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 8 

Summary 9 

Sex differences in complex traits are suspected to be in part due to widespread gene-by-sex 10 

interactions (GxSex), but empirical evidence has been elusive. Here, we infer the mixture of ways 11 

polygenic effects on physiological traits covary between males and females. We find that GxSex 12 

is pervasive but acts primarily through systematic sex differences in the magnitude of many 13 

genetic effects (“amplification”), rather than in the identity of causal variants. Amplification patterns 14 

account for sex differences in trait variance. In some cases, testosterone may mediate 15 

amplification. Finally, we develop a population-genetic test linking GxSex to contemporary natural 16 

selection and find evidence for sexually antagonistic selection on variants affecting testosterone 17 

levels. Taken together, our results suggest that the amplification of polygenic effects is a common 18 

mode of GxSex that may contribute to sex differences and fuel their evolution.  19 

 20 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 13, 2023. ; https://doi.org/10.1101/2022.05.06.490973doi: bioRxiv preprint 

mailto:arbelharpak@utexas.edu
https://doi.org/10.1101/2022.05.06.490973
http://creativecommons.org/licenses/by/4.0/


2 

 

Introduction 21 

Genetic effects can depend on context. If the distribution of contexts differs between groups of 22 

people, as they do for males and females, so should the average genetic effects on traits1,2. In 23 

particular, such gene-by-sex interaction (GxSex) may be a result of sex differences in bodily, 24 

environmental and social contexts or epistatic interaction with sex chromosomes3–9. Sex 25 

differences in genetic effects on complex traits are clearly of high evolutionary8,10–14 and 26 

translational9,15–22 importance. Yet with the exception of testosterone levels23–26, the basis of 27 

sexual dimorphism in complex traits is not well understood19. To date, empirical evidence for 28 

GxSex in GWAS data—whether focused on identifying large GxSex effects at individual loci or by 29 

estimating genetic correlations between the sexes for polygenic traits—has been lacking. 30 

Here, we set out to study governing principles of GxSex in complex human traits and 31 

explain why current approaches for characterizing GxSex may be lacking for this goal. We then 32 

suggest a mode of GxSex that may have gone largely underappreciated: A systematic difference 33 

in the magnitude of effect of many variants between the sexes, which we refer to as 34 

“amplification”27. Amplification can happen for a large set of variants regulating a specific pathway 35 

if the pathway responds to a shared cue28–31. In classic hypothesis-testing approaches that test 36 

for a GxSex effect separately in each variant, the signal of amplification may be crushed under 37 

the multiple hypothesis burden. On the other hand, even state-of-the-art tools designed with 38 

complex traits in mind may miss amplification signals: They often treat genetic correlation 39 

(between GWAS estimates based on samples from two environments) as a litmus test for whether 40 

effects are the same in two groups32–36, but correlations are scaleless and thus may entirely miss 41 

amplification effects.   42 

We developed a new approach for flexibly characterizing a mixture of male-female genetic 43 

covariance relationships and applied it to 27 physiological traits in the UK Biobank. We found that 44 

amplification is pervasive across traits, and that considering amplification helps explain sex 45 

differences in phenotypic variance. Finally, we consider an implication of polygenic GxSex for 46 

sexually antagonistic selection: Our model confirms that variants that affect traits may be subject 47 

to sexually antagonistic selection when male and female trait optima are very different or, 48 

surprisingly, even if the trait optima are very similar. We developed a novel test for sexually 49 

antagonistic polygenic selection, which connects GxSex to signals of contemporary viability 50 
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selection. Using this test, we find subtle evidence of sexually antagonistic selection on variants 51 

affecting testosterone levels. 52 

 53 

Results 54 

The limited scope of single-locus analysis. We conducted GWASs stratified by sex 55 

chromosome karyotype for 27 continuous physiological traits in the UKB using a sample of ~150K 56 

individuals with two X chromosomes and another sample of ~150K individuals with XY, and a 57 

combined sample that included both the XX and XY samples. We chose to analyze traits with 58 

SNP heritabilities over 7.5% in the combined sample, to have higher statistical power. While there 59 

is not a strict one-to-one relationship between sex chromosome karyotype and biological sex, we 60 

label XX individuals as females and XY individuals as males, and view these labels as capturing 61 

group differences in distributions of contexts for autosomal effects, rather than as a 62 

dichotomy9,22,37. Throughout, we analyze GWAS on the raw measurement units as provided by 63 

UKB. (See note on the rationale behind this choice in the section Amplification of genetic 64 

effects is the primary mode of GxSex). 65 

Among the 27 traits, we observed substantial discordance between males and females in 66 

associations with the trait only for testosterone and waist:hip ratio (whether or not it is adjusted 67 

for BMI; Fig. S1). For testosterone, as noted in previous analyses, associated genes are often in 68 

separate pathways in males and females23,25. This is reflected in the small overlap of genes 69 

neighboring top associations in our GWAS. For example, in females, the gene CYP3A7 is 70 

involved in the hydroxylation of testosterone, resulting in its inactivation. In males, FKBP4 plays 71 

a role in the downstream signaling of testosterone on the hypothalamus. Both genes, to our 72 

knowledge, do not affect testosterone levels in the other sex. 73 

For waist:hip ratio, we saw multiple associations in females only, such as variants near 74 

ADAMTS9, a gene involved in insulin sensitivity38. As previous work established23,25,26, 75 

testosterone and waist:hip ratio are the exception, not the rule: Most traits did not display many 76 

sex differences in top associations. For instance, arm fat-free mass, a highly heritable dimorphic 77 

trait, showed near-perfect concordance in significant loci (Fig. S1). A previous study26 examining 78 

the concordance in top associations between males and females found few uniquely-associated 79 

SNPs (<20) across the 84 continuous traits they studied; waist:hip ratio was an exception with 80 
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100 associations unique to one sex. Considering the evidence for the polygenicity of additive 81 

genetic variation affecting many complex traits39–41, it stands to reason that looking beyond lead 82 

associations, through a polygenic prism, may aid in the characterization of non-additive effects 83 

(such as GxSex) as well.  84 

 85 

The limited scope of analyzing GxSex via heritability differences and genetic correlations. 86 

We therefore turned to consider the polygenic nature of GxSex, first by employing commonly-87 

used approaches: comparing sex-specific SNP heritabilities and examining genetic correlations. 88 

We used LD Score Regression (LDSC)36,42 to estimate these for each trait. In most traits (17/27), 89 

males and females had a genetic correlation greater than 0.9. Testosterone had the lowest 90 

genetic correlation of 0.01, which suggests very little sharing of signals between males and 91 

females (see similar results by Flynn et al.25 and Sinnott-Armstrong et al.23).  92 

For the majority of traits (18/27), male and female heritabilities were both greater than the 93 

heritability in a sample that included both sexes. For instance, in arm fat-free mass (right), the 94 

heritability in the both-sex sample was 0.232 (± 0.009), while the heritabilities for male and female 95 

were 0.279 (± 0.012) and 0.255 (± 0.011), respectively. In particular, all body mass-related traits, 96 

excluding BMI-adjusted waist:hip ratio, had greater sex-specific heritabilities (Fig. 1).  97 

In addition, we noticed a trend in which, as the genetic correlation decreased, the 98 

difference between the heritabilities within each sex and in the sample combining both sexes 99 

tended to become larger (Pearson r = -0.88, paired t-test p-value = 10-10, Fig. 1). Nonetheless, 100 

several traits with genetic correlation above 0.9 also present relatively large sex differences in 101 

heritability: For example, diastolic blood pressure and arm fat-free mass (left) had differences of 102 

5.2% (two-sample t-test p-value = 3 ⋅ 10−6) and 3.4% (two-sample t-test p-value = 0.04), 103 

respectively. These examples are incompatible with a model of pervasive uncorrelated genetic 104 

effects driving sex-specific genetic contributions to variation in the trait (Table 1, second model). 105 

We therefore considered two other alternative hypotheses under a simple additive model 106 

of variance in a trait. Differences in heritability are either due to sex differences in genetic variance, 107 

in environmental variance, or both. If genetic effects are similar, differences in environmental 108 

variance alone could cause heritability differences (Table 1, first model). But as we show in the 109 

Methods section, under such a model, the heritability in the combined sample cannot be smaller 110 

than both sex-specific heritabilities. 111 
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 112 

Figure 1: Heritabilities and Genetic Correlations Cannot Fully Distinguish Models of GxSex. (A) 113 

Genetic correlations between the male and females, estimated using bi-variate LD Score Regression, are 114 

shown in descending order. (B) The x-axis represents the relative heritability, i.e., the SNP heritability 115 

divided by the SNP heritability estimated in the sample with both sexes combined. Red asterisks show 116 

body-mass related traits with greater heritabilities in both sex-specific samples than in the sample 117 

combining both sexes. 118 
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 119 

Table 1. Polygenic Models of GxSex. We examine different models of the nature of GxSex in complex 120 

traits that link to previous studies and motivations. Each model leads to different expectations from the 121 

analysis of heritability and genetic correlations (Fig. 1). The illustrations in the third column depict examples 122 

of directions and magnitudes of genetic effects, corresponding to each model. ℎ𝑚
2 , ℎ𝑓

2 and ℎ2 denote narrow-123 

sense heritabilities in males, females, and a combined sample, respectively. 124 

 125 

Therefore, the observation of higher sex-specific heritabilities for most traits suggests that 126 

the genetic variance must differ between males and females. Given the random segregation of 127 

autosomal alleles, independent of an individual’s sex chromosome karyotype, and assuming, 128 

further, that there is little-to-no interaction of sex and genotype affecting participation in the UKB43, 129 

UKB allele frequencies in males and females are expected to be very similar. Thus, this 130 

observation suggests that causal genetic effects differ between males and females for most traits 131 

analyzed. 132 

A last hypothesis that might tie together the observations in Table 1 is a less appreciated 133 

mode of GxSex, amplification. Namely, that the identity and direction of effects are largely shared 134 

between sexes (leading to high genetic correlation), but the magnitude of genetic effects differs—135 

e.g., larger genetic effects on blood pressure in females—which in turn lead to differences in 136 

genetic variance (Table 1, third model).  137 
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We can test the hypothesis that amplification acts systematically—across a large fraction 138 

of causal variants—by examining the effects of polygenic scores (PGSs), genetic predictors of a 139 

complex trait. Under this hypothesis, regardless of whether the PGS is estimated in a sample of 140 

males, females, or a combined sample of both males and females, it should be predictive in both 141 

sexes, since the causal variants and the direction of their effects are shared and the magnitude 142 

is correlated (Table 1, third model). At the same time, in the sex for which genetic effects are 143 

larger, the effect of the PGS is expected to be larger. To evaluate evidence for the systematic 144 

amplification model, we estimated PGSs based on our sex-specific GWASs, and examined their 145 

effect in both sexes. For some traits, like albumin and lymphocyte percentage, the effects of the 146 

same PGS on trait value in males and females were statistically indistinguishable (Fig. 2A,E,I,J). 147 

In a few other traits, such as diastolic blood pressure, the result was contingent on the sample in 148 

which the PGS was estimated (Fig. 2C,G,I,J). However, for roughly half of the traits examined, 149 

regardless of the sample in which the PGS was derived, the effect of the PGS was predictive in 150 

both sexes yet significantly larger in one of the sexes (17/27 traits with t-test p-value < 0.05 using 151 

the PGS derived from the males sample; 13/27 using the PGS derived from the females sample; 152 

Fig. 2B,D,F,H,I,J). These observations are consistent with systematic amplification.  153 

The results presented in Figs. 1,2 suggested to us that various modes of polygenic GxSex 154 

ought to be jointly evaluated. None of the hypothesized rules of thumb (Table 1) for interpreting 155 

genetic correlations and sex differences in heritability worked across all traits (see also relevant 156 

discussion in Khramtsova et al.9). This motivated us to estimate the covariance between genetic 157 

effects in males and females directly. Another reason to treat covariance of genetic effects 158 

themselves as the estimand of interest is that multiple, distinct GxSex patterns may exist across 159 

subsets of genetic factors affecting a trait (Table 1, fourth model). 160 

 161 

Flexible model of sex-specific genetic effects as arising from a mixture of covariance 162 

relationships.  We set to infer the mixture of covariance relationships of genetic effects 163 

among the sexes directly. We analyzed all traits in their raw measurement units as provided by 164 

the UKB. In particular, we did not normalize or standardize phenotypes within each sex before 165 

performing the sex-stratified GWAS, because sex differences in trait variance may be partly due 166 

to amplification. Standardization would have therefore resulted in masking amplification signals 167 

that may exist in the data. In some cases, this is indeed the purpose of standardization44. More  168 
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 169 

Figure 2: Evaluating evidence for systematic amplification. (A-D) We regressed trait values in males 170 

(green) and separately in females (orange) on a polygenic score estimated in an independent sample of 171 

males. Points show mean values in one decile of the polygenic score; the fitted line and associated effect 172 

estimate and 𝑅2 correspond to regressions on the raw, non-binned data. In some traits, like Albumin (A), 173 

the polygenic score has a similar effect on the trait in both sexes. In other traits (B,D), the estimated effect 174 

of the polygenic score differs significantly, consistent with a substantial difference in the magnitude of 175 

genetic effects of sites included in the polygenic score. (E-H) Same analysis as A-D, but with a polygenic 176 

score pre-estimated in an independent sample of females. (I-J) Summary of the ratio of the effect of the 177 

polygenic score on the trait (±2 SE) in males to the effect in females across physiological traits. See results 178 

for other traits in Fig. S12. 179 
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generally, while each scaling choice has it merits, we view the measurement of genetic effects in 180 

their raw units as the most biologically interpretable. 181 

We used multivariate adaptive shrinkage (mash)45, a tool that allows the inference of 182 

genome-wide frequencies of genetic covariance relationships. Namely, we model the marginal 183 

SNP effect estimates as sampled (with SNP-specific, sex-specific noise) from a mixture of zero-184 

centered Normal distributions with various prespecified covariance relationships (2x2 Variance-185 

Covariance matrices for male and female effects; Eq. 1 in Urbut et al.45). Our prespecified 186 

covariance matrices (“hypothesis matrices”) span a wide array of amplification and correlation 187 

relationships, and use mash to estimate the mixture weights. Loosely, these weights can be 188 

interpreted as the proportion of variants that follow the pattern specified by the covariance matrix 189 

(Fig. 3A). Our covariance matrices ranged from -1 to 1 in between-sex correlation, and 10 levels 190 

of relative magnitude in females relative to males, including matrices corresponding to no effect 191 

in one or both sexes (Fig. S2).   192 

We first focus on testosterone, for which previous research sets the expectation for 193 

polygenic male-female covariance. In terms of magnitude, the vast majority of effects should have 194 

much greater effect in males. In terms of correlation, we expect a class of genetic effects acting 195 

through largely independent and uncorrelated pathways alongside a class of effects via shared 196 

pathways23. Independent pathways include the role of hypothalamic-pituitary-gonadal axis in male 197 

testosterone regulation and the contrasting role of the adrenal gland in female testosterone 198 

production. Shared pathways involve sex hormone-binding globulin (SHBG), which decreases the 199 

amount of bioavailable testosterone in both males and females. As expected, we found that 200 

mixture weights for testosterone concentrated on greater magnitudes in males and largely 201 

uncorrelated effects. Out of the 32% total weights on matrices with an effect in at least one sex, 202 

98% of the weights were placed on matrices representing larger effects in males, including 20.4% 203 

(± 0.7%) having male-specific effects (Fig. 3, S5). 204 

Amplification of genetic effects is the primary mode of GxSex. The only trait 205 

of the 27 where a large fraction (≥10%) of non-zero effects were negatively correlated was 206 

testosterone (17%). Most effects were instead perfectly or near-perfectly correlated. For example, 207 

diastolic blood pressure and eosinophil percentage had 66% (Fig. 3) and 68% (Fig. S5) of effects 208 

being perfectly correlated, respectively. Overall, the low weights on matrices representing  209 

 210 
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 211 

Figure 3: Polygenic covariance structure between males and females. (A) Our analysis of the 212 

polygenic covariance between males and females is based on sex-stratified GWAS. We modelled the sex-213 

stratified GWAS estimates as sampled with error from true effects arising from a mixture of possible 214 

covariance relationships between female and male genetic effects. As an example, shown are illustrations 215 

for three possible relationships of the same qualitative nature—perfectly correlated effects which are also 216 

larger in females—and the mixture weights estimated for each in the case of diastolic blood pressure. (B-217 
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F) Each box shows the sum of weights placed on all covariance relationships of the same qualitative nature, 218 

as specified by relative magnitude (horizontal axis) and correlation (vertical axis) between male and female 219 

effects. The full set of pre-specified covariance matrices is shown in Fig. S2, and the weights placed on 220 

each of them for each trait are shown in Fig. S5. All weights shown are percentages of non-null weights, 221 

i.e., the weight divided by the sum of all weights except for the one corresponding to no effect in either sex.  222 

 223 

negative correlation do not support opposite directions of effects being a major mode of GxSex 224 

(Fig. S8). 225 

In some traits, such as hemoglobin A1C or diastolic blood pressure, previously considered 226 

non-sex-specific because of high genetic correlations between sexes and a concordance in top 227 

GWAS hits, we find evidence for substantial GxSex through amplification (Fig. 3B,F; Fig. S5)25,26. 228 

Furthermore, about half (13/27) of the traits analyzed had the majority of weights placed on 229 

greater effects in just one of the sexes (x-axis in Fig. 4A). For instance, 92% of effects on BMI-230 

adjusted waist:hip ratio were greater in females and 92% of effects on (right) arm fat-free mass 231 

were greater in males. Both traits had mixture weights concentrated on highly correlated effects 232 

(Fig. 3). We confirmed, using a simulation study, that this summary of sex-biased amplification 233 

indeed captures sex differences in the magnitude of genetic effects and that it is not due to 234 

differences in the extent of estimation noise (e.g., variation in environmental factors independent 235 

of genetic effects; Figs. S6-7; Methods).  236 

Across traits, the difference between the fraction of male-larger effects and the fraction of 237 

female-larger effects correlates strongly with male-to-female phenotypic variance ratio (Pearson 238 

r = 0.873, p-value = 6⋅10-9 after removing testosterone as an outlier; Fig. 4A). This observation is 239 

consistent with our hypothesis of amplification leading to differences in genetic variance between 240 

sexes and thereby contributing substantially to sex differences in phenotypic variance. Together, 241 

these observations point to amplification, rather than uncorrelated effects, as a primary mode of 242 

polygenic GxSex.  243 

Another important question about the implication of pervasive amplification is whether it is 244 

a major driver of mean phenotypic differences. The ratio between male and female phenotypic 245 

means is correlated with the difference between male-larger and female-larger amplification 246 

(Pearson r = 0.75; p-value = 2 ⋅ 10−5 after removing testosterone and BMI-adjusted waist:hip ratio 247 

as outliers). Though this correlation is intriguing, within-sex GWAS aims to explain individual 248 

differences from the mean of the sex, and such GWAS results do not dictate the values of the sex  249 
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 250 

Figure 4. (A) Phenotypic variance strongly correlates with amplification. The x-axis summarized the 251 

“sex-biased amplification” of polygenic effects and is calculated by taking the difference between the sum 252 

of weights on matrices with male effects greater in magnitude than female effects (M>F) and the sum of 253 
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weights of M<F matrices. The solid gray line shows a linear fit across traits, excluding testosterone as an 254 

outlier. (B) Utility of polygenic GxSex model for trait prediction. The x-axis shows the relative prediction 255 

accuracy estimated from the incremental R2 ratio of a GxSex model informed by polygenic covariance 256 

patterns and an additive model. For each trait, smaller points show relative prediction accuracy across 20 257 

cross-validation folds, and larger points show the average across the 20 folds. The phenotypes are ordered 258 

by the relative prediction accuracy. The color of each point corresponds to the degree of sex-biased 259 

amplification as described in (A).  260 

 261 

means. Further, both the ratio of mean trait values between sexes and the difference in 262 

amplification are strongly correlated with phenotypic variance ratios (Fig. 4A; Fig. S9; see also 263 

Karp et al.8), , and many different causal accounts could explain these correlations. 264 

Finally, the pervasiveness of GxSex, alongside the mixture of covariance relationships 265 

across the genome for many traits, may be important to consider in phenotypic prediction. We 266 

compared the prediction accuracy of PGSs that consider the polygenic covariance structure to 267 

that of additive models, that ignore GxSex, as well as models that include GxSex but do not 268 

consider the polygenic covariance structure (Supplementary Materials; Fig. S13). Indeed, for 269 

most traits (20/27 traits; Fig. 4B), models that consider the polygenic covariance structure 270 

outperform all other models evaluated. Traits which showed better prediction accuracy using the 271 

model that considered polygenic covariance structure included many body mass-related traits 272 

such as BMI and whole body fat mass that also tended to have higher sex-based amplification 273 

(Fig. 4B; Pearson 𝑟 =  0.54, 𝑝 =  0.004 between sex-biased amplification and prediction 274 

accuracy ratio). These results point to the utility of considering polygenic covariance structure in 275 

polygenic score prediction. 276 

 277 

Testosterone as an amplifier. Thus far, we treated the genetic interaction as discretely 278 

mediated by biological sex. One mechanism that may underlie GxSex is a cue or exposure that 279 

modulates the magnitude (and less often, the direction) of genetic effects, and varies in its 280 

distribution between the sexes. A plausible candidate is testosterone. Testosterone may be a key 281 

instigator since the hormone is present in distinctive pathways and levels between the sexes and 282 

a known contributor to the development of male secondary characteristics, so therefore could 283 

modulate genetic causes on sex-differentiated traits.  284 
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To test this idea, we first binned individuals of each sex by their testosterone levels. Then, 285 

for each trait and within the bin, we quantified the magnitude of total genetic effect as the linear 286 

regression coefficient of trait to a PGS for the trait (Methods; see Fig. S15 for results obtained 287 

using sex-specific PGS). For BMI, testosterone (mean per bin) and the magnitude of genetic 288 

effect were correlated for both males and females (Pearson p-value < 0.05; Fig. 5A). For all body-289 

mass-related traits, there was a negative correlation between the magnitude of genetic effect and 290 

testosterone levels for males and a positive correlation for females (Fig. 5B). Since the 291 

relationship with testosterone remains contingent on sex, a model of testosterone as the sole 292 

driver of the observed sex-specificity would be invalid. These observations may help explain 293 

previous reports of positive correlations between obesity and free testosterone in women, and 294 

negative correlations in men46. We conclude that in body-mass related traits, testosterone may 295 

be modulating genetic effects in a sexually antagonistic manner. 296 

We performed two additional analyses designed to control for possible caveats to the 297 

association of testosterone and the magnitude of polygenic effect: An association test that 298 

controls for possible confounding with age (Fig. S17) and a test that mitigates confounding with 299 

other variables or reverse causality (wherein the magnitude of genetic effect affecting the focal 300 

trait causally affecting testosterone levels; Fig. S16). The evidence for an effect of testosterone 301 

on the magnitude of polygenic effect did not remain significant in either of these tests. It is 302 

possible, however, that this was due to low statistical power (Methods). 303 

 304 

Are polygenic and environmental effects jointly amplified? Our results thus far 305 

suggest that polygenic amplification across sexes is pervasive across traits; and that the ratio of 306 

phenotypic variance scales with amplification (Fig. 4A). An immediate question of interest is 307 

whether the same modulators that act on the magnitude of genetic effects act on environmental 308 

effects as well (see also relevant discussion by Domingue et al.47). Consider the example of 309 

human skeletal muscle. The impact of resistance exercise varies between males and females. 310 

Resistance exercise can be considered as an environmental effect since it upregulates multiple 311 

skeletal muscle genes present in both males and females such as IGF-1, which in turn is involved 312 

in muscle growth48. However, after resistance exercise at similar intensities, upregulation of such  313 
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 314 

Figure 5. Amplification of total genetic effect in relation to testosterone levels. (A) The relationship 315 

between testosterone level bins and estimated magnitude of genetic effect on traits is shown for three traits. 316 

The magnitude of genetic effect is estimated using the slope of the regression of phenotypic values to 317 

polygenic scores in that bin. The units on the y-axis are effect per standard deviations (SD) of the polygenic 318 

scores across all individuals in all bins. The hollow data points are bins with overlapping testosterone ranges 319 

between males and females; these are based on fewer individuals (~800 compared to ~2200 in other bins) 320 

and not included in the regression. Fig. S14 show all other traits analyzed. (B) The correlation for each sex 321 

(90% CI) are shown for all 27 traits. Traits are ordered in descending order of male-female differences in 322 

Pearson correlation.  323 

 324 

  325 
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 326 

 327 

Figure 6. Testing a model of pervasive, joint amplification of environmental and polygenic effects. 328 

(A) A model of equal amplification of genetic (G) and environmental (E) effect, that produces the sex 329 

differences in the distribution of the phenotype, Y. G and E both act through a core pathway that is amplified 330 

in a sex-specific manner. (B) The blue 1:1 line depicts the theoretical expectation under a simple model of 331 

equal amplification of genetic and environmental effects in males compared to females. Error bars show 332 

90% confidence intervals. Traits in blue are consistent (within their 90% CI) with the theoretical prediction. 333 

Fig. S19 shows the same data alongside the predictions under other theoretical models of male-female 334 

variance ratios. 335 

 336 

genes is sustained in males, while levels return sooner to the resting state in females (Fig. S18). 337 

It is plausible that modulators of the effect of IGF-1, such as insulin49 or sex hormones50,51, drive 338 

a difference in the magnitude of effect of core genes such as IGF-1 in a sex-specific manner. To 339 

express this intuition with a model: If amplification mechanisms are shared, then amplification 340 

may be modeled as having the same scalar multiplier effect on genetic and environmental effects 341 

(Fig. 6A). In the Methods section, we specify the details of a null model of joint amplification, 342 

which yields the prediction that the male-female ratio of genetic variances should equal the 343 

respective ratio of environmental variances (blue line in Fig 6B). 344 
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This expectation is qualitatively different from those of two longstanding theoretical “rules 345 

of thumb” predictions for sex differences in trait variance (Supplementary materials; Fig. S19A; 346 

of. Zajitschek et al.52): The "greater male variability” and “estrus-mediated variability” models, 347 

which provide a poor fit across the 27 physiological traits analyzed (Fig. S19B). 348 

We tested the fit of the theoretical prediction under pervasive joint amplification across 349 

traits. We used our estimates of sex-specific phenotypic variance and SNP heritabilities to 350 

estimate the ratios of genetic and environmental variances. We note that environmental variance 351 

is proxied here by all trait variance not due to additive genetic effects, and caution is advised with 352 

interpretation of this proxy. Twenty of the 27 traits were consistent with the null model of pervasive 353 

joint amplification (within 90% CI; Fig. 6B). This finding may suggest a sharing of pathways 354 

between polygenic and environmental effects for these traits (Fig. 6A). Interesting exceptions 355 

include diastolic blood pressure—which was the strongest outlier (p-value = 3.06 ∙ 10−12, single-356 

sample z-test), excluding testosterone.  357 

 358 

Sexually antagonistic selection. A hypothesized cause of sexual dimorphism is sexually 359 

antagonistic selection, in which some alleles are beneficial in one sex yet deleterious in the 360 

other11,12,14,53,54. Sexually antagonistic selection is difficult to study using traditional population 361 

genetics methods because Mendelian inheritance equalizes autosomal allele frequencies 362 

between the sexes at conception, thereby erasing informative signals. One way around this 363 

limitation is to examine allele-frequency differences between the sexes in the current generation, 364 

known as “selection in real time”14,55,56. In this section, we consider a model of sexually 365 

antagonistic selection acting on a polygenic trait and use it to estimate the strength of 366 

contemporary viability selection acting on the 27 traits we analyzed. 367 

Most theoretical models of sexually antagonistic selection on a trait under stabilizing 368 

selection usually posit either highly distinct male and female fitness optima or genetic variants 369 

affecting traits antagonistically. Our findings on pervasive amplification suggest that variant effects 370 

on traits tend to have concordant signs. Yet, under pervasive amplification, a somewhat surprising 371 

intuition arises: Alleles affecting a trait may frequently experience sexually antagonistic 372 

selection—both in the case in which trait optima for males and females are very distinct (Fig. 7B) 373 

and for the case in which they are similar (Fig. 7A). 374 
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 375 

Figure 7. Testing for sexually antagonistic selection. (A,B) A model of sexually antagonistic selection. 376 

Selection coefficients, 𝑠𝑚 and 𝑠𝑓, are linear with the additive effect on the trait in each sex. Sexually 377 
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antagonistic selection acts such that 𝑠𝑚 = −𝑠𝑓. The model yields the prediction of Eq. 1. In (A), the effect 378 

of an allele tends to drive trait values towards the optimum in males, and away from the optimum in females. 379 

In (B), the fitness optima are farther in males and females; in both examples, selection on acts 380 

antagonistically (i.e., in opposite directions). (C) Two examples of the weighted least-squares linear 381 

regression preformed to estimate the strength of sexually antagonistic selection on variants associated with 382 

a trait (𝐴 in panel A and Eq. 1). Each point shows one SNP. Size is proportional to each point’s regression 383 

weight. (D) Z-scores (90% non-parametric bootstrap CI) estimated through 1000 resampling iterations of 384 

the weighted linear regression of panel B for each trait. The two colored estimates correspond to the 385 

examples in (B). 386 

 387 

We developed a theoretical model of sexually antagonistic viability selection on a single 388 

trait that builds on this intuition. The model relates sex-specific effects on a complex trait to the 389 

divergence in allele frequency between males and females (measured as 𝐹𝑆𝑇
57,58) due to viability 390 

selection “in real time”, i.e., acting in the current generation between conception and the time of 391 

sampling. We derive the expected relationship for each site 𝑖, 392 

𝐹𝑆𝑇𝑖 ≈ 𝐴𝑉𝐺𝑥𝑆𝑖 , (1) 

where 393 

𝑉{𝐺𝑥𝑆}𝑖
= 2𝑝𝑖(1 − 𝑝𝑖)(𝛽𝑖

𝑚 − 𝛽𝑖
𝑓)

2
,  

and 𝑝𝑖 , 𝛽𝑖
𝑚 and 𝛽𝑖

𝑓
 are the allele frequency of an allele at site 𝑖, its effect on the trait in males and 394 

its effect in females, respectively. 𝐴 is a constant parameter shared across all variants and can 395 

therefore be interpreted as the effect of sexually antagonistic selection on male-female divergence 396 

at variants associated with the trait (Methods). We estimated 𝐹𝑆𝑇𝑖 for all sites 𝑖 across subsamples 397 

of various ancestry groups in the gnomAD dataset 59. To estimate 𝑉{𝐺𝑥𝑆}𝑖
 at each site and for each 398 

trait, we used our sex-stratified GWAS results. Since there is large heterogeneity in uncertainty 399 

of GxSex-genetic variance estimates, we use a variance-weighted linear regression to estimate 400 

A (see Methods for the derivation of the variance of 𝑉{𝐺𝑥𝑆}𝑖
 estimates and Supplementary 401 

Materials for further details).  402 

Recent work has shown that apparent sex differences in autosomal allele frequencies 403 

within a sample are often due to a bioinformatic artifact: The mismapping of sequencing reads 404 

from autosomes to sex chromosomes or vice versa53,60,61. We identified and excluded sites which 405 

are potentially vulnerable to this artifact (Supplementary Materials). In Fig. 7D, we only show 406 
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results for gnomAD subsamples that are the closest in their genetic ancestry to our UKB sample62 407 

(results for other subsamples are shown in Fig. S20,21). Furthermore, given the concerns of study 408 

recruitment biases 43,60, we place higher confidence in results that replicate qualitatively across 409 

different subsamples, even though we note that subsample-specific selection signals may be real 410 

since sexually antagonistic selection may act heterogeneously across groups.  411 

With these conservative criteria considered, we only find evidence for sexually 412 

antagonistic polygenic selection on testosterone. In the non-Finnish sample, the largest of the 413 

three samples, the null hypothesis 𝐻0: 𝐴 = 0 in Eq. 1 is rejected (p-value < 0.05) only for 414 

testosterone (Z score = 2.2). Testosterone is among the three strongest signals in the two other 415 

samples as well, though none of the traits are statistically significant in these samples. 416 

 417 

Discussion 418 

Departing from previous studies that sought GxSex through single loci or heritability analyses, we 419 

modelled GxSex as a mixture of polygenic relationships across the genome. Our analysis 420 

supports pervasive context-dependency of genetic effects on complex traits, acting largely 421 

through amplification. Surprisingly, even for some traits such as red blood cell count, previously 422 

considered non-sex-specific because of high genetic correlations between sexes and a 423 

concordance in top GWAS hits, we find evidence for substantial GxSex. The strong relationships 424 

we find between amplification, environmental variance and phenotypic variance further points to 425 

its potential importance for sex differences.  426 

We have shown that considering the polygenic covariance structure, including 427 

amplification signals, improves phenotypic prediction for most traits. Its incorporation in polygenic 428 

scores is straightforward. We therefore recommend its broad application and further building on 429 

our approach to improve clinical risk stratification and other applications of polygenic scores.  430 

Our findings may seem at odds with previous reports of GxSex primarily consisting of sex-431 

limited effects (i.e., no effect in one of the sexes) or antagonistic effects (differences in sign)63. In 432 

the Supplementary Materials and Table S6, we illustrate that these apparent discrepancies may 433 

be rooted in ascertainment biases. Therefore, limiting analyses to variants with outsized sex 434 

differences provides a clouded picture of polygenic GxSex. 435 

Localization of GxSex signals can provide clues into the modulators underlying 436 

amplification. Here, we proposed one such modulator, testosterone, and found a correlation 437 
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between testosterone levels and the magnitude of genetic effect on whole body fat mass. The 438 

opposite signs of these correlations in females and males may reflect the discrepant relationship 439 

between testosterone and these traits at the phenotypic level.   440 

Our approach for studying GxSex in complex physiological traits can be adopted to study 441 

the moderation of polygenic effects by other environments. Starting out with sex as an 442 

environmental variable offers a methodological advantage. The study of context-dependency in 443 

humans is often complicated by study participation biases, leading to genetic ancestry structure 444 

that confounds genotype-phenotype associations43,64–66, reverse causality between the 445 

phenotype and environment variable, collider bias, gene-by-environment correlation and other 446 

problems67–69. Focusing on sex as a case study circumvents many of these “usual suspects” 447 

problems: For example, problems involving the phenotype causally affecting sex are unlikely. This 448 

is an important benchmark for future studies of environmental modulation, both because of the 449 

methodological advantage of sex as an environmental variable and because sex is almost always 450 

measured; so insight into sex differences in genetic effects can be incorporated straightforwardly 451 

in future studies and in clinical risk prediction. Here, we showed that for most of the traits 452 

considered, modeling polygenic GxSex (as opposed to individually estimating sex-specific effects 453 

at each site; Fig. S13 yields sex-specific predictors that outperform standard additive polygenic 454 

scores. 455 

Finally, we developed a model to consider how GxSex may fuel sexually antagonistic 456 

selection in contemporary populations. Over long evolutionary timescales, the two scenarios 457 

depicted in Fig. 7A,B may lead to different predictions about the long-term maintenance of GxSex 458 

genetic variance. Regardless, in both cases, alleles that underlie GxSex may experience sexually 459 

antagonistic selection.  460 

We found suggestive signals of sexually antagonistic selection on variation associated 461 

with testosterone levels (also see related results by Ruzicka et al.56). The signal for our inference 462 

of selection is systematic allele frequency differences between adult males and females, which 463 

are consistent with contemporary viability selection. The severity, age of onset and prevalence of 464 

nearly all diseases are sexually dimorphic70. These signals may therefore point to a related 465 

disease that differentially affects lifespan in the two sexes, such as immune system suppression, 466 

diabetes, cancers, and hypertension71–74. Recently, high testosterone levels have been linked to 467 

increased rates of mortality and cancer in women, but decreased rates in men75,76. However, the 468 
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testosterone result is also consistent with other accounts, such as testosterone having opposing 469 

effects on propensity to participate in a study in the two sexes. Further validation is therefore 470 

required to better test hypotheses of sexually antagonistic selection, for example in studies with 471 

no recruitment biases (or at least distinct recruitment biases).  472 

In this work, we have shown that amplification of the magnitude of polygenic effects may 473 

be important to consider as a driver of sex differences and their evolution. Our approach included 474 

the flexible modelling of genetic effect covariance among the sexes, as well as various 475 

subsequent analyses exploring the implications of these covariance structures. We hope this 476 

study can inform future work on the context-specificity of genetic effects on complex traits. 477 

 478 

Limitations of the Study 479 

Study participation in large biobanks like the UK Biobank (UKB) differs by sex77; and work by 480 

Piratsu et al. further argued that allele frequency differences between males and females may 481 

reflect sex-specific recruitment biases60. However, a recent study by Benonisdottir and Kong 482 

found no evidence of sex-specific genetic associations with UKB participation43, and another by 483 

Kasimatis et al. showed that many apparent associations of autosomal genotypes and biological 484 

sex in the UKB were instead primarily due to a bioinformatic artifact—the mis-hybridization of 485 

autosomal genotyping probes with sex chromosomes53. Even still, subtle recruitment biases 486 

affecting male and female participation differently remain a possible caveat to our conclusions. 487 

For the analysis of natural selection in particular, while the replication of signals of selection in 488 

multiple samples may lend credence to our inference, medical datasets based on recruitment of 489 

participants via referring physicians, participation biases may still plausibly be shared across 490 

studies. 491 
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 509 

Methods 510 

RESOURCE AVAILABILITY 511 

Lead contact 512 

Further information and requests for resources should be directed to and will be fulfilled by the 513 

lead contact, Arbel Harpak (arbelharpak@utexas.edu) 514 

 515 

Materials availability 516 

This study did not generate new unique reagents.  517 

 518 

Data and code availability 519 

This study used genotype and phenotype data from the UK Biobank 520 

https://www.ukbiobank.ac.uk/.   521 

Sex-specific GWAS summary statistics are available at Zenodo and are publicly available as of 522 

the data of publication. DOIs are listed in the key resources table.  523 

All original code has been deposited at https://github.com/harpak-lab/amplification_gxsex and is 524 

publicly available as of the date of publication. DOIs are listed in the key resources table. 525 
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Any additional information required to reanalyze the data reported in this paper is available from 526 

the lead contact upon request.  527 

 528 

METHOD DETAILS 529 

UK Biobank sample characteristics. The UK Biobank is an extensive database that 530 

contains a wide variety of phenotypic and genotypic information of around half a million 531 

participants aged 40-69 at recruitment78. 532 

In this study, we considered 337,111 individuals who passed quality control (QC) checks, 533 

which included the removal of samples identified by the UK Biobank with sex chromosome 534 

aneuploidy or self-reported sex differing from sex determined from genotyping analysis. We 535 

excluded related individuals (3rd-degree relatives or closer) as identified by the UK Biobank in 536 

data field 22020. To reduce potential population structure confounding, we further limited our 537 

sample to individuals identified by the UK Biobank as “White British” in data field 22006. These 538 

are individuals who both self-identified as White and as British and were additionally very tightly 539 

clustered in the genetic principal component space78,79. Individuals who had withdrawn from the 540 

UK Biobank by the time of this study were removed. For each phenotype, we also removed 541 

individuals who had missing data for the specified phenotype. These procedures left us with 542 

between 255,426 to 336,551 individuals in the analysis for each trait. 543 

 544 

Expectations for sex-specific heritabilities with no GxSex. In the section “The limited 545 

scope of analyzing GxSex via heritability differences and genetic correlations,” we report our 546 

observation that, for most traits examined, sex-specific heritabilities (i.e., estimated independently 547 

from sex-stratified GWAS) were both higher than the heritability in the combined sample. Here, 548 

we explain why this observation is inconsistent with a simple model in which genetic effects are 549 

the same across the sexes. 550 

Under a simple additive model of variance in a trait 𝑌 within each sex 𝑍,  551 

𝑉𝑎𝑟[𝑌|𝑍] = 𝑉𝑎𝑟[𝐺|𝑍] + 𝑉𝑎𝑟[𝐸|𝑍], (2) 

where 𝑌, 𝐺, 𝐸 represent the trait value, additive effect, and environmental effect (including all non-552 

genetic context aside from sex), respectively. Under this model, the sex-specific heritability ℎ𝑧
2 is 553 
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ℎ𝑧
2 =

𝑉𝑎𝑟[𝐺|𝑍] 

𝑉𝑎𝑟[𝐺|𝑍] + 𝑉𝑎𝑟[𝐸|𝑍]
. 

(3) 

Therefore, sex differences in heritability are either due to sex differences in genetic 554 

variance, in environmental variance, or both. If genetic effects are equal, differences in 555 

environmental variance alone could cause heritability differences (Table 1, first model). But as 556 

we show below, the heritability in the combined sample cannot be smaller than both sex-specific 557 

heritabilities. 558 

We assume as before that allele frequencies are highly similar between males and 559 

females. Since genetic effects are equal, this implies 560 

𝑉𝑎𝑟[𝐺|𝑍 = 𝑚] ≈ 𝑉𝑎𝑟[𝐺|𝑍 = 𝑓]. 561 

For the environmental variance, we have that 562 

𝑉𝑎𝑟[𝐸] = 𝔼𝑍[𝑉𝑎𝑟[𝐸|𝑍]] + 𝑉𝑎𝑟𝑍[𝔼[𝐸|𝑍]] = 𝔼𝑍[𝑉𝑎𝑟[𝐸|𝑍]] + 0 = 

ℙ(𝑍 = 𝑚)𝑉𝑎𝑟[𝐸|𝑍 = 𝑚] + ℙ(𝑍 = 𝑓)𝑉𝑎𝑟[𝐸|𝑍 = 𝑓] ≤ max
z∈{m,f}

𝑉𝑎𝑟[𝐸|𝑍 = 𝑧]. 

(4) 

The first equality follows from the law of total variance. In the second equality, we have 563 

assumed that there are no mean sex differences in the environmental effects (or, in practice in 564 

our analysis and as routine in other analyses, that mean phenotypic sex differences have been 565 

subtracted out), giving 566 

𝔼[𝐸|𝑍 = 𝑚] = 𝔼[𝐸|𝑍 = 𝑓] = 𝔼[𝐸]. 567 

Eq. 4 shows that the combined environmental variance cannot be greater than the larger of the 568 

two sex-specific environmental variances. It follows that if the genetic variance is equal in both 569 

sexes, then the heritability in the combined sample cannot be smaller than both of the sex-specific 570 

heritabilities, 571 

ℎ2 =
𝑉𝑎𝑟[𝐺] 

𝑉𝑎𝑟[𝐺] + 𝑉𝑎𝑟[𝐸]
≥  

𝑉𝑎𝑟[𝐺] 

𝑉𝑎𝑟[𝐺] + max
z∈{m,f}

 𝑉𝑎𝑟[𝐸|𝑍]
= min

z∈{m,f}
ℎ𝑍

2 . 
(5) 

 572 

Multivariate adaptive shrinkage (mash). We used multivariate adaptive shrinkage (mash) to 573 

examine correlation and differences in magnitude of SNP effects between males and females 45. 574 
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mash is an adaptive shrinkage method80 that improves upon previous methods of estimating and 575 

comparing effects across multiple conditions by flexibly allowing for a mixture of effect covariance 576 

patterns between conditions and requiring only summary statistics from each condition (including 577 

a point estimate of the effect and corresponding standard error for each SNP and condition). The 578 

method adapts to patterns of sparsity, sharing, and correlation among the conditions to compute 579 

improved effect estimates.  580 

In this study, we set two conditions, male and female, and provided effect estimates and 581 

corresponding standard errors from our male-specific and female-specific GWAS. mash learns 582 

from the data by estimating mixture proportions of various predefined covariance matrices 583 

representing different patterns in effects. Using maximum likelihood, mash assigns low weights 584 

to matrices that capture fewer patterns in the data, and higher weights to those that capture more.  585 

 586 

Mixture weights for covariance structure between male and female effects.     To interpret 587 

patterns of SNP effects between males and females, we inputted 66 hypothesis-based covariance 588 

matrices (Fig. S2) spanning a range of correlations and relative magnitudes of effects between 589 

males and females. We used a random subset of all SNPs for mash to learn the covariance 590 

mixture weights. In order for the random subset to contain approximately independent SNPs and 591 

capture the weight of SNPs with no effect (Fig. S2), we created a subset of SNPs for each trait 592 

by taking a random SNP from each of 1703 approximately independent LD blocks estimated for 593 

Europeans81. mash can also generate data-driven covariance matrices that capture SNP effects 594 

in the data, but we did not use this feature since the data-driven matrices had negligible 595 

differences from our hypothesized matrices (in terms of ℓ2 norm) and were less interpretable.  596 

For each trait, we repeat this weight-learning step 100 times, sampling the SNPs from the 1703 597 

LD blocks without replacement to fit the mash model and generate mixture proportions. We then 598 

take the average proportion for each covariance matrix as an estimate of its weight, effectively 599 

treating each of the 100 samples as i.i.d. draws. 600 

 601 

Choice of SNPs used to estimate male-female effect covariance. We examined the 602 

effect of using a random subset taken from different p-value thresholds [1, 5e-2, 1e-5, 5e-8] while 603 

selecting from LD blocks. By doing so, we can examine differences in the distribution of weights 604 

across the p-value thresholds. We performed this test on height, BMI, testosterone, and BMI-605 
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adjusted waist:hip ratio. For each trait, weight placed on the no-effect matrix decreased as we 606 

reduced the p-value threshold (Fig. S4A). Patterns of weights for non-null effect matrices varied 607 

across the traits (Fig. S4B,C). Since mash considers the proportion of null effects and sex-608 

specific, SNP-specific noise; together with the fact that for complex traits, less significant 609 

associations may still reflect valuable signal, we decided on using the whole set of SNPs to 610 

sample from when estimating mixture proportions.  611 

 612 

Simulating equal genetic effects and heterogeneous estimation noise among the sexes.613 

 To ensure that mash was not mistaking sex differences in estimation noise (e.g. via 614 

differences in the extent of environmental variance) to be differences in the magnitude of genetic 615 

effects, we performed a simulation study. In short, samples of males and females were generated 616 

under the model given by Eq. 2. Genetic effects were set as equal, but the environmental variance 617 

differed among the sexes. We then perform a GWAS on both samples and input the simulated 618 

GWAS results into mash, and test whether the estimated mixture weights spuriously suggest the 619 

presence of GxSex. We performed this simulation on a grid of parameters, including heritabilities 620 

in males set to either 5% or 50%, female to male environmental variance ratio of 1, 1.5 or 5; and 621 

100, 1,000 or 10,000 causal SNPs.  622 

First, we created a sample of 300K individuals with randomly assigned sex. We then 623 

sampled genotypes for all individuals consisting of 20K SNPs by sampling from the observed 624 

distribution of allele frequencies from UK Biobank’s imputed data82, assuming linkage equilibrium. 625 

From the 20K SNPs, we portioned out the predetermined number of causal SNPs and assigned 626 

effect sizes by sampling from a Standard Normal distribution. We estimated the male 627 

environmental variance for each causal SNP using the equation, 628 

𝑉𝑎𝑟[𝐸|𝑍 = 𝑚] =
𝑉𝑎𝑟[𝐺|𝑍 = 𝑚](1 − ℎ𝑚

2 )

ℎ𝑚
2 =

(∑ 𝛽𝑖
22𝑝𝑖(1 − 𝑝𝑖))(1 − ℎ𝑚

2 )𝑖=0

ℎ𝑚
2  

(6) 

where 𝑉𝑎𝑟[𝐸||𝑍 = 𝑚] is the simulated environmental variance for males, 𝐺|𝑍 = 𝑚 is a vector of 629 

the genetic effects in males, ℎ𝑚
2  is the heritability in males and 𝛽𝑖 and 𝑝𝑖 are the effect size and 630 

allele frequency at site 𝑖, which are equal for males and females. We multiplied 𝑉𝑎𝑟[𝐸||𝑍 = 𝑚]  631 

by the predetermined environmental variance ratio to obtain the environmental variance for 632 

females 𝑉𝑎𝑟[𝐸||𝑍 = 𝑓]. Afterwards, for each individual 𝑗 with sex 𝑧𝑗, we sampled the 633 

environmental effect 𝐸𝑗 as 634 
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𝐸𝑗~𝑁(0, 𝑉𝑎𝑟[𝐸|𝑍 = 𝑧𝑗].  

 635 

Phenotypes were then set using the following additive model, 636 

𝑦𝑗 = ∑ 𝛽𝑖𝑥𝑖𝑗 + 𝐸𝑗

𝑖=0

 
(7) 

where 𝑦𝑗 is the phenotypic value for individual 𝑗 and 𝑥𝑖𝑗 is the number of effect allele copies at the 637 

𝑖𝑡ℎ causal SNP for the 𝑗𝑡ℎ individual. With the phenotype, genotype and environmental effect set, 638 

we obtained the estimated effect sizes, {𝛽𝑖̂}, using least squares simple linear regression for all 639 

20K SNPs and used the estimated effect sizes and corresponding standard errors as input into 640 

mash.  641 

For nearly all parameters, out of the weights on matrices other than the null matrix, the 642 

vast majority was placed on the matrix for perfect correlation, equal magnitude (Fig S6). As the 643 

number of causal SNPs increased, the weight on the no-effect covariance matrix decreased 644 

accordingly. These results suggest that mash was not grossly mistaking differences in 645 

environmental variance as amplification. 646 

 647 

Simulating sex-biased amplification.  To evaluate whether mash accurately 648 

captures sex-biased amplification of genetic effects (a measure we have used in the x-axis of Fig. 649 

4A,B), we followed the same simulation procedure described in the Section "Simulating equal 650 

genetic effects and heterogeneous estimation noise among the sexes”. However, instead of using 651 

equal genetic effects in males and females, we sampled genetic effects from pre-specified 652 

covariance matrices (Fig. S7 left-hand panel). We set the female to male environmental variance 653 

ratio as 1.2 and the heritability as 0.5. We generated data from (A) a model in which all genetic 654 

effects are sampled from a matrix where male and female effects are equal, (B) a model in which 655 

86% of the genetic effects are sampled from a matrix where effects between the sexes are equal, 656 

and 14% of the effects are sampled from a matrix where the female effect size magnitude is 4 657 

times that of males, and (C) a model in which 86% of effects are sampled from a matrix where 658 

effects between sexes are equal, and 14% of effects are sampled from a matrix of only female-659 

specific effects. After simulating sex-specific GWAS on the three models, we input the results into 660 
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mash to estimate mixture weights. We repeated this simulation procedure 100 times for each 661 

model.  662 

 For model (A), the equal effect matrix received 78% of the weight, and the difference 663 

between male-larger and female-larger magnitude was 1% (Fig. S7). For model (B), 67% of the 664 

weight was placed on the matrix for equal effects. The weight difference between male-larger and 665 

female-larger magnitude was 13%. In model (C), 69% of the weight was on the matrix for equal 666 

effects, and the difference between male-larger and female-larger magnitude was 16%. These 667 

simulation results therefore suggest some overestimation of the proportion of SNPs with 668 

magnitude differences. However, the measure of “sex-biased amplification” matched that of the 669 

pre-specified generative models up to an error of 2%. Therefore, the simulations suggest “sex-670 

biased amplification” is measured accurately in our estimation procedure.  671 

 672 

Testosterone as an amplifier. We tested a model of testosterone as a modulator of 673 

magnitude differences in males and females. We first split individuals by sex and for each sex, 674 

created 10 bins of testosterone levels. We adjusted one of the 10 bins to have testosterone levels 675 

overlap between males and females. The overlapping testosterone bin was based on fewer 676 

individuals (~800) compared to the other bins (~2200). For each trait, each of the sexes, and 677 

within each bin, we performed a simple linear regression of trait values to the PGS for the trait 678 

(using a PGS based on both-sex summary statistics (Supplementary Materials)). We interpret 679 

the estimated coefficient for the effect of the PGS as a proxy for the magnitude of polygenic effect. 680 

Finally, we summarized the relationship between testosterone level and magnitude of polygenic 681 

effect across bins using the Pearson correlation between the two.  682 

To mitigate the possible effects of confounding (of testosterone and magnitude of 683 

polygenic effect) or reverse causation (the magnitude of polygenic effect on the focal trait causally 684 

affecting testosterone levels) we employed a version of Mendelian Randomization83,84 of the same 685 

analysis (Fig. S16). Namely, we replaced testosterone levels of each individual with their PGS for 686 

testosterone. Here, given the near-zero genetic correlation between males and females, we used 687 

our sex-specific PGS for each sex; otherwise, the analysis is unchanged.  688 

We also examined whether participants’ age may have confounded the relationship 689 

between testosterone and polygenic effect. In this analysis, instead of using the polygenic effect 690 
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as the response variable across bins, we used the polygenic effect residualized for mean age in 691 

the bin and examined the effect of an individual’s polygenic score on the residual (Fig. S17).  692 

 693 

Model of Shared Amplification. Here, we suggest a null model in which amplification is 694 

shared between genetic and environmental effects. We then suggest a prediction that the model 695 

yields and explain how we tested this prediction across traits (Fig. 6). 696 

If an amplifier is shared, it may be modeled as having the same scalar multiplier effect on 697 

genetic and environmental effects. Consider the within-sex additive model of Eq. 1 in the section 698 

“The limited scope of analyzing GxSex via heritability differences and genetic correlations” above. 699 

For a phenotype value 𝑌𝑧  in sex 𝑧 ∈ {m, f}   700 

𝑌𝑧 = 𝑐 + 𝐺𝑧 + 𝐸𝑧, (8) 

Where c is a constant, 𝐸𝑧 is the environmental effect and 701 

𝐺𝑧 = ∑ 𝑥𝑖𝛽𝑖
𝑧

𝑠𝑖𝑡𝑒 𝑖

 
(9) 

is the polygenic effect where 𝛽𝑖
𝑧  is the effect of an allele at site 𝑖 (say the minor allele) in sex 𝑍 702 

and  𝑥𝑖 is the number of copies of the allele. We assume here for simplicity that male genetic 703 

effects relate to female effects solely through a shared polygenic amplification constant, α, 704 

𝛽𝑖
𝑚 = 𝛼𝛽𝑖

𝑓
     ∀𝑖;   𝛼 > 0. (10) 

Allele frequencies are once again assumed to be close to equal between males and 705 

females, since due to random segregation of alleles during meiosis, genotype frequencies at 706 

autosomal sites are independent of sex; and further assuming no substantial interaction between 707 

genotype and sex affecting participation in UKB43. Consequently, differences in polygenic effect 708 

distributions between males and females are solely based on GxSex, and thus: 709 

𝑉𝑎𝑟[𝐺𝑚] = 𝛼2𝑉𝑎𝑟[𝐺𝑓]. (11) 

The model we would like to test is one where the amplification of environmental effects 710 

can also be simplified to the same scalar multiplier, 711 

𝐸𝑚 = 𝛼𝐸𝑓 , and 

𝑉𝑎𝑟[𝐸𝑚] = 𝛼2𝑉𝑎𝑟[𝐸𝑓]. 

(12) 
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Hence, with equal amplification,  712 

𝑉𝑎𝑟[𝐺𝑚]

𝑉𝑎𝑟[𝐺𝑓]
=

𝑉𝑎𝑟[𝐸𝑚]

𝑉𝑎𝑟[𝐸𝑓]
 

(13) 

 713 

To test the model of shared amplification between environmental and polygenic effects 714 

(Eq. 8) we obtained the genetic and environmental variance for males and females based on the 715 

following relationships, 716 

𝑉𝑎𝑟[𝐺𝑧] = ℎ2𝑉𝑎𝑟[𝑌𝑧]  (14) 

and 717 

𝑉𝑎𝑟[𝐸𝑧] = (1 − ℎ2)𝑉𝑎𝑟[𝑌𝑧], (15) 

where 𝑉𝑎𝑟[𝐺𝑧], 𝑉𝑎𝑟[𝐸𝑧], and 𝑉𝑎𝑟[𝐺𝑧] are the additive genetic, environmental, and phenotype 718 

variances, respectively. Estimates of the sex-specific heritabilities, ℎ𝑧
2, were obtained from 719 

previous estimates using LD Score Regression (Supplementary Materials).  720 

Representing male genetic or environmental variance as 𝑥, and the corresponding female 721 

variance as 𝑦, we derived standard errors for the ratio of male to female variance using the 2nd-722 

order Taylor approximation for the standard error of a ratio of estimators of 𝑥 and 𝑦, 723 

𝑆𝐸 [
𝑥̂

𝑦̂
] = √𝑉𝑎𝑟 [

𝑥̂

𝑦̂
] ≅

𝐸[𝑥]̂

𝐸[𝑦̂]
√

𝑉𝑎𝑟[𝑥̂]

𝐸[𝑥̂]2 +
𝑉𝑎𝑟[𝑦̂]

𝐸[𝑦̂]2 −
2𝐶𝑜𝑣[𝑥̂, 𝑦̂]

𝐸[𝑥̂]𝐸[𝑦̂]
≈

𝑥̂

𝑦̂
√

𝑆𝐸[𝑥̂]2

𝑥̂2 +
𝑆𝐸[𝑦̂]2

𝑦̂2  

(16) 

assuming independence between 𝑥̂ and 𝑦̂ since they are statistics of independent sampling 724 

distributions (independent samples of males and females). The standard errors of the genetic and 725 

environmental variance were estimated using the law of total variance for a product of two random 726 

variables. For 𝑎̂ and 𝑏̂, unbiased estimators of the two parameters 𝑎 and 𝑏, respectively, we get 727 

𝑆𝐸[𝑎̂𝑏̂] = √𝑆𝐸[𝑎̂]2𝑆𝐸[𝑏̂]
2

+ 𝐸[𝑎̂]2𝑆𝐸[𝑏̂]
2

+ 𝐸[𝑏̂]
2

𝑆𝐸[𝑎̂]2. 
 

Plugging in the point estimate 𝑎̂ for 𝐸[𝑎̂] = 𝑎 and the point estimate 𝑏̂ for 𝐸[𝑏̂] = 𝑏,  728 

𝑆𝐸̂[𝑎̂𝑏̂] = √𝑆𝐸[𝑎̂]2𝑆𝐸[𝑏̂]
2

+ 𝑎̂2𝑆𝐸[𝑏̂]
2

+ 𝑏̂2𝑆𝐸[𝑎̂]2. 
(17) 
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In this case, 𝑎 represents the phenotypic variance for a sex,   𝑉𝑎𝑟[𝑌𝑧], and 𝑏 represents 729 

either ℎ𝑧
2 for estimation of genetic variance or (1 − ℎ𝑧

2) for estimation of environmental variance. 730 

Lastly, to obtain the standard error of the phenotypic variance, we used 100 bootstrapped 731 

samples 𝑉𝑎𝑟[𝑌𝑧]𝑖 of estimates of the phenotypic variance in sex 𝑧,  732 

𝑆𝐸̂[𝑎̂] = √∑ (𝑉𝑎𝑟[𝑌𝑧]𝑖 − 𝑉𝑎𝑟[𝑌𝑧]𝑗
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)

2100
𝑖=1

100 − 1
 

 

Finally, for each trait, we estimated Ζ̃, the ratio of the two male-female ratios 733 

(environmental and genetic, y and x axes in Fig. 6, respectively), and its standard error, 𝑆𝐸[Ζ̃], 734 

using the same method as in Eq. 16. Under the null hypothesis of equal environmental and 735 

genetic amplification (Eq. 8),  736 

𝐻0: 𝐸[Ζ] = 0, (18) 

where  737 

Ζ =
Ζ̃−1

𝑆𝐸[Ζ̃]
.  

In Fig. 6, we approximated 90% confidence intervals on Ζ by treating it as a Z score, i.e., 738 

further treating Ζ as a Standard Normal. 739 

  740 

A Model of Sexually antagonistic Selection. We developed a model relating sex 741 

differences in additive effects on a trait at a biallelic locus (𝛽𝑚and 𝛽𝑓) and divergence in allele 742 

frequencies. Our model resembles that of Cheng and Kirkpatrick14 who developed a similar model 743 

relating allele-frequency differences and sex bias in gene expression. In short, we modelled 744 

sexually antagonistic, post-conception viability selection on a focal complex trait. We assumed 745 

allele frequencies in adult males, 𝑝𝑚, and adult females, 𝑝𝑓, are at equilibrium, i.e. do not change 746 

in consecutive generations. Under these conditions, we derive the relationship   747 

𝐹𝑆𝑇 ≈ 𝛢𝑉𝐺𝑥𝑆𝑒𝑥 ,  

where 𝐹𝑆𝑇
57 is the fixation index with respect to the male and female subpopulations, i.e., the 748 

proportion of heterozygosity in the population that is due to allelic divergence between the sexes. 749 

𝑉𝐺𝑥𝑆𝑒𝑥 is defined as 750 

𝑉𝐺𝑥𝑆𝑒𝑥: = 2𝑝(1 − 𝑝)(𝛽𝑚 − 𝛽𝑓)
2

, (19) 
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where 𝑝 is the allele frequency in zygotes. 𝐴 is a parameter that, importantly, is shared across all 751 

variants affecting the trait and can be thought of as the intensity of sexually antagonistic selection 752 

acting on genetic variation for the trait in question.  753 

In our model, allele frequencies at the autosomal locus are assumed to be equal in males 754 

and female zygotes. 𝐹𝑆𝑇 at adulthood takes the form 755 

𝐹𝑆𝑇: =
𝑉𝑎𝑟𝑧[𝑝𝑧]

𝑝̅(1 − 𝑝̅)
=

𝐸[𝑝𝑧
2] − 𝑝̅2

𝑝̅(1 − 𝑝̅)
=

𝑝𝑚
2 + 𝑝𝑓

2 − (
𝑝𝑚 + 𝑝𝑓

2 )
2

𝑝̅(1 − 𝑝̅)
=

(𝑝𝑚 − 𝑝𝑓)
2

 

4𝑝̅(1 − 𝑝̅)
, 

(20) 

where  756 

𝑝̅ =
𝑝𝑚+𝑝𝑓

2
. 757 

If we further assume a near-1:1 sex ratio such that 𝑝̅ ≈ 𝑝, 758 

𝐹𝑆𝑇 ≈
(𝑝𝑚 − 𝑝𝑓)

2
 

4𝑝(1 − 𝑝)
. 

(21) 

Sexually antagonistic selection acting on viability will cause divergence in allele 759 

frequencies between adult males and females. We write the relative viabilities of the homozygote 760 

for the reference allele, the heterozygote and the homozygote for the effect allele as 1 ∷ 1 +761 

𝑑𝑧𝑆𝑧 ∷ 1 + 𝑆𝑧 for each sex 𝑧 ∈ {𝑚, 𝑓}. The selection coefficient 𝑆𝑧 and dominance coefficient 𝑑𝑧  762 

can be frequency-dependent, in which case these coefficients take their values at equilibrium. We 763 

can write the additive selection coefficient of the effect allele as  764 

𝑠𝑧 = [𝑝 + (1 − 2𝑝)𝑑𝑧]𝑆𝑧 . (22) 

Assuming that zygotes are at Hardy-Weinberg equilibrium, the allele frequency in each 765 

sex at adulthood is 766 

𝑝𝑧 ≈ 𝑝 + 𝑝(1 − 𝑝)𝑠𝑧 , (23) 

where we neglected terms of order 𝑠𝑧
2 85. Plugging Eq. 23 into Eq. 21, the divergence between 767 

males and females post-selection is 768 

𝐹𝑆𝑇 ≈
1

4
𝑝(1 − 𝑝)(𝑠𝑚 − 𝑠𝑓)

2
. 

(24) 

We model the strength of viability selection acting on males and females as linear with the 769 

additive effect on a focal trait in each sex, 770 

𝑠𝑧 = 𝑎𝑧𝛽𝑧 , (25) 
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and recalling the simplifying assumption that allele frequencies are at equilibrium under sexually 771 

antagonistic viability selection at the locus, such that selection favoring an allele in one sex is 772 

balanced by selection against that allele in the other sex,  773 

𝑠𝑓 = −𝑠𝑚 . (26) 

If 𝛽𝑚 = 𝛽𝑓, then Eq. 24 simplifies to 774 

𝐹𝑆𝑇 ≈ 𝑝(1 − 𝑝)(𝑎𝑓𝛽𝑓)
2

=
𝑎𝑓

2 

2
𝑉𝐺 . 

(27) 

where  775 

𝑉𝐺 = 2𝑝(1 − 𝑝)𝛽𝑓
2. (28) 

is the additive genetic variance. However, when 𝛽𝑚 does not strictly equal 𝛽𝑓, Eq. 25, 26 together 776 

imply  777 

𝛽𝑚 + 𝛽𝑓 =
𝛽𝑚 + 𝛽𝑓

𝛽𝑚 − 𝛽𝑓
(𝛽𝑚 − 𝛽𝑓) =

𝑠𝑚
𝑎𝑚

−
𝑠𝑚
𝑎𝑓

𝑠𝑚
𝑎𝑚

+
𝑠𝑚
𝑎𝑓

(𝛽𝑚 − 𝛽𝑓) =
𝑎𝑓 − 𝑎𝑚

𝑎𝑓 + 𝑎𝑚
(𝛽𝑚 − 𝛽𝑓). 

(29) 

Finally, using Eq. 25,  778 

𝑠𝑚 − 𝑠𝑓 = 𝑎𝑚𝛽𝑚 − 𝑎𝑓𝛽𝑓 =
1

2
[(𝑎𝑚 + 𝑎𝑓)(𝛽𝑚 − 𝛽𝑓) + (𝑎𝑚 − 𝑎𝑓)(𝛽𝑚 + 𝛽𝑓)], 

(30) 

which together with Eq. 29 gives 779 

𝑠𝑚 − 𝑠𝑓 =
1

2
[(𝑎𝑚 + 𝑎𝑓) +

(𝑎𝑚 − 𝑎𝑓)(𝑎𝑓 − 𝑎𝑚)

𝑎𝑓 + 𝑎𝑚
] (𝛽𝑚 − 𝛽𝑓) =

2𝑎𝑚𝑎𝑓

𝑎𝑚 + 𝑎𝑓
(𝛽𝑚 − 𝛽𝑓). 

(31) 

We denote the heritability due to GxSex at the locus as 𝑉𝐺𝑥𝑆𝑒𝑥 ≔ 2𝑝(1 − 𝑝)(βm − βf)
2 and 780 

the parameter relating this contribution to the differentiation in allele frequencies as  781 

𝐴: = 2 (
𝑎𝑚𝑎𝑓

𝑎𝑚 + 𝑎𝑓
)

2

, 
(32) 

and plug Eq. 31 into Eq. 24, we get 782 

𝐹𝑆𝑇 ≈ 𝛢𝑉𝐺𝑥𝑆𝑒𝑥 . (33) 

as given by Eq. 3 in Results. 783 

 784 

Estimating the potential for sexually antagonistic selection on standing variation (𝜜).  For 785 

each trait and gnomAD subsample (Supplementary Materials), we estimated Α using weighted 786 
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least squares linear regression of our estimate of 𝐹𝑆𝑇 (𝐹𝑆𝑇̂) to our estimate of 𝑉𝐺𝑥𝑆𝑒𝑥 (𝑉̂𝐺𝑥𝑆𝑒𝑥), with 787 

weight w inversely proportional to our site-specific estimate of noise in the estimate of 𝑉𝐺𝑥𝑆𝑒𝑥, 788 

𝑤 =
1

𝑉𝑎𝑟[𝑉̂𝐺𝑥𝑆𝑒𝑥]̂
. 

(34) 

To simplify the estimation of 𝑉𝑎𝑟[𝑉̂𝐺𝑥𝑆𝑒𝑥], we treated the allele frequency 𝑝 as perfectly 789 

estimated, and as independent of the allele frequency in the GWAS sample—as different data 790 

are used in the GWAS (UK Biobank) and in the allele frequency estimation (gnomAD). Under 791 

these assumptions,  792 

𝑉𝑎𝑟[𝑉̂𝐺𝑥𝑆𝑒𝑥]̂  = 𝑉𝑎𝑟[2𝑝(1 − 𝑝)𝐷2̂] = [2𝑝(1 − 𝑝)]2𝑉𝑎𝑟[(𝛽̂𝑚 − 𝛽̂𝑓)
2

], (35) 

and thus the task at hand is estimating 𝑉𝑎𝑟[(𝛽̂𝑚 − 𝛽̂𝑓)
2

].  Using the law of total variance, 793 

𝑉𝑎𝑟[(𝛽̂𝑚 − 𝛽̂𝑓)
2

] = 𝑉𝑎𝑟𝛽̂𝑓
[𝐸𝛽̂𝑚

[(𝛽̂𝑚 − 𝛽̂𝑓)
2

|𝛽̂𝑓]] + 𝐸𝛽̂𝑓
[𝑉𝑎𝑟𝛽̂𝑚

[(𝛽̂𝑚 − 𝛽̂𝑓)
2
|𝛽̂𝑓]]. (36) 

We begin with the argument of the first term, 794 

𝐸𝛽̂𝑚
[(𝛽̂𝑚 − 𝛽̂𝑓)

2
|𝛽̂𝑓] = 𝐸𝛽̂𝑚

[𝛽̂𝑚
2 − 2𝛽̂𝑚𝛽̂𝑓 + 𝛽̂𝑓

2|𝛽̂𝑓] = 𝜇𝑚
2 + 𝜎𝑚

2 − 2𝜇𝑚𝛽̂𝑓 + 𝛽̂𝑓
2, (37) 

where we denote 795 

𝜇𝑧 = 𝐸[𝛽̂𝑧]; 

𝜎𝑧
2 = 𝑉𝑎𝑟[𝛽̂𝑧] 

(38) 

for each sex 𝑧 ∈ {𝑚, 𝑓}. Plugging Eq. 37 into the first term of Eq. 36, 796 

𝑉𝑎𝑟𝛽̂𝑓
[𝐸𝛽̂𝑚

[(𝛽̂𝑚 − 𝛽̂𝑓)
2
|𝛽̂𝑓]] = 𝑉𝑎𝑟𝛽̂𝑓

[𝜇𝑚
2 + 𝜎𝑚

2 ] + 𝑉𝑎𝑟𝛽̂𝑓
[𝛽̂𝑓

2 − 2𝜇𝑚𝛽̂𝑓] = 

0 + 𝑉𝑎𝑟𝛽̂𝑓
[𝛽̂𝑓

2 − 2𝜇𝑚𝛽̂𝑓] = 𝑉𝑎𝑟𝛽̂𝑓
[𝛽̂𝑓

2] + 4𝑉𝑎𝑟𝛽̂𝑓
[𝜇𝑚𝛽̂𝑓]−4𝜇𝑚𝐶𝑜𝑣𝛽̂𝑓

[𝛽̂𝑓
2, 𝛽̂𝑓], 

(39) 

where the first and second step follow from the fact that 𝜇𝑚
2 + 𝜎𝑚

2  is a constant. We can take note 797 

of the fact that 𝛽̂𝑧 is Normally distributed around 𝛽𝑧, and in particular that it has no skewness. 798 

Therefore, 799 

𝐶𝑜𝑣𝛽̂𝑧
[𝛽̂𝑧

2, 𝛽̂𝑧] = 𝐸[𝛽̂𝑧
3] − 𝐸[𝛽̂𝑧]𝐸[𝛽̂𝑧

2] = (𝜇𝑧
3 + 3𝜇𝑧𝜎𝑧

2 + 𝛾𝑧𝜎𝑧
3) − 𝜇𝑧(𝜇𝑧

2 + 𝜎𝑧
2) = 2𝜇𝑧𝜎𝑧

2, (40) 

where 𝛾𝑧 = 0 is the skewness of 𝛽̂𝑧. We can also note that 800 

𝑉𝑎𝑟𝛽̂𝑧
[𝛽̂𝑧

2] = 𝑉𝑎𝑟𝛽̂𝑧
[(𝜎𝑧𝑏𝑧 + 𝜇𝑧)2], (41) 

where we defined  801 

𝑏𝑧 =
𝛽̂𝑧 − 𝜇𝑧

𝜎𝑧
, 
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and therefore 𝑏𝑧  is a Standard Normal and therefore 𝑏𝑧
2 is Chi-squared with one degree of 802 

freedom. Eq. 41 now gives   803 

𝑉𝑎𝑟𝛽̂𝑧
[𝛽̂𝑧

2] = 𝑉𝑎𝑟𝛽̂𝑧
[𝜎𝑧

2𝑏𝑧
2 + 2𝜎𝑧𝜇𝑧𝑏𝑧] 

= 𝑉𝑎𝑟𝛽̂𝑧
[𝜎𝑧

2𝑏𝑧
2] + 𝑉𝑎𝑟[2𝜎𝑧𝜇𝑧𝑏𝑧] + 𝐶𝑜𝑣[𝜎𝑧

2𝑏𝑧
2, 2𝜎𝑧𝜇𝑧𝑏𝑧] 

= 𝑉𝑎𝑟[𝑏𝑧
2]𝜎𝑧

4 + 4𝑉𝑎𝑟[𝑏𝑧]𝜇𝑧
2𝜎𝑧

2 + 0 = 2𝜎𝑧
4 + 4𝜇𝑧

2𝜎𝑧
2. 

(42) 

Plugging Eq. 40 and Eq. 42 into Eq. 39, we find 804 

𝑉𝑎𝑟𝛽̂𝑓
[𝐸𝛽̂𝑚

[(𝛽̂𝑚 − 𝛽̂𝑓)
2

|𝛽̂𝑓]] = 2𝜎𝑓
4 + 4𝜇𝑓

2𝜎𝑓
2 + 4𝜇𝑚

2 𝜎𝑓
2 − 8𝜇𝑚𝜇𝑓𝜎𝑓

2. (43) 

We now turn to the second term of Eq. 36. First, 805 

𝑉𝑎𝑟𝛽̂𝑚
[(𝛽̂𝑚 − 𝛽̂𝑓)

2
|𝛽̂𝑓] = 𝑉𝑎𝑟[𝛽̂𝑚

2 + 2𝛽̂𝑚𝛽̂𝑓|𝛽̂𝑓] 

= 𝑉𝑎𝑟[𝛽̂𝑚
2 ] + 4𝜎𝑚

2 𝛽̂𝑓
2 − 4𝛽̂𝑓𝐶𝑜𝑣[𝛽̂𝑚 , 𝛽̂𝑚

2 ]. 

(44) 

Eq. 40 and 42 again give us 806 

𝑉𝑎𝑟𝛽̂𝑚
[(𝛽̂𝑚 − 𝛽̂𝑓)

2
|𝛽̂𝑓] = 2𝜎𝑚

4 + 4𝜇𝑚
2 𝜎𝑚

2 + 4𝜎𝑚
2 𝛽̂𝑓

2 − 8𝜇𝑚𝜎𝑚
2 𝛽̂𝑓 , (45) 

which then gives 807 

𝐸𝛽̂𝑓
[𝑉𝑎𝑟𝛽̂𝑚

[(𝛽̂𝑚 − 𝛽̂𝑓)
2

|𝛽̂𝑓]] = 2𝜎𝑚
4 + 4𝜇𝑚

2 𝜎𝑚
2 + 4𝜎𝑚

2 (𝜎𝑓
2 + 𝜇𝑓

2) − 8𝜇𝑚𝜇𝑓𝜎𝑚
2 . (46) 

Plugging Eq. 43 and Eq. 46 into Eq. 36, we obtain 808 

𝑉𝑎𝑟[(𝛽̂𝑚 − 𝛽̂𝑓)
2

] = 

= 2(𝜎𝑚
4 + 𝜎𝑓

4) + 4𝜎𝑚
2 𝜎𝑓

2 + 4(𝜇𝑚
2 𝜎𝑚

2 + 𝜇𝑓
2𝜎𝑓

2) + 4(𝜎𝑚
2 𝜇𝑓

2 + 𝜎𝑓
2𝜇𝑚

2 )

− 8𝜇𝑚𝜇𝑓(𝜎𝑚
2 + 𝜎𝑓

2). 

(47) 

Finally, we estimate 𝜇𝑧 with the GWAS-derived point estimate of the effect 𝛽̂𝑧 and 𝜎𝑧 with 809 

its standard error, 𝜎̂𝑧 = [𝛽̂𝑧]. Plugging back into Eq. 35, we obtain 810 

𝑉𝑎𝑟[𝑉̂𝐺𝑥𝑆𝑒𝑥]̂  = [2𝑝(1 − 𝑝)]2[2(𝜎̂𝑚
4 + 𝜎̂𝑓

4) + 4𝜎̂𝑚
2 𝜎̂𝑓

2 + 4(𝛽̂𝑚
2 𝜎𝑚

2 + 𝛽̂𝑓
2𝜎𝑓

2) + 4(𝜎̂𝑚
2 𝛽̂𝑓

2 + 𝜎̂𝑓
2𝛽̂𝑚

2 )

− 8𝛽̂𝑚𝛽̂𝑓(𝜎̂𝑚
2 + 𝜎̂𝑓

2)]. 

(48) 

Using Eq. 33, we estimate 𝐹𝑠𝑡 with the estimator 811 

𝐹𝑠𝑡̂ = 𝑛𝑠𝑡/𝑑𝑠𝑡 , (49) 

where  812 

𝑛𝑠𝑡 = (𝑝𝑚̂ − 𝑝𝑓̂)
2

− 𝑆𝐸(𝑝𝑚̂)2 − 𝑆𝐸(𝑝𝑓̂)
2

, (50) 
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𝑑𝑠𝑡 = 4𝑝̂(1 − 𝑝̂) − 𝑆𝐸(𝑝𝑚̂)2 − 𝑆𝐸(𝑝𝑓̂)
2

, 813 

and noting that  814 

𝐸[𝐹𝑠𝑡̂] ≈
𝐸[𝑛𝑠𝑡]

𝐸[𝑑𝑠𝑡]
=

(𝑝𝑚 − 𝑝𝑓)
2

− 𝑉𝑎𝑟(𝑝𝑚) + 𝑉𝑎𝑟(𝑝𝑓) + 𝐸{𝑆𝐸(𝑝𝑚̂)2] + 𝐸 [𝑆𝐸(𝑝𝑓̂)
2

]

4𝑝(1 − 𝑝) + 𝑉𝑎𝑟(𝑝𝑚)2 + 𝑉𝑎𝑟(𝑝𝑓)
2

− 𝐸{𝑆𝐸(𝑝𝑚̂)2] − 𝐸 [𝑆𝐸(𝑝𝑓̂)
2

]
= 𝐹𝑠𝑡 , 

(51) 

where in the first equality we approximated the expectation of a ratio with the ratio of expectations. 815 

Therefore, Eq. 49 provides an approximately unbiased estimator of 𝐹𝑠𝑡 despite the absence of 816 

genotype frequencies. 817 

To perform this estimation of A on the GWAS and 𝐹𝑠𝑡 data, we used paired 𝑣 and 𝑉𝐺𝑥𝑆𝑒𝑥 818 

points for all sites which passed all previous stages of filtering.  Weights were set by Eq. 34 and 819 

follow Eq. 48 where 𝛽̂𝑚 and 𝛽̂𝑓 are the GWAS effect estimates as above, and 𝜎̂𝑚 and 𝜎̂𝑓 are the 820 

GWAS standard errors (SE) estimates for the effect size of each site per trait. 821 

To minimize the possibility of LD between sites used in the analysis as much as possible, 822 

we used the approximately independent LD blocks in Europeans81 as in Section “Mixture weights 823 

for covariance structure between male and female effects”. Namely, we subdivided the genome 824 

into 1703 approximately independent LD blocks as before.  We iterated over the 1703 blocks and 825 

sampling one site per block in a given iteration, using a sample of (up to) 1703 post-filtering sites 826 

to perform the weighted linear regression of 𝐹𝑆𝑇 on 𝑉𝐺×𝑆𝑒𝑥 .  The slope of this regression was used 827 

as an estimate of 𝐴.  We perform this estimation procedure 1,000 times and take an average of 828 

𝑍 scores (slope point estimates divided by their SE) as the final estimate of 𝐴. In each replicate, 829 

we sample with replacement m LD blocks from the m LD blocks which had at least one site within 830 

them post-filtering (Supplementary Materials); we then sample one site per resampled block. In 831 

Fig. 7D, each point is the mean of the 1,000 samples of one site per LD block and 90% confidence 832 

intervals show the range between the 5th and 95th percentile of the 1000 replicates.  833 

In the main text, we focus on the results performed this estimation for Ashkenazi Jewish, 834 

Finnish, and Non-Finnish European populations as the other ancestry group-stratified 835 

subsamples in gnomAD are further diverged from the UKB White British sample and therefore 836 

our GWAS estimates are expected to be less portable62,86. We also performed a similar analysis 837 

using UKB data to measure differentiation in allele frequencies between males and females, 838 

rather than an independent dataset (gnomAD) as in the main text. Since individual level data was 839 
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available in this case, we replaced 𝐹𝑠𝑡 with 𝐿𝑆𝑇, a measure developed by Ruzicka et al.56. 𝐿𝑠𝑡  can 840 

be thought of as site-specific 𝐹𝑠𝑡 controlled for major axes of population structure differentiating 841 

males and females (Fig. S21).  842 

 843 

 844 

  845 
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