific effects 442 

at each site; Fig. S13 yields sex-specific predictors that outperform standard additive polygenic 443 

scores. 444 

Finally, we developed a model to consider how GxSex may fuel sexually antagonistic 445 

selection in contemporary populations. Over long evolutionary timescales, the two scenarios 446 

depicted in Fig. 7A,B may lead to different predictions about the long-term maintenance of GxSex 447 

genetic variance. Regardless, in both cases, alleles that underlie GxSex may experience sexually 448 

antagonistic selection.  449 

We found suggestive signals of sexually antagonistic selection on variation associated 450 

with testosterone levels (also see related results by Ruzicka et al.51). The signal for our inference 451 

of selection is systematic allele frequency differences between adult males and females, which 452 

are consistent with contemporary viability selection. The severity, age of onset and prevalence of 453 

nearly all diseases are sexually dimorphic65. These signals may therefore point to a related 454 

disease that differentially affects lifespan in the two sexes, such as immune system suppression, 455 

diabetes, cancers, and hypertension66–69. Recently, high testosterone levels have been linked to 456 

increased rates of mortality and cancer in women, but decreased rates in men70,71. However, the 457 

testosterone result is also consistent with other accounts, such as testosterone having opposing 458 

effects on propensity to participate in a study in the two sexes. Further validation is therefore 459 

required to better test hypotheses of sexually antagonistic selection, for example in studies with 460 

no recruitment biases (or at least distinct recruitment biases).  461 

In this work, we have shown that amplification of the magnitude of polygenic effects may 462 

be important to consider as a driver of sex differences and their evolution. Our approach included 463 

the flexible modelling of genetic effect covariance among the sexes, as well as various 464 

subsequent analyses exploring the implications of these covariance structures. We hope this 465 

study can inform future work on the context-specificity of genetic effects on complex traits. 466 

 467 
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Limitations of the Study 468 

Study participation in large biobanks like the UK Biobank (UKB) differs by sex72; and work by 469 

Piratsu et al. further argued that allele frequency differences between males and females may 470 

reflect sex-specific recruitment biases55. However, a recent study by Benonisdottir and Kong 471 

found no evidence of sex-specific genetic associations with UKB participation38, and another by 472 

Kasimatis et al. showed that many apparent associations of autosomal genotypes and biological 473 

sex in the UKB were instead primarily due to a bioinformatic artifact—the mis-hybridization of 474 

autosomal genotyping probes with sex chromosomes48. Even still, subtle recruitment biases 475 

affecting male and female participation differently remain a possible caveat to our conclusions. 476 

For the analysis of natural selection in particular, while the replication of signals of selection in 477 

multiple samples may lend credence to our inference, medical datasets based on recruitment of 478 

participants via referring physicians, participation biases may still plausibly be shared across 479 

studies. 480 

 481 
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Methods 498 

RESOURCE AVAILABILITY 499 

Lead contact 500 

Further information and requests for resources should be directed to and will be fulfilled by the 501 

lead contact, Arbel Harpak (arbelharpak@utexas.edu) 502 

 503 

Materials availability 504 

This study did not generate new unique reagents.  505 

 506 

Data and code availability 507 

This study used genotype and phenotype data from the UK Biobank 508 

https://www.ukbiobank.ac.uk/.   509 

Sex-specific GWAS summary statistics are available at Zenodo and are publicly available as of 510 

the data of publication. DOIs are listed in the key resources table.  511 

All original code has been deposited at https://github.com/harpak-lab/amplification_gxsex and is 512 

publicly available as of the date of publication. DOIs are listed in the key resources table. 513 

Any additional information required to reanalyze the data reported in this paper is available from 514 

the lead contact upon request.  515 

 516 

METHOD DETAILS 517 

UK Biobank sample characteristics. The UK Biobank is an extensive database that 518 

contains a wide variety of phenotypic and genotypic information of around half a million 519 

participants aged 40-69 at recruitment73. 520 

In this study, we considered 337,111 individuals who passed quality control (QC) checks, 521 

which included the removal of samples identified by the UK Biobank with sex chromosome 522 

aneuploidy or self-reported sex differing from sex determined from genotyping analysis. We 523 

excluded related individuals (3rd-degree relatives or closer) as identified by the UK Biobank in 524 

data field 22020. To reduce potential population structure confounding, we further limited our 525 

sample to individuals identified by the UK Biobank as “White British” in data field 22006. These 526 
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are individuals who both self-identified as White and as British and were additionally very tightly 527 

clustered in the genetic principal component space73,74. Individuals who had withdrawn from the 528 

UK Biobank by the time of this study were removed. For each phenotype, we also removed 529 

individuals who had missing data for the specified phenotype. These procedures left us with 530 

between 255,426 to 336,551 individuals in the analysis for each trait. 531 

 532 

Expectations for sex-specific heritabilities with no GxSex. In the section “The limited 533 

scope of analyzing GxSex via heritability differences and genetic correlations,” we report our 534 

observation that, for most traits examined, sex-specific heritabilities (i.e., estimated independently 535 

from sex-stratified GWAS) were both higher than the heritability in the combined sample. Here, 536 

we explain why this observation is inconsistent with a simple model in which genetic effects are 537 

the same across the sexes. 538 

Under a simple additive model of variance in a trait 𝑌 within each sex 𝑍,  539 

𝑉𝑎𝑟[𝑌|𝑍] = 𝑉𝑎𝑟[𝐺|𝑍] + 𝑉𝑎𝑟[𝐸|𝑍], (2) 

where 𝑌, 𝐺, 𝐸 represent the trait value, additive effect, and environmental effect (including all non-540 

genetic context aside from sex), respectively. Under this model, the sex-specific heritability ℎ/$ is 541 

ℎ/$ =
𝑉𝑎𝑟[𝐺|𝑍]	

𝑉𝑎𝑟[𝐺|𝑍] + 𝑉𝑎𝑟[𝐸|𝑍]
. 

(3) 

Therefore, sex differences in heritability are either due to sex differences in genetic 542 

variance, in environmental variance, or both. If genetic effects are equal, differences in 543 

environmental variance alone could cause heritability differences (Table 1, first model). But as 544 

we show below, the heritability in the combined sample cannot be smaller than both sex-specific 545 

heritabilities. 546 

We assume as before that allele frequencies are highly similar between males and 547 

females. Since genetic effects are equal, this implies 548 

𝑉𝑎𝑟[𝐺|𝑍 = 𝑚] ≈ 𝑉𝑎𝑟[𝐺|𝑍 = 𝑓]. 549 

For the environmental variance, we have that 550 

𝑉𝑎𝑟[𝐸] = 𝔼0K𝑉𝑎𝑟[𝐸|𝑍]L + 𝑉𝑎𝑟0K𝔼[𝐸|𝑍]L = 𝔼0K𝑉𝑎𝑟[𝐸|𝑍]L + 0 = (4) 
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ℙ(𝑍 = 𝑚)𝑉𝑎𝑟[𝐸|𝑍 = 𝑚] + ℙ(𝑍 = 𝑓)𝑉𝑎𝑟[𝐸|𝑍 = 𝑓] ≤ max
1∈{3,5}

𝑉𝑎𝑟[𝐸|𝑍 = 𝑧]. 

The first equality follows from the law of total variance. In the second equality, we have 551 

assumed that there are no mean sex differences in the environmental effects (or, in practice in 552 

our analysis and as routine in other analyses, that mean phenotypic sex differences have been 553 

subtracted out), giving 554 

𝔼[𝐸|𝑍 = 𝑚] = 𝔼[𝐸|𝑍 = 𝑓] = 𝔼[𝐸]. 555 

Eq. 4 shows that the combined environmental variance cannot be greater than the larger of the 556 

two sex-specific environmental variances. It follows that if the genetic variance is equal in both 557 

sexes, then the heritability in the combined sample cannot be smaller than both of the sex-specific 558 

heritabilities, 559 

ℎ$ =
𝑉𝑎𝑟[𝐺]	

𝑉𝑎𝑟[𝐺] + 𝑉𝑎𝑟[𝐸]
≥ 	

𝑉𝑎𝑟[𝐺]	
𝑉𝑎𝑟[𝐺] + max

1∈{3,5}
 𝑉𝑎𝑟[𝐸|𝑍]

= min
1∈{3,5}

ℎ0$ . 
(5) 

 560 

Multivariate adaptive shrinkage (mash). We used multivariate adaptive shrinkage (mash) to 561 

examine correlation and differences in magnitude of SNP effects between males and females 40. 562 

mash is an adaptive shrinkage method75 that improves upon previous methods of estimating and 563 

comparing effects across multiple conditions by flexibly allowing for a mixture of effect covariance 564 

patterns between conditions and requiring only summary statistics from each condition (including 565 

a point estimate of the effect and corresponding standard error for each SNP and condition). The 566 

method adapts to patterns of sparsity, sharing, and correlation among the conditions to compute 567 

improved effect estimates.  568 

In this study, we set two conditions, male and female, and provided effect estimates and 569 

corresponding standard errors from our male-specific and female-specific GWAS. mash learns 570 

from the data by estimating mixture proportions of various predefined covariance matrices 571 

representing different patterns in effects. Using maximum likelihood, mash assigns low weights 572 

to matrices that capture fewer patterns in the data, and higher weights to those that capture more.  573 

 574 

Mixture weights for covariance structure between male and female effects.     To interpret 575 

patterns of SNP effects between males and females, we inputted 66 hypothesis-based covariance 576 
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matrices (Fig. S2) spanning a range of correlations and relative magnitudes of effects between 577 

males and females. We used a random subset of all SNPs for mash to learn the covariance 578 

mixture weights. In order for the random subset to contain approximately independent SNPs and 579 

capture the weight of SNPs with no effect (Fig. S2), we created a subset of SNPs for each trait 580 

by taking a random SNP from each of 1703 approximately independent LD blocks estimated for 581 

Europeans76. mash can also generate data-driven covariance matrices that capture SNP effects 582 

in the data, but we did not use this feature since the data-driven matrices had negligible 583 

differences from our hypothesized matrices (in terms of ℓ2 norm) and were less interpretable.  584 

For each trait, we repeat this weight-learning step 100 times, sampling the SNPs from the 1703 585 

LD blocks without replacement to fit the mash model and generate mixture proportions. We then 586 

take the average proportion for each covariance matrix as an estimate of its weight, effectively 587 

treating each of the 100 samples as i.i.d. draws. 588 

 589 

Choice of SNPs used to estimate male-female effect covariance. We examined the 590 

effect of using a random subset taken from different p-value thresholds [1, 5e-2, 1e-5, 5e-8] while 591 

selecting from LD blocks. By doing so, we can examine differences in the distribution of weights 592 

across the p-value thresholds. We performed this test on height, BMI, testosterone, and BMI-593 

adjusted waist:hip ratio. For each trait, weight placed on the no-effect matrix decreased as we 594 

reduced the p-value threshold (Fig. S4A). Patterns of weights for non-null effect matrices varied 595 

across the traits (Fig. S4B,C). Since mash considers the proportion of null effects and sex-596 

specific, SNP-specific noise; together with the fact that for complex traits, less significant 597 

associations may still reflect valuable signal, we decided on using the whole set of SNPs to 598 

sample from when estimating mixture proportions.  599 

 600 

Simulating equal genetic effects and heterogeneous estimation noise among the sexes.601 

 To ensure that mash was not mistaking sex differences in estimation noise (e.g. via 602 

differences in the extent of environmental variance) to be differences in the magnitude of genetic 603 

effects, we performed a simulation study. In short, samples of males and females were generated 604 

under the model given by Eq. 2. Genetic effects were set as equal, but the environmental variance 605 

differed among the sexes. We then perform a GWAS on both samples and input the simulated 606 

GWAS results into mash, and test whether the estimated mixture weights spuriously suggest the 607 
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presence of GxSex. We performed this simulation on a grid of parameters, including heritabilities 608 

in males set to either 5% or 50%, female to male environmental variance ratio of 1, 1.5 or 5; and 609 

100, 1,000 or 10,000 causal SNPs.  610 

First, we created a sample of 300K individuals with randomly assigned sex. We then 611 

sampled genotypes for all individuals consisting of 20K SNPs by sampling from the observed 612 

distribution of allele frequencies from UK Biobank’s imputed data77, assuming linkage equilibrium. 613 

From the 20K SNPs, we portioned out the predetermined number of causal SNPs and assigned 614 

effect sizes by sampling from a Standard Normal distribution. We estimated the male 615 

environmental variance for each causal SNP using the equation, 616 

𝑉𝑎𝑟[𝐸|𝑍 = 𝑚] =
𝑉𝑎𝑟[𝐺|𝑍 = 𝑚](1 − ℎ,$ )

ℎ,$
=
(∑ 𝛽'$2𝑝'(1 − 𝑝'))(1 − ℎ,$ )'6.

ℎ,$
 

(6) 

where 𝑉𝑎𝑟[𝐸||𝑍 = 𝑚]	is the simulated environmental variance for males, 𝐺|𝑍 = 𝑚 is a vector of 617 

the genetic effects in males, ℎ,$  is the heritability in males and 𝛽' and	𝑝' are the effect size and 618 

allele frequency at site 𝑖, which are equal for males and females. We multiplied 𝑉𝑎𝑟[𝐸||𝑍 = 𝑚]	 619 

by the predetermined environmental variance ratio to obtain the environmental variance for 620 

females 𝑉𝑎𝑟[𝐸||𝑍 = 𝑓]. Afterwards, for each individual 𝑗 with sex 𝑧#, we sampled the 621 

environmental effect 𝐸# as 622 

𝐸7~𝑁(0, 𝑉𝑎𝑟K𝐸Z𝑍 = 𝑧7L.  

Phenotypes were then set using the following additive model, 623 

𝑦7 =\𝛽'𝑥'7 + 𝐸7
'6.

 (7) 

where 𝑦7 is the phenotypic value for individual 𝑗 and 𝑥'7 is the number of effect allele copies at the 624 

𝑖89 causal SNP for the 𝑗89 individual. With the phenotype, genotype and environmental effect set, 625 

we obtained the estimated effect sizes, {𝛽:_ }, using least squares simple linear regression for all 626 

20K SNPs and used the estimated effect sizes and corresponding standard errors as input into 627 

mash.  628 

For nearly all parameters, out of the weights on matrices other than the null matrix, the 629 

vast majority was placed on the matrix for perfect correlation, equal magnitude (Fig S6). As the 630 

number of causal SNPs increased, the weight on the no-effect covariance matrix decreased 631 
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accordingly. These results suggest that mash was not grossly mistaking differences in 632 

environmental variance as amplification. 633 

 634 

Simulating sex-biased amplification.  To evaluate whether mash accurately 635 

captures sex-biased amplification of genetic effects (a measure we have used in the x-axis of Fig. 636 

4A,B), we followed the same simulation procedure described in the Section "Simulating equal 637 

genetic effects and heterogeneous estimation noise among the sexes”. However, instead of using 638 

equal genetic effects in males and females, we sampled genetic effects from pre-specified 639 

covariance matrices (Fig. S7 left-hand panel). We set the female to male environmental variance 640 

ratio as 1.2 and the heritability as 0.5. We generated data from (A) a model in which all genetic 641 

effects are sampled from a matrix where male and female effects are equal, (B) a model in which 642 

86% of the genetic effects are sampled from a matrix where effects between the sexes are equal, 643 

and 14% of the effects are sampled from a matrix where the female effect size magnitude is 4 644 

times that of males, and (C) a model in which 86% of effects are sampled from a matrix where 645 

effects between sexes are equal, and 14% of effects are sampled from a matrix of only female-646 

specific effects. After simulating sex-specific GWAS on the three models, we input the results into 647 

mash to estimate mixture weights. We repeated this simulation procedure 100 times for each 648 

model.  649 

 For model (A), the equal effect matrix received 78% of the weight, and the difference 650 

between male-larger and female-larger magnitude was 1% (Fig. S7). For model (B), 67% of the 651 

weight was placed on the matrix for equal effects. The weight difference between male-larger and 652 

female-larger magnitude was 13%. In model (C), 69% of the weight was on the matrix for equal 653 

effects, and the difference between male-larger and female-larger magnitude was 16%. These 654 

simulation results therefore suggest some overestimation of the proportion of SNPs with 655 

magnitude differences. However, the measure of “sex-biased amplification” matched that of the 656 

pre-specified generative models up to an error of 2%. Therefore, the simulations suggest “sex-657 

biased amplification” is measured accurately in our estimation procedure.  658 

 659 

Testosterone as an amplifier. We tested a model of testosterone as a modulator of 660 

magnitude differences in males and females. We first split individuals by sex and for each sex, 661 

created 10 bins of testosterone levels. We adjusted one of the 10 bins to have testosterone levels 662 
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overlap between males and females. The overlapping testosterone bin was based on fewer 663 

individuals (~800) compared to the other bins (~2200). For each trait, each of the sexes, and 664 

within each bin, we performed a simple linear regression of trait values to the PGS for the trait 665 

(using a PGS based on both-sex summary statistics (Supplementary Materials)). We interpret 666 

the estimated coefficient for the effect of the PGS as a proxy for the magnitude of polygenic effect. 667 

Finally, we summarized the relationship between testosterone level and magnitude of polygenic 668 

effect across bins using the Pearson correlation between the two.  669 

To mitigate the possible effects of confounding (of testosterone and magnitude of 670 

polygenic effect) or reverse causation (the magnitude of polygenic effect on the focal trait causally 671 

affecting testosterone levels) we employed a version of Mendelian Randomization78,79 of the same 672 

analysis (Fig. S16). Namely, we replaced testosterone levels of each individual with their PGS for 673 

testosterone. Here, given the near-zero genetic correlation between males and females, we used 674 

our sex-specific PGS for each sex; otherwise, the analysis is unchanged.  675 

We also examined whether participants’ age may have confounded the relationship 676 

between testosterone and polygenic effect. In this analysis, instead of using the polygenic effect 677 

as the response variable across bins, we used the polygenic effect residualized for mean age in 678 

the bin and examined the effect of an individual’s polygenic score on the residual (Fig. S17).  679 

 680 

Model of Shared Amplification. Here, we suggest a null model in which amplification is 681 

shared between genetic and environmental effects. We then suggest a prediction that the model 682 

yields and explain how we tested this prediction across traits (Fig. 6). 683 

If an amplifier is shared, it may be modeled as having the same scalar multiplier effect on 684 

genetic and environmental effects. Consider the within-sex additive model of Eq. 1 in the section 685 

“The limited scope of analyzing GxSex via heritability differences and genetic correlations” above. 686 

For a phenotype value 𝑌/  in sex 𝑧 ∈ {m, f}   687 

𝑌/ = 𝑐 + 𝐺/ + 𝐸/, (8) 

Where c is a constant, 𝐸/ is the environmental effect and 688 

𝐺/ = \ 𝑥'𝛽'/

;'8<	'

 (9) 
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is the polygenic effect where 𝛽$% is the effect of an allele at site 𝑖 (say the minor allele) in sex 𝑍 689 

and  𝑥' is the number of copies of the allele. We assume here for simplicity that male genetic 690 

effects relate to female effects solely through a shared polygenic amplification constant, α, 691 

𝛽', = 𝛼𝛽'
-     ∀𝑖; 		𝛼 > 0. (10) 

Allele frequencies are once again assumed to be close to equal between males and 692 

females, since due to random segregation of alleles during meiosis, genotype frequencies at 693 

autosomal sites are independent of sex; and further assuming no substantial interaction between 694 

genotype and sex affecting participation in UKB38. Consequently, differences in polygenic effect 695 

distributions between males and females are solely based on GxSex, and thus: 696 

𝑉𝑎𝑟[𝐺,] = 𝛼$𝑉𝑎𝑟[𝐺-]. (11) 

The model we would like to test is one where the amplification of environmental effects 697 

can also be simplified to the same scalar multiplier, 698 

𝐸, = 𝛼𝐸-, and 

𝑉𝑎𝑟[𝐸,] = 𝛼$𝑉𝑎𝑟[𝐸-]. 

(12) 

Hence, with equal amplification,  699 

𝑉𝑎𝑟[𝐺,]
𝑉𝑎𝑟[𝐺-]

=
𝑉𝑎𝑟[𝐸,]
𝑉𝑎𝑟[𝐸-]

 
(13) 

 700 

To test the model of shared amplification between environmental and polygenic effects 701 

(Eq. 8) we obtained the genetic and environmental variance for males and females based on the 702 

following relationships, 703 

𝑉𝑎𝑟[𝐺/] = ℎ$𝑉𝑎𝑟[𝑌/]  (14) 

and 704 

𝑉𝑎𝑟[𝐸/] = (1 − ℎ$)𝑉𝑎𝑟[𝑌/], (15) 

where 𝑉𝑎𝑟[𝐺%],𝑉𝑎𝑟[𝐸%], and 𝑉𝑎𝑟[𝐺%] are the additive genetic, environmental, and phenotype 705 

variances, respectively. Estimates of the sex-specific heritabilities, ℎ/$, were obtained from 706 

previous estimates using LD Score Regression (Supplementary Materials).  707 
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Representing male genetic or environmental variance as 𝑥, and the corresponding female 708 

variance as 𝑦, we derived standard errors for the ratio of male to female variance using the 2nd-709 

order Taylor approximation for the standard error of a ratio of estimators of 𝑥 and 𝑦, 710 

𝑆𝐸 i
𝑥j
𝑦j
k = l𝑉𝑎𝑟 i

𝑥j
𝑦j
k ≅

𝐸[𝑥]_
𝐸[𝑦j]

l
𝑉𝑎𝑟[𝑥j]
𝐸[𝑥j]$

+
𝑉𝑎𝑟[𝑦j]
𝐸[𝑦j]$

−
2𝐶𝑜𝑣[𝑥j, 𝑦j]
𝐸[𝑥j]𝐸[𝑦j]

≈
𝑥j
𝑦j
l
𝑆𝐸[𝑥j]$

𝑥j$
+
𝑆𝐸[𝑦j]$

𝑦j$
 

(16) 

assuming independence between 𝑥5 and 𝑦5 since they are statistics of independent sampling 711 

distributions (independent samples of males and females). The standard errors of the genetic and 712 

environmental variance were estimated using the law of total variance for a product of two random 713 

variables. For 𝑎j and 𝑏r, unbiased estimators of the two parameters 𝑎 and 𝑏, respectively, we get 714 

𝑆𝐸K𝑎j𝑏rL = s𝑆𝐸[𝑎j]$𝑆𝐸K𝑏rL
$
+ 𝐸[𝑎j]$𝑆𝐸K𝑏rL

$
+ 𝐸K𝑏rL

$
𝑆𝐸[𝑎j]$. 

 

Plugging in the point estimate 𝑎j for 𝐸[𝑎j] = 𝑎 and the point estimate 𝑏r for 𝐸K𝑏rL = 𝑏,  715 

𝑆𝐸tK𝑎j𝑏rL = s𝑆𝐸[𝑎j]$𝑆𝐸K𝑏rL
$
+ 𝑎j$𝑆𝐸K𝑏rL

$
+ 𝑏r$𝑆𝐸[𝑎j]$. 

(17) 

In this case, 𝑎 represents the phenotypic variance, and 𝑏 represents either ℎ/$ for 716 

estimation of genetic variance or (1 − ℎ/$) for estimation of environmental variance. Lastly, to 717 

obtain the standard error of the phenotypic variance, we used bootstrapping with 100 samples 718 

(with replacement) of estimates of the phenotypic variance in sex 𝑧, 719 

𝑆𝐸t[𝑎j] = l∑ 8𝑉𝑎𝑟[𝑌]' − 𝑉𝑎𝑟t [𝑌/]':
$#..

'6#
100 − 1

 

 

Finally, for each trait, we estimated Ζv, the ratio of the two male-female ratios 720 

(environmental and genetic, y and x axes in Fig. 6, respectively), and its standard error, 𝑆𝐸[Ζv], 721 

using the same method as in Eq. 16. Under the null hypothesis of equal environmental and 722 

genetic amplification (Eq. 8),  723 

𝐻.:	𝐸[Ζ] = 0, (18) 

where  724 

Ζ = >?!#
%@[>?]

.  𝐸[ (19) 
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In Fig. 6, we approximated 90% confidence intervals on Ζ by treating it as a Z score, i.e., 725 

further treating Ζ as a Standard Normal. 726 

  727 

A Model of Sexually antagonistic Selection. We developed a model relating sex 728 

differences in additive effects on a trait at a biallelic locus (𝛽,and 𝛽-) and divergence in allele 729 

frequencies. Our model resembles that of Cheng and Kirkpatrick7 who developed a similar model 730 

relating allele-frequency differences and sex bias in gene expression. In short, we modelled 731 

sexually antagonistic, post-conception viability selection on a focal complex trait. We assumed 732 

allele frequencies in adult males, 𝑝,, and adult females, 𝑝-, are at equilibrium, i.e. do not change 733 

in consecutive generations. Under these conditions, we derive the relationship   734 

𝐹%& ≈ 𝛢𝑉()%<) ,  

where 𝐹%&52 is the fixation index with respect to the male and female subpopulations, i.e., the 735 

proportion of heterozygosity in the population that is due to allelic divergence between the sexes. 736 

𝑉()%<) is defined as 737 

𝑉()%<): = 2𝑝(1 − 𝑝)8𝛽, − 𝛽-:
$, (19) 

where 𝑝 is the allele frequency in zygotes. 𝐴 is a parameter that, importantly, is shared across all 738 

variants affecting the trait and can be thought of as the intensity of sexually antagonistic selection 739 

acting on genetic variation for the trait in question.  740 

In our model, allele frequencies at the autosomal locus are assumed to be equal in males 741 

and female zygotes. 𝐹%& at adulthood takes the form 742 

𝐹%&: =
𝑉𝑎𝑟/[𝑝/]
�̅�(1 − �̅�)

=
𝐸[𝑝/$] − �̅�$

�̅�(1 − �̅�)
=
𝑝,$ + 𝑝-$ − y

𝑝, + 𝑝-
2 z

$

�̅�(1 − �̅�)
=
8𝑝, − 𝑝-:

$
	

4�̅�(1 − �̅�)
, 

(20) 

where  743 

�̅� = C$DC%
$

. 744 

If we further assume a near-1:1 sex ratio such that �̅� ≈ 𝑝, 745 

𝐹%& ≈
8𝑝, − 𝑝-:

$
	

4𝑝(1 − 𝑝)
. 

(21) 

Sexually antagonistic selection acting on viability will cause divergence in allele 746 

frequencies between adult males and females. We write the relative viabilities of the homozygote 747 

for the reference allele, the heterozygote and the homozygote for the effect allele as 1 ∷ 1 +748 
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𝑑/𝑆/ ∷ 1 + 𝑆/ for each sex 𝑧 ∈ {𝑚, 𝑓}. The selection coefficient 𝑆/ and dominance coefficient 𝑑/  749 

can be frequency-dependent, in which case these coefficients take their values at equilibrium. We 750 

can write the additive selection coefficient of the effect allele as  751 

𝑠/ = [𝑝 + (1 − 2𝑝)𝑑/]𝑆/. (22) 

Assuming that zygotes are at Hardy-Weinberg equilibrium, the allele frequency in each 752 

sex at adulthood is 753 

𝑝/ ≈ 𝑝 + 𝑝(1 − 𝑝)𝑠/, (23) 

where we neglected terms of order 𝑠/$ 80. Plugging Eq. 23 into Eq. 21, the divergence between 754 

males and females post-selection is 755 

𝐹%& ≈
1
4
𝑝(1 − 𝑝)8𝑠, − 𝑠-:

$. (24) 

We model the strength of viability selection acting on males and females as linear with the 756 

additive effect on a focal trait in each sex, 757 

𝑠/ = 𝑎/𝛽/, (25) 

and recalling the simplifying assumption that allele frequencies are at equilibrium under sexually 758 

antagonistic viability selection at the locus, such that selection favoring an allele in one sex is 759 

balanced by selection against that allele in the other sex,  760 

𝑠- = −𝑠,. (26) 

If 𝛽, = 𝛽-, then Eq. 24 simplifies to 761 

𝐹%& ≈ 𝑝(1 − 𝑝)8𝑎-𝛽-:
$ =

𝑎-$	
2
𝑉( . 

(27) 

where  762 

𝑉( = 2𝑝(1 − 𝑝)𝛽-
$. (28) 

is the additive genetic variance. However, when 𝛽, does not strictly equal 𝛽-, Eq. 25, 26 together 763 

imply  764 

𝛽, + 𝛽- =
𝛽, + 𝛽-
𝛽, − 𝛽-

(𝛽, − 𝛽-) =

𝑠,
𝑎,

− 𝑠,𝑎-
𝑠,
𝑎,

+ 𝑠,𝑎-
(𝛽, − 𝛽-) =

𝑎- − 𝑎,
𝑎- + 𝑎,

(𝛽, − 𝛽-). 
(29) 

Finally, using Eq. 25,  765 

𝑠, − 𝑠- = 𝑎,𝛽, − 𝑎-𝛽- =
1
2
[8𝑎, + 𝑎-:8𝛽, − 𝛽-: + 8𝑎, − 𝑎-:8𝛽, + 𝛽-:], 

(30) 

which together with Eq. 29 gives 766 
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𝑠, − 𝑠- =
1
2
�8𝑎, + 𝑎-: +

8𝑎, − 𝑎-:8𝑎- − 𝑎,:
𝑎- + 𝑎,

� 8𝛽, − 𝛽-: =
2𝑎,𝑎-
𝑎, + 𝑎-

8𝛽, − 𝛽-:. 
(31) 

We denote the heritability due to GxSex at the locus as 𝑉()%<) ≔ 2𝑝(1 − 𝑝)(β3 − β5)$ and 767 

the parameter relating this contribution to the differentiation in allele frequencies as  768 

𝐴:= 2�
𝑎,𝑎-
𝑎, + 𝑎-

�
$

, 
(32) 

and plug Eq. 31 into Eq. 24, we get 769 

𝐹%& ≈ 𝛢𝑉()%<) . (33) 

as given by Eq. 3 in Results. 770 

 771 

Estimating the potential for sexually antagonistic selection on standing variation (𝜜).  For 772 

each trait and gnomAD subsample (Supplementary Materials), we estimated Α	using weighted 773 

least squares linear regression of our estimate of 𝐹%& (𝐹%&t ) to our estimate of 𝑉()%<) (𝑉r()%<)), with 774 

weight w inversely proportional to our site-specific estimate of noise in the estimate of 𝑉()%<), 775 

𝑤 =
1

𝑉𝑎𝑟K𝑉r()%<)L� . (34) 

To simplify the estimation of 𝑉𝑎𝑟K𝑉r()%<)L, we treated the allele frequency 𝑝 as perfectly 776 

estimated, and as independent of the allele frequency in the GWAS sample—as different data 777 

are used in the GWAS (UK Biobank) and in the allele frequency estimation (gnomAD). Under 778 

these assumptions,  779 

𝑉𝑎𝑟K𝑉r()%<)L� 	= 𝑉𝑎𝑟[2𝑝(1 − 𝑝)𝐷$t] = [2𝑝(1 − 𝑝)]$𝑉𝑎𝑟K(𝛽�, − 𝛽�-:
$
], (35) 

and thus the task at hand is estimating 𝑉𝑎𝑟K(𝛽�, − 𝛽�-:
$
].  Using the law of total variance, 780 

𝑉𝑎𝑟K(𝛽�, − 𝛽�-:
$
] = 𝑉𝑎𝑟EF% i𝐸EF$ �8𝛽�, − 𝛽�-:

$
�𝛽�-�k + 𝐸EF% i𝑉𝑎𝑟EF$ �8𝛽�, − 𝛽�-:

$
�𝛽�-�k. 

(36) 

We begin with the argument of the first term, 781 

𝐸EF$ �8𝛽�, − 𝛽�-:
$
�𝛽�-� = 𝐸EF$K𝛽�,

$ − 2𝛽�,𝛽�- + 𝛽�-$Z𝛽�-L = 𝜇,$ + 𝜎,$ − 2𝜇,𝛽�- + 𝛽�-$, (37) 

where we denote 782 

𝜇/ = 𝐸K𝛽�/L; 

𝜎/$ = 𝑉𝑎𝑟K𝛽�/L 

(38) 

for each sex 𝑧 ∈ {𝑚, 𝑓}. Plugging Eq. 37 into the first term of Eq. 36, 783 
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𝑉𝑎𝑟EF% i𝐸EF$ �8𝛽�, − 𝛽�-:
$
�𝛽�-�k = 𝑉𝑎𝑟EF%[𝜇,

$ + 𝜎,$ ] + 𝑉𝑎𝑟EF%K𝛽�-
$ − 2𝜇,𝛽�-L = 

0 + 𝑉𝑎𝑟EF%K𝛽�-
$ − 2𝜇,𝛽�-L = 𝑉𝑎𝑟EF%K𝛽�-

$L + 4𝑉𝑎𝑟EF%K𝜇,𝛽�-L−4𝜇,𝐶𝑜𝑣EF%K𝛽�-
$, 𝛽�-L, 

(39) 

where the first and second step follow from the fact that 𝜇,$ + 𝜎,$ 	is a constant. We can take note 784 

of the fact that 𝛽�/ is Normally distributed around 𝛽/, and in particular that it has no skewness. 785 

Therefore, 786 

𝐶𝑜𝑣EF&K𝛽�/
$, 𝛽�/L = 𝐸K𝛽�/GL − 𝐸K𝛽�/L𝐸K𝛽�/$L = (𝜇/G + 3𝜇/𝜎/$ + 𝛾/𝜎/G) − 𝜇/(𝜇/$ + 𝜎/$) = 2𝜇/𝜎/$, (40) 

where 𝛾/ = 0 is the skewness of 𝛽�/. We can also note that 787 

𝑉𝑎𝑟EF&K𝛽�/
$L = 𝑉𝑎𝑟EF&[(𝜎/𝑏/ + 𝜇/)

$], (41) 

where we defined  788 

𝑏/ =
𝛽�/ − 𝜇/
𝜎/

, 
 

and therefore 𝑏/	is a Standard Normal and therefore 𝑏/$ is Chi-squared with one degree of 789 

freedom. Eq. 41 now gives   790 

𝑉𝑎𝑟EF&K𝛽�/
$L = 𝑉𝑎𝑟EF&[𝜎/

$𝑏/$ + 2𝜎/𝜇/𝑏/]	

= 𝑉𝑎𝑟EF&[𝜎/
$𝑏/$] + 𝑉𝑎𝑟[2𝜎/𝜇/𝑏/] + 𝐶𝑜𝑣[𝜎/$𝑏/$, 2𝜎/𝜇/𝑏/]	

= 𝑉𝑎𝑟[𝑏/$]𝜎/H + 4𝑉𝑎𝑟[𝑏/]𝜇/$𝜎/$ + 0 = 2𝜎/H + 4𝜇/$𝜎/$. 

(42) 

Plugging Eq. 40 and Eq. 42 into Eq. 39, we find 791 

𝑉𝑎𝑟EF% i𝐸EF$ �8𝛽�, − 𝛽�-:
$
�𝛽�-�k = 2𝜎-H + 4𝜇-$𝜎-$ + 4𝜇,$ 𝜎-$ − 8𝜇,𝜇-𝜎-$. 

(43) 

We now turn to the second term of Eq. 36. First, 792 

𝑉𝑎𝑟EF$ �8𝛽�, − 𝛽�-:
$
�𝛽�-� = 𝑉𝑎𝑟K𝛽�,$ + 2𝛽�,𝛽�-Z𝛽�-L	

= 𝑉𝑎𝑟K𝛽�,$ L + 4𝜎,$ 𝛽�-$ − 4𝛽�-𝐶𝑜𝑣K𝛽�,, 𝛽�,$ L. 

(44) 

Eq. 40 and 42 again give us 793 

𝑉𝑎𝑟EF$ �8𝛽�, − 𝛽�-:
$
�𝛽�-� = 2𝜎,H + 4𝜇,$ 𝜎,$ + 4𝜎,$ 𝛽�-$ − 8𝜇,𝜎,$ 𝛽�- , (45) 

which then gives 794 

𝐸EF% i𝑉𝑎𝑟EF$ �8𝛽�, − 𝛽�-:
$
�𝛽�-�k = 2𝜎,H + 4𝜇,$ 𝜎,$ + 4𝜎,$ (𝜎-$ + 𝜇-$) − 8𝜇,𝜇-𝜎,$ . 

(46) 

Plugging Eq. 43 and Eq. 46 into Eq. 36, we obtain 795 

𝑉𝑎𝑟K(𝛽�, − 𝛽�-:
$
] =	 (47) 
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= 28𝜎,H + 𝜎-H: + 4𝜎,$ 𝜎-$ + 48𝜇,$ 𝜎,$ + 𝜇-$𝜎-$: + 4(𝜎,$ 𝜇-$ + 𝜎-$𝜇,$ )

− 8𝜇,𝜇-(𝜎,$ + 𝜎-$). 

Finally, we estimate 𝜇/ with the GWAS-derived point estimate of the effect 𝛽�/ and 𝜎/ with 796 

its standard error, 𝜎j/ = [𝛽�/]. Plugging back into Eq. 35, we obtain 797 

𝑉𝑎𝑟K𝑉r()%<)L� 	= [2𝑝(1 − 𝑝)]$[28𝜎j,H + 𝜎j-H: + 4𝜎j,$ 𝜎j-$ + 48𝛽�,$ 𝜎,$ + 𝛽�-$𝜎-$: + 4(𝜎j,$ 𝛽�-$ + 𝜎j-$𝛽�,$ )

− 8𝛽�,𝛽�-(𝜎j,$ + 𝜎j-$)]. 

(48) 

Using Eq. 33, we estimate 𝐹;8 with the estimator 798 

𝐹;8t = 𝑛;8/𝑑;8 , (49) 

where  799 

𝑛;8 = 8𝑝,� − 𝑝-�:
$ − 𝑆𝐸(𝑝,�)$ − 𝑆𝐸8𝑝-�:

$, (50) 

𝑑&' = 4�̂�(1 − �̂�) − 𝑆𝐸(𝑝(?)) − 𝑆𝐸@𝑝*?A
), 800 

and noting that  801 

𝐸K𝐹;8tL ≈
𝐸[𝑛;8]
𝐸[𝑑;8]

=
8𝑝, − 𝑝-:

$ − 𝑉𝑎𝑟(𝑝,) + 𝑉𝑎𝑟8𝑝-: + 𝐸{𝑆𝐸(𝑝,�)$] + 𝐸 �𝑆𝐸8𝑝-�:
$�

4𝑝(1 − 𝑝) + 𝑉𝑎𝑟(𝑝,)$ + 𝑉𝑎𝑟8𝑝-:
$
− 𝐸{𝑆𝐸(𝑝,�)$] − 𝐸 �𝑆𝐸8𝑝-�:

$
�
= 𝐹;8 , 

(51) 

where in the first equality we approximated the expectation of a ratio with the ratio of expectations. 802 

Therefore, Eq. 49 provides an approximately unbiased estimator of 𝐹;8 despite the absence of 803 

genotype frequencies. 804 

To perform this estimation of A on the GWAS and 𝐹;8 data, we used paired 𝑣 and 𝑉()%<) 805 

points for all sites which passed all previous stages of filtering.  Weights were set by Eq. 34 and 806 

follow Eq. 48 where 𝛽�, and 𝛽�- are the GWAS effect estimates as above, and 𝜎j, and 𝜎j- are the 807 

GWAS standard errors (SE) estimates for the effect size of each site per trait. 808 

To minimize the possibility of LD between sites used in the analysis as much as possible, 809 

we used the approximately independent LD blocks in Europeans76 as in Section “Mixture weights 810 

for covariance structure between male and female effects”. Namely, we subdivided the genome 811 

into 1703 approximately independent LD blocks as before.  We iterated over the 1703 blocks and 812 

sampling one site per block in a given iteration, using a sample of (up to) 1703 post-filtering sites 813 

to perform the weighted linear regression of 𝐹%& on 𝑉(×%<) .  The slope of this regression was used 814 
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as an estimate of 𝐴.  We perform this estimation procedure 1,000 times and take an average of 815 

𝑍 scores (slope point estimates divided by their SE) as the final estimate of 𝐴. In each replicate, 816 

we sample with replacement m LD blocks from the m LD blocks which had at least one site within 817 

them post-filtering (Supplementary Materials); we then sample one site per resampled block. In 818 

Fig. 7D, each point is the mean of the 1,000 samples of one site per LD block and 90% confidence 819 

intervals show the range between the 5th and 95th percentile of the 1000 replicates.  820 

In the main text, we focus on the results performed this estimation for Ashkenazi Jewish, 821 

Finnish, and Non-Finnish European populations as the other ancestry group-stratified 822 

subsamples in gnomAD are further diverged from the UKB White British sample and therefore 823 

our GWAS estimates are expected to be less portable57,81. We also performed a similar analysis 824 

using UKB data to measure differentiation in allele frequencies between males and females, 825 

rather than an independent dataset (gnomAD) as in the main text. Since individual level data was 826 

available in this case, we replaced 𝐹;8 with 𝐿%&, a measure developed by Ruzicka et al.51. 𝐿;8 can 827 

be thought of as site-specific 𝐹;8 controlled for major axes of population structure differentiating 828 

males and females (Fig. S21).   829 
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