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ABSTRACT Large-scale phenotype data are expected to increase the accuracy of genome-wide prediction and the power of
genome-wide association analyses. However, genomic analyses of high-dimensional, highly correlated data are challenging.
We developed MegaBayesianAlphabet to simultaneously analyze genetic variants underlying thousands of traits using the
flexible priors of the Bayesian Alphabet family. As a demonstration, we implemented the BayesC prior in the R package
MegaLMM and applied it to both simulated and real data sets. Our analyses show that the resulting model MegaBayesC can
effectively use high-dimensional phenotypic data to improve the accuracy of genetic value prediction, the reliability of marker
discovery, and the accuracy of marker effect size estimation in genome-wide analyses.
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Introduction1

The advent of high density genome-wide single nucleotide poly-2

morphism (SNP) arrays in the past decades has provided ex-3

citing new material for the genetic analysis of complex traits.4

Linear mixed models that can integrate such large-scale genomic5

data are widely used for genomic prediction (Meuwissen et al.6

2001; VanRaden 2008) and genome-wide association studies7

(Visscher et al. 2017). Recent advance in multi-omics methodolo-8

gies now provide opportunities to generate large-scale transcrip-9

tomic, metabolomic, and epigenomic profiles as well. The inte-10

gration of these high-dimensional phenotypes into association11

studies can increase power to detect causal variants. For exam-12

ple, gene expression profiling in thousands of genes has been13

used for the identification of genes that affect transcriptional14

variation (i.e., eQTLs) (Gibson and Weir 2005; McGraw et al.15

2011), and integrative approaches combining genomic and gene16

expression data can have higher power to capture the true path-17

way associations underlying human diseases and complex traits18

(Xiong et al. 2012). In addition, recent developments of high-19

throughput phenotyping platforms have made the collection of20
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thousands to millions of physiological measurements affordable 21

to breeders (Araus et al. 2018). For example, images collected 22

through thermal and hyperspectral cameras are used to increase 23

the accuracy in genomic prediction for grain yield in wheat 24

(Rutkoski et al. 2016). To further improve genomic prediction 25

and to understand the underlying genetic mechanism, statistical 26

models that enable the joint analysis of high-dimensional traits 27

are required to establish the connection between phenomics and 28

genomics. 29

Genomic analyses of high-dimensional, highly correlated 30

data present analytic and computational challenges. The multi- 31

variate linear mixed model (MvLMM) is a widely-used statistical 32

model for the genetic analyses of two or more correlated traits 33

(Henderson and Quaas 1976). However, most algorithms used 34

to fit MvLMMs require repeated inversions of genetic and resid- 35

ual covariance matrices among all traits, with a computational 36

burden that grows cubically to quintically as the number of 37

traits increases (Zhou and Stephens 2014). MvLMMs are also 38

susceptible to over-fitting unless sample sizes are very large. 39

Re-parameterizing MvLMMs as Bayesian sparse factor models 40

can alleviate much of this computational burden (Runcie and 41

Mukherjee 2013; Runcie et al. 2021) and can significantly im- 42

prove the accuracy of genomic prediction (Runcie et al. 2021). 43

For example, BSFG and MegaLMM are based on the assumption 44

that the covariances among large sets of traits can be explained 45

by a small set of latent factors (e.g., through gene regulatory 46
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networks), which is consistent with the discovery that variation1

in gene expressions of human diseases are mainly regulated by2

a few major disease-associated pathways (Xiong et al. 2012).3

While MegaLMM addressed the statistical and computational4

challenges of applying MvLMMs to high-dimensional pheno-5

types, it permits a limited range of models for high-dimensional6

genotype data. Specifically, MegaLMM incorporates genomic data7

through one (or more) genomic relationship matrices, which im-8

poses specific assumptions about the distribution and effect sizes9

of the underlying genetic variants, and does not allow direct in-10

ference on the identities of causal loci. Whole-genome regression11

methods such as the Bayesian Alphabet methods (Meuwissen12

et al. 2001; Park and Casella 2008; Kizilkaya et al. 2010; Habier13

et al. 2011; Cheng et al. 2015; Erbe et al. 2012; Cheng et al. 2018b),14

on the other hand, encode a wide range of different and more15

flexible distributions on the effect sizes of causal genomic loci16

and allow for inference of the causal loci themselves. However,17

fitting Bayesian Alphabet methods to very large numbers of18

markers can also be computationally demanding even for a sin-19

gle trait, and extensions of these methods to multivariate traits20

are very limited.21

In this paper, we incorporate whole-genome regression22

approaches into a Bayesian sparse factor model named23

MegaBayesianAlphabet to incorporate thousands of traits for24

genome-wide prediction and association studies. The Bayesian25

Alphabet methods with mixture priors on marker effects26

(Kizilkaya et al. 2010; Habier et al. 2011; Moser et al. 2015; Wolc27

et al. 2016; Mehrban et al. 2017; Wang et al. 2020) are popular ge-28

netic models due to their incorporation of biologically meaning-29

ful assumptions and the variable selection procedure performed30

during model fitting. We focus on BayesC as an example of a31

Bayesian Alphabet method (Kizilkaya et al. 2010; Habier et al.32

2011; Cheng et al. 2018b), but extensions of MegaBayesianAlpha-33

bet with other priors should be straightforward. We show that34

MegaBayesianAlphabet with BayesC prior (hereinafter referred35

to as MegaBayesC) can improve genomic prediction accuracy36

relative to multi-trait GBLUP and RR-BLUP methods by lever-37

aging mixture priors on marker effects and information from38

thousands of traits. In association studies with millions of mark-39

ers, MegaBayesianAlphabet is still computationally demanding,40

but we propose a two-step approach that can accurately estimate41

marker effects and improve power for association inference in42

both simulated and real data studies. MegaBayesianAlphabet is43

implemented in an R package called “MegaLMM”.44

Materials and Methods45

In a conventional MvLMM, the genetic and non-genetic corre-46

lations among t traits are modeled through one or more t× t47

genetic covariance matrices (Gm) and a t × t residual covari-48

ance matrix (R), respectively. The computational cost of fitting a49

MvLMM can be prohibitive when t is large due to the difficulty50

in taking inverses of the covariance matrices (Gilmour et al. 1995;51

Yang et al. 2011; Zhou and Stephens 2014). To overcome the com-52

putational challenge and overfitting in conventional MvLMMs,53

we reparameterized the conventional MvLMM as a factor model54

(i.e., MegaLMM (Runcie et al. 2021) and MegaBayesianAlphabet),55

where K independent (unobserved) latent factors are introduced56

to account for the covariances among the t traits.57

Model Description58

In MegaBayesianAlphabet, the variation among t observed traits59

is decomposed into two parts: the variation caused by dependen-60

cies on K independent latent factors, which induces correlations 61

among the t observed traits, and the variation that is unique, or 62

idiosyncratic, to each trait. In MegaBayesianAlphabet, genetic 63

values of latent factors are defined as a linear combination of 64

all marker effects, and priors from the Bayesian Alphabet meth- 65

ods (Meuwissen et al. 2001; Park and Casella 2008; Kizilkaya 66

et al. 2010; Habier et al. 2011; Cheng et al. 2015; Erbe et al. 2012; 67

Cheng et al. 2018b) are assigned to the marker effects. The model 68

specification of MegaBayesianAlphabet is described below. 69

Y = FΛ + X1B1 + X2RB2R + ER (1)

with
F = X2FB2F + EF (2)

where Y is an n× t matrix of observations for n individuals on 70

t traits, F is an n× K matrix of latent factors for n individuals 71

across K latent factors, and Λ is a K × t factor loading matrix 72

whose elements, such as λkj, describe the corresponding factor- 73

trait relationships (e.g., the relationship between factor k and 74

trait j). The K latent factors in F are further decomposed into ge- 75

netic effects (i.e., X2FB2F) and residual effects (i.e., EF) as shown 76

in Equation 2. The genetic effects of latent factors are expressed 77

as multiple regressions on genotype covariates, where X2F is 78

an n× b2F matrix of genotype covariates, and B2F is a b2F × K 79

matrix of marker effects for the K latent factors at b2F genotyped 80

loci. X1 is an n× b1 incidence matrix allocating the observations 81

on t traits to b1 fixed effects with coefficient matrix B1. The resid- 82

uals are similarly decomposed into trait-specific genetic effects 83

(i.e., X2RB2R) and trait-specific residual effects (i.e., ER), with 84

B2R being a b2R × t matrix of marker effects corresponding to 85

the t traits at b2R genotyped loci. 86

If all sources of correlation among observed traits are ex- 87

plained by the latent factors, the residuals conditional on these 88

factors become uncorrelated between different traits. Since the 89

sources of correlation among observed traits are explained by 90

independent latent factors, samples at each iteration of Markov 91

chain Monte Carlo (MCMC) can be obtained simultaneously 92

in parallel across traits and factors, which leads to significant 93

reduction in the computational cost of model fitting. 94

Prior Specification 95

Genetic Marker Effects Mixture priors are widely used for ge- 96

netic marker effects in Bayesian regression methods in genome- 97

enabled analysis. In this paper, the BayesC prior is used for the 98

marker effects (e.g., coefficients in B2F) and we term this specific 99

version of MegaBayesianAlphabet: MegaBayesC. The BayesC 100

mixture prior assumes that marker effects are independently and 101

identically distributed, each of which has a point mass at zero 102

with a marker exclusion probability π, and follows a univariate 103

normal distribution with a marker inclusion probability 1− π. 104

For example, the prior distribution of the marker effect at locus i 105

for the kth latent factor is shown as follows. 106

b2Fk(i)
=

N(0, σ2
B2Fk

) probability (1− πFk )

0 probability (πFk )


where σ2

B2Fk
is the variance of marker effects corresponding to 107

factor k. Due to the independence among latent factors, and 108

the independence among traits conditional on FΛ, marker ef- 109

fects can be efficiently sampled from a set of univariate BayesC 110
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models in parallel across traits and factors at each iteration of1

MCMC. We treat each marker exclusion probability for the K2

latent factors (e.g., πFk ) and the t observed traits as an indepen-3

dent unknown parameter to be estimated. Note that if marker4

inclusion probabilities for all factors were set to 1.0 (i.e., all mark-5

ers are included with equal variance), the model is equivalent to6

RR-BLUP, and we term this specific version of MegaBayesianAl-7

phabet: MegaRRBLUP.8

Factor Loading Matrix The factor loading matrix (Λ) describes9

the relationship between latent factors and observed traits. Spar-10

sity in this matrix implies that factors affect some, but not all11

traits, a key assumption in Bayesian sparse factor models (Car-12

valho et al. 2008). We use a BayesC mixture prior for the elements13

of Λ. Because factor swaps do not change the likelihood, to im-14

prove the identifiablilty of the model, we introduce an additional15

parameter to the included-variable variance (τ−1
k ) that is stochas-16

tically decreasing across factors (Bhattacharya and Dunson 2011;17

Runcie and Mukherjee 2013; Runcie et al. 2021). For the factor18

loading that describes the relationship between factor k and trait19

j (i.e., λkj), its prior distribution is shown as follows.20

λkj =

N(0, τ−1
k σ2

Rj
) probability (1− πΛk )

0 probability (πΛk )

 (3)

τk =
k

∏
h=1

δh

δ1 = 1

δh ∼ Gamma(aδ, bδ), h = 2...k

σ2
Rj
∼ Inv-Gamma(aσ, bσ)

Through the prior specification of Λ, an appropriate level of21

truncation on the rows of Λ is able to ensure that the contribution22

from additional factors beyond the truncation point is negligible23

(Bhattacharya and Dunson 2011).24

Other priors All other prior distributions are the same as used25

in Runcie et al. (2021).26

Posterior Distributions for Gibbs Sampler27

We use MCMC method to sample from the posterior distribu-28

tions of all parameters. The full conditional posterior distribu-29

tions for Gibbs sampler are derived for all the parameters in30

MegaBayesC in Appendix.31

Estimation of Genetic Values for Genomic Prediction32

We assessed the performance of MegaBayesC as a tool for ge-33

nomic prediction using hyperspectral data as additional traits to34

assist wheat yield prediction.35

Data Description Best linear unbiased estimators (BLUEs) of36

grain yield and reflectances from 62 wavelength bands collected37

with an areal hyperspectral camera on each of 10 time-points38

during the growing season for 1033 bread wheat lines were39

downloaded from CIMMYT Research Data (Krause et al. 2019).40

We analyzed results from the 2014-2015 breeding cycle under41

the Optimal Flat treatment. All lines were genotyped using the42

pipeline described in Poland et al. (2012). Markers with call 43

rate ≤ 50% and minor allele frequency (MAF) ≤ 0.05 were re- 44

moved. Missing genotypes were imputed by corresponding 45

marker means. In our analysis, the 620 hyperspectral BLUEs 46

were used as secondary traits (Runcie and Cheng 2019) to im- 47

prove the prediction of the genetic value of grain yield, which 48

is served as a focal trait in our prediction scenario. Both sets of 49

traits were combined into a 1033× 621 trait matrix Y. 50

Models Four different models were used to predict the 51

grain yield (GY): GBLUP, MegaGBLUP, MegaRRBLUP, and 52

MegaBayesC. Posterior means were used as point estimates of 53

parameters of interest. These four models are described below. 54

GBLUP A conventional single-trait GBLUP model (Van- 55

Raden 2008) with a variance-covariance matrix proportional to 56

a genomic relationship matrix K fitted to the grain yield BLUEs, 57

ignoring the hyperspectral data. 58

MegaGBLUP This model was described in Runcie et al. 59

(2021). The fixed effects B1 included intercepts only. The ran- 60

dom effects B2R and B2F were not included in the model. A 61

random effect with covariance proportional to K was included 62

in Equations 1 and 2 to model the genetic relationships among 63

lines. 64

MegaBayesC The estimated individual genetic merits of 65

grain yield in MegaBayesC were computed as: uGY = X2FB̂2Fλ̂1, 66

where λ̂1 denotes the first column of Λ̂, which specifies the es- 67

timated relationship between all factors and grain yield. B1 68

included only an intercept, and B2R was not included. We in- 69

cluded one factor having non-zero effects only on grain yield, 70

i.e., λT
GY = [1 0 0 ... 0]1×t, to model direct genetic effects 71

on grain yield. For the remaining factors, the probability of a 72

element from Λ being zero was considered as known and set to 73

be 0.9 to introduce sparsity to Λ and to shorten the time required 74

for its convergence, while the probability of a marker having a 75

null effect on a latent factor was considered as unknown and 76

was estimated. K = 100 factors were fitted in MegaBayesC. 77

MegaRRBLUP This model mimics the priors for marker ef- 78

fects in RR-BLUP. The only difference between MegaRRBLUP 79

and MegaBayesC lies in the prior distributions of marker effects 80

on latent factors. Normal distributions instead of mixture priors 81

are used for marker effects in MegaRRBLUP, indicating that all 82

markers are included in the model. This model should be iden- 83

tical to MegaGBLUP except that the prior on elements of Λ is 84

BayesC instead of the Bayesian Horseshoe. 85

Cross Validation We used cross-validation to evaluate the pre- 86

dictive performance of different models by masking the grain 87

yield of 516 randomly selected lines (around 50% of the popula- 88

tion) of the population during model fitting and comparing the 89

masked values to model predictions. Since we did not mask the 90

hyperspectral data from these 516 model validation individuals, 91

but used those data to enhance our genetic value predictions, 92

using the Pearson’s correlation between predicted and observed 93

GY values could lead to biased and sub-optimal choices of mod- 94

els (Runcie and Cheng 2019). Instead, we used the estimated ge- 95

netic correlation corrected by grain yield heritability to estimate 96

the prediction accuracy (Runcie and Cheng 2019; Daetwyler et al. 97

2013) as implemented in Runcie et al. (2021). The cross-validation 98

process was repeated 20 times with different masked lines. 99

Estimation of Marker Effects for Association Inference 100

In MegaBayesianAlphabet, covariances among high- 101

dimensional phenotypic data are decomposed into K sources 102
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of variation, each of which controls the correlation among a1

subset of observed traits through the factor loading matrix.2

In this way, information of correlated traits is used jointly to3

estimate their underlying pathways (i.e., latent factors), while4

the computational burden to analyze large-scale phenotypic5

data is significantly decreased. With the assistance of large-scale6

genetically correlated traits, MegaBayesianAlphabet is expected7

to boost the discovery of genetic variants associated with a trait8

of most interest (i.e., focal trait) and precisely quantify their9

effect sizes.10

In this section, two simulation studies and one real data anal-11

ysis were conducted to investigate the accuracy of the estimation12

of marker effects by MegaBayesC. First, a population with inde-13

pendent and uncorrelated SNPs was simulated to demonstrate14

the ability of MegaBayesC to distinguish the genetic and non-15

genetic sources of variation in a focal trait, utilizing the informa-16

tion of correlated traits. Second, a simulation study based on a17

real Arabidopsis population was conducted to study the effects18

of population structure and linkage among markers. Finally,19

the real phenotypes of flowering time from this Arabidopsis20

population was studied, utilizing expression data from 20,84321

genes.22

Simulated Study in A Population without structure or Linkage23

Disequilibrium We created a simulated population of n = 500024

individuals and p = 2, 000 SNPs. An n× p matrix of genotypic25

covariates was generated by random sampling from {0, 1, 2}.26

We then created simulated phenotypic data for a single focal27

trait and many correlated “secondary" traits. The performance of28

MegaBayesC was compared to a single-trait BayesC model (ST-29

BayesC) based on the accuracy of estimated marker effects for30

the focal trait. We induced genetic and non-genetic covariation31

among the traits through latent factors. The majority of variance32

in the focal trait was attributed to the latent factors. In Scenario33

1, we created latent factors whose variation was primarily de-34

termined by the genetic markers (i.e. high-heritability latent35

factors), and in Scenario 2, the latent factors were predominantly36

non-genetic (i.e. low-heritability factors).37

We studied four parameters that we expected to influence38

the relative performance of MegaBayesC and ST-BayesC. They39

are 1) the number of latent factors (n f actor), 2) the number of40

correlated traits (ntrait/ f actor) controlled by each factor, 3) the41

number of QTL (i.e., causal variants) that control each fac-42

tor (nqtl/ f actor), and 4) the heritability of the factors. In this43

simulation study, n f actor = {2, 6, 9}, ntrait/ f actor = {2, 20},44

nqtl/ f actor = {10, 20, 30}, and two heritable patterns of latent45

factors were considered.46

To generate the simulated phenotype data, we first used
n f actor and ntrait/ f actor to construct a factor loading matrix (Λ).
For example, when ntrait/ f actor = 2 and n f actor = 2, 4 (i.e.,
n f actor × ntrait/ f actor) observed traits were simulated, with two
different observed traits linked to each factor. Since the first
observed trait was treated as the focal trait, and all factors were
assumed to contribute to its variation, factor loadings in the
first column of Λ were set to 1. To minimize the complexity
of this simulation, non-zero factor loadings in Λ were set to be
equal to 1. Therefore, the simulated Λ given ntrait/ f actor = 2 and
n f actor = 2 was expressed as:

Λ =

1 1 0 0

1 0 1 1



Based on the constructed Λ, all factors except the first factor 47

were linked to ntrait/ f actor + 1 = 3 observed traits, while the 48

first factor was linked to ntrait/ f actor = 2 observed traits. A 49

similarly structured Λ was constructed for other combinations 50

of ntrait/ f actor and n f actor. 51

After defining Λ, genetic variation controlled by selected 52

QTL and non-genetic variation in each factor were simulated. 53

nqtl/ f actor QTL were selected for each factor, and variation was 54

simulated such that the variance explained by these QTL was a 55

defined percentage of the total variation in the factor. In Scenario 56

1, the QTL accounted for 95% of the variance of each factor (i.e., 57

σ2
FG/(σ2

FG + σ2
FE) = 0.95 with σ2

FG being the genetic variance of 58

factors and σ2
FE being the residual variance of factors). In Sce- 59

nario 2, only the first factor was associated with QTL (again with 60

95% of its variance explained by the QTL), and the remaining fac- 61

tors had independent variation. Finally, additional trait-specific 62

variance was added to each trait, accounting for approximately 63

10% of its total variance. 64

As a consequence of these simulation choices, the two scenar- 65

ios differed in several key aspects of the genetic architecture and 66

correlation structures between the focal trait and the secondary 67

traits. In Scenario 1, all factors were controlled predominately 68

by genetic variation and all QTL for every factor was therefore 69

a QTL for the focal trait. Therefore, all secondary traits had 70

strong genetic correlations with the focal trait. In Scenario 2, 71

most factors were controlled by non-genetic variation; only the 72

first factor was controlled by QTL. Therefore while all secondary 73

traits were phenotypically correlated with the focal trait, most 74

of these correlations were non-genetic. 75

In both scenarios, as n f actor and/or nqtl/ f actor increased, the 76

magnitude of variation explained by each QTL decreased to hold 77

the total percentage of variation in the focal trait explained by 78

QTL constant. In Scenario 1, when n f actor = 9 and nqtl/ f actor = 79

10, the 90 QTL each explained ≈ 0.97% of the total variance 80

(Figure 3). As nqtl/ f actor increased to 30, the number of QTL for 81

the focal trait increased to 270 and each accounted for around 82

0.29% of the total variance of focal trait. In Scenario 2, when 83

n f actor = 9, the variance explained by each marker decreased 84

from 0.90% to 0.31% as the number of QTL increased from 10 85

to 30. For a given n f actor and nqtl/ f actor the per-QTL effect sizes 86

were comparable, but since there were more factors with QTL in 87

Scenario 1, the total variance in the focal trait controlled by all 88

QTL was larger. 89

In Scenario 2, as n f actor increased, the proportion of variance 90

explained by QTL decreased. For example, when n f actor = 6, 91

the genetic variance accounted for 14% of the total variance of 92

focal trait. With n f actor = 9, the percent of variance explained by 93

genetic markers decreased to 9%. In Scenario 1, the percentage 94

of variance explained by QTL was constant across values of 95

n f actor. In this scenario, all QTL for all factors contributed to 96

the variation in the focal trait. For example, when n f actor = 6 97

and nqtl/ f actor = 10, each factor was influenced by 10 QTL, 98

which were randomly selected from all SNPs, leading to a total 99

of 60 QTL selected. During this process, some SNPs may be 100

stochastically selected more than once, and thus, some QTL may 101

have effects on more than one factor. 102

Based on the combination of ntrait/ f actor, n f actor, nqtl/ f actor, 103

and the heritable patterns, a total of 3× 3× 2× 2 conditions were 104

studied in this simulation study. 10 replicates were conducted 105

for each of the 36 conditions. 106

When fitting models to these simulated data, we included the 107

intercept for each trait as the only fixed effect. The model specifi- 108
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cation of MegaBayesC was similar to that used in the Genomic1

Prediction application, except: 1) no fixed factor loadings were2

included in Λ, 2) the probability of a element from Λ being zero3

was considered as unknown and was estimated, 3) the number4

of factors fitted in the model was K = 10. We estimated the5

total marker effects on the focal trait obtained by MegaBayesC6

as: α f = B2Fλ1, where B2F is the matrix of marker effects of7

latent factors and λ1 denotes the first column of Λ specifying8

the relationship between factors and focal trait, i.e., summing9

up the QTL effects on the latent factors weighted by the relation-10

ships between each factor and the focal trait. We measured the11

performance of each method (i.e., MegaBayesC and ST-BayesC)12

by calculating the square root of the mean square error (RMSE)13

of estimated marker effects.14

Simulation Study in a Real Arabidopsis Population We created15

a second set of simulated datasets based on real genotypes16

from 1003 Arabidopsis thaliana accessions. Genotype data were17

downloaded from the 1001 genomes project (Alonso-Blanco et al.18

2016). In a real population, the presence of linkage disequilib-19

rium (LD) between loci and variable allele frequencies among20

markers increase the complexity of genetic association analy-21

ses. We removed SNPs with MAF ≤ 0.05 and missing genotype22

rate ≥ 0.1 using PLINK 1.9 (Purcell et al. 2007), leaving 802,42723

variants used for downstream analysis.24

To ensure the QTL were independent, we pruned SNPs with25

an LD threshold of 0.8 in windows of 500 SNPs, using a sliding26

window of 100 SNPs. We randomly selected 20 QTL from these27

SNPs, and generated 10 latent factors, each was affected by 228

different QTL. In this simulation, the structure of the variance29

of the focal trait was simplified. All genetic variance in all traits30

was driven by the QTL effects on the latent factors, while all31

non-genetic variance was trait-specific. In this way, the observed32

traits (Y) was expressed as: Y = X2B2FΛ + ER.33

We set each element of the first column of Λ to 0.5 so that34

all 10 of the factors contributed equally to the focal trait. Each35

factor was additionally linked to 20 different secondary traits36

with factor loadings equal to 1. Other elements in Λ were set to37

be 0. Therefore, a total of 201 traits were simulated.38

The proportion of genetic variance in the focal trait was set39

to be around 60% (i.e., h2
f ocal = 0.6). To ensure that the variance40

explained by each QTL was consistent ( ≈ 1− 5% of the total41

variance), QTL effects were sampled from a uniform distribution42

U(3, 5), and a randomly chosen half of those effects were multi-43

plied by −1. In addition, since the heritability of secondary traits44

such as gene expression is often higher than that of focal trait45

in real data applications, the heritabilities of the 200 secondary46

traits were each set to be 0.8.47

Finally, to parallel our real data analysis below, secondary48

trait data was simulated for only 649 of the 1003 Arabidopsis49

accessions. The 354 remaining accessions had the records for50

only the focal trait.51

After creating the simulated data, we applied three meth-52

ods to identify QTL and estimate their effects on the focal trait:53

1) single-trait Genome-Wide Association Studies (GWAS) us-54

ing GCTA (Yang et al. 2011) (ST-GCTA); 2) single-trait BayesC55

implemented in JWAS (Cheng et al. 2018a) (ST-BayesC); and 3)56

MegaBayesC implemented in MegaLMM. Since whole-genome57

regression models with hundreds of thousands of candidate58

markers are computationally prohibitive, a two-stage analysis59

was implemented for ST-BayesC and MegaBayesC. In the first60

stage (i.e., the pre-selection stage), we selected a small proportion61

of SNPs to take forward into a full BayesC analysis by running a62

single-trait GWAS using GCTA on only the 354 individuals with- 63

out records on secondary traits. After running the GWAS, we 64

used LD-based clumping to select ≈ 2000 potentially important 65

SNPs. First, we sorted SNPs by p-value, removed SNPs with 66

p-values larger than 0.01, then used a greedy algorithm to select 67

the most-significant SNPs and mask all nearby SNPs (within 68

250Kb) with r2 > 0.5 (Purcell et al. 2007). 69

After the pre-selection stage, the records of focal and sec- 70

ondary traits from the remaining 649 individuals, which are 71

considered as an independent population, were analysed in 72

MegaBayesC using only the pre-selected potentially important 73

SNPs. The model specification of MegaBayesC was similar to 74

that used in the previous simulation study for independent pop- 75

ulation, except we set K = 30. In MegaBayesC, the total marker 76

effects of the focal trait were computed as: α f = B2Fλ f , where 77

B2F is a b2F × K matrix of marker effects for latent factors, with 78

b2F being the number of SNPs selected at the pre-selection stage, 79

and λ f denotes the column of Λ that specifies the relationship 80

between factors and focal trait. Furthermore, to demonstrate 81

that the improved performance of MegaBayesC is attributed to 82

not only the use of the BayesC prior on the marker effects but 83

also the utilization of information from correlated secondary 84

traits, a ST-BayesC was also performed for the 649 individuals 85

at the second stage. MCMC chains of 50,000 iterations were run 86

for the BayesC-based methods with the first 10,000 iterations 87

discarded as burn-in. 88

In addition to the two-stage analysis, a one-stage ST-GCTA 89

was performed using the whole-genome SNP information and 90

the phenotypes of the focal trait from all 1003 individuals. To 91

compare with the two-stage analysis, the selection of potentially 92

important SNPs was done based on the one-stage ST-GCTA 93

result in the same manner as that in the pre-selection stage. 94

Figure 1 shows the procedures performed to estimate marker 95

effects in the three different methods. Simulations were repeated 96

100 times. 97

Figure 1 Graphic representation for the procedure of one-
stage and two-stage analyses performed for the estimation
of marker effects. FT represents the focal trait, ST-GCTA rep-
resents single-trait GWAS implemented in GCTA, and ST-
BayesC represents single-trait BayesC method. In ST-BayesC,
only phenotypes of FT and genotypes of the pre-selected po-
tentially important SNPs were used.
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RMSEs of the QTL effect sizes and the percentage of variance1

in the focal trait explained by the QTL were used to evaluate the2

accuracy of estimation of QTL effects by different methods. The3

variance explained by marker l was computed as: var(αl f x2),4

where αl f is the marker effect of SNP l on focal trait, and x25

is the vector of genotypic covariates for SNP l. To score QTL6

accuracy, we parsed the detected QTL in three ways: 1) If the7

true QTL were selected in the set of potentially important SNPs8

(e.g., Stage 1), the estimated effects were compared directly to the9

true effects. 2) If a SNP in imperfect LD with the true QTL was10

selected instead of the true QTL, we flagged its estimated effect11

size in the accuracy comparison because the incomplete linkage12

and different allele frequencies of the two SNPs mean that the13

estimated effect size will not be directly comparable to that of14

the true QTL. However, the percentage of variance attributed15

to the marker should be similar to the true QTL as long as r2 is16

high; 3) If neither the true QTL nor any of its linked SNPs was17

selected in the potentially important SNPs, we set the estimated18

marker effect and variance explained by this QTL to 0. For the19

purpose of unit consistency, RMSE of estimated marker effects20

and estimated marker-explained standard deviation (i.e., square21

root of marker-explained variance) across different methods22

were compared. In this study, a SNP was considered to be23

linked to a QTL if the squared correlation between its genotypic24

covariate and the QTL genotype was greater than 0.4.25

Genetic Association Analysis of Arabidopsis thaliana Flower-26

ing Time and Gene Expression Phenotypes of flowering time27

from 1003 accessions and expression data of 20843 genes from28

649 accessions were used, with flowering time selected as our29

focal trait. Gene expression data was downloaded from NCBI30

GEO (Barrett et al. 2012). Genes with average counts smaller31

than 10 were removed and the remaining gene counts were32

normalized and variance stabilized as per Runcie et al. (2021)33

using DESeq2 (Love et al. 2014). The two-stage MegaBayesC34

and one-stage ST-GCTA analyses described above were per-35

formed again on this dataset. LD-based clumping was done to36

select potentially important SNPs for both methods. The model37

specification of MegaBayesC was similar to that used in the38

Genomic Prediction section above. A MCMC chain of 80,00039

was run with the first 20,000 iterations discarded as burn-in. In40

the two-stage MegaBayesC analysis, potentially important SNPs41

with explained proportion of variance > 0.1% were classified42

as significant SNPs, while in the one-stage ST-GCTA analysis,43

potentially important SNPs with p-value < 1× 10−5 were clas-44

sified as significant SNPs. We compared each significant SNP to45

a list of genes previously known to influence flowering time in46

Arabidopsis (Bouché et al. 2016), and counted as a match (i.e., a47

true positive hit) if a SNP was within +/- 100 Kb distance from48

at least one of the reported genes. Otherwise the significant SNP49

was conservatively considered as a false positive association.50

Data availability51

Scripts for running all analyses are archived at GitHub: https:52

//github.com/Jiayi-Qu/Mega-BayesC. The Bayesian Alphabet im-53

plementation is available on the “BayesAlphabet" branch of54

the MegaLMM GitHub repository: https://github.com/deruncie/55

MegaLMM/tree/BayesAlphabet. Data from the wheat breeding56

trial were downloaded from CIMMYT Research Data (Krause57

et al. 2019). Arabidopsis flowering time data was downloaded58

from Arapheno: https://arapheno.1001genomes.org/phenotype/59

261/. Gene expression data was downloaded from NCBI GEO60

(Barrett et al. 2012). Genotype data were downloaded from the61

1001 genomes project (Alonso-Blanco et al. 2016). 62

Results 63

MegaBayesC Improves Estimation of Genetic Values 64

We tested if MegaBayesianAlphabet models could match or 65

exceed the performance of MegaLMM in trait-assisted ge- 66

nomic prediction using data from a breeding trial of bread 67

wheat. We compared the genomic value prediction accuracy of 68

MegaBayesC and MegaRRBLUP to MegaGBLUP in this dataset, 69

where we leveraged 620 hyperspectral phenotypes measured on 70

1033 bread wheat lines to supplement genotype-based predic- 71

tions of genomic value for grain yield. As a baseline, we per- 72

formed conventional univariate GBLUP-based genomic value 73

prediction as well. Prediction accuracy was assessed by cross- 74

validation where for each of 20 replicates, grain yield values 75

of 50% of the lines were masked and used as an independent 76

testing set. Estimated genetic correlations between predicted 77

and observed yields in the testing set were used as the cross- 78

validation statistic. 79

As shown in Figure 2, univariate GBLUP achieved a pre- 80

diction accuracy of 0.43 in this dataset. MegaGBLUP fitted to 81

all traits in MegaLMM with a single random effect based on 82

the genomic relationship matrix K achieved an average predic- 83

tion accuracy of 0.69. MegaRRBLUP fitted in MegaBayesianAl- 84

phabet achieved an average prediction accuracy of 0.68. No 85

significant difference was observed between MegaGBLUP and 86

MegaRRBLUP. RR-BLUP and GBLUP are mathematically equiv- 87

alent (Whittaker et al. 2000; Meuwissen et al. 2001; Habier et al. 88

2007) models that account for the contributions of the genetic 89

markers, but MegaGBLUP uses a horseshoe prior for the ele- 90

ments of Λ while MegaRRBLUP uses the BayesC prior for these 91

parameters with fixed π = 0.9. MegaBayesC, with its BayesC 92

prior on the marker effects, achieved an average accuracy of 93

0.75, significantly higher than the other methods. These results 94

show that the use of biologically meaningful prior on marker 95

effects can further improve the genomic selection in breeding 96

programs. 97

MegaBayesC improves Estimation of Marker Effects in Simu- 98

lated Populations with Independent Markers 99

Next, we ran a set of simulations to evaluate the ability of 100

MegaBayesC to identify and accurately estimate the effect sizes 101

of genetic variants for a set of correlated traits under different ge- 102

netic architectures. Specifically, we tested whether MegaBayesC 103

improved the estimation of variant effect sizes of a single focal 104

trait when phenotypes of other correlated traits (i.e., secondary 105

traits) were provided. 106

Since the magnitude and causes (genetic vs. non-genetic) of 107

the covariance structures among traits determine the usefulness 108

of the secondary traits, we considered two covariance structures. 109

In both cases, we began by simulating a set of latent factors par- 110

tially controlled by genetic variation. In Scenario 1, the majority 111

of variation in the focal trait was controlled by latent factors that 112

were dominated by genetic variation. In Scenario 2, the majority 113

of variation in the focal trait was controlled by latent factors 114

dominated by non-genetic sources of variation. We compared 115

the estimation of marker effects between ST-BayesC (which ig- 116

nored all secondary traits) and MegaBayesC (which used all 117

trait data at once). We scored the accuracy of each method by 118

the RMSE of estimated marker effects. In both scenarios, as the 119

genetic architecture increased in complexity (i.e., the number of 120

QTL increased and the average size of each QTL decreased to 121
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Figure 2 Genomic value prediction performance of 4 models
for wheat yield. Records of yield, 620 hyperspectral pheno-
types, and genotype data for 1033 lines were available. 20
replicate validations were used. Bars show the mean predic-
tion accuracy (± standard error) for each model, and letters
show the statistical significance of mean difference between
methods based on a paired t-test.

keep the total percentage of variation attributable to the QTL1

constant), the performance of ST-BayesC decreased (RMSE in-2

creased) much more dramatically than MegaBayesC. Figure 33

shows RMSE of estimated effects for QTL and SNP, respectively,4

(i.e. QTL are markers with a non-zero effect and SNPs are mark-5

ers with a true effect size of zero) under the two scenarios for the6

simulation setting where the largest difference of RMSE was ob-7

served between MegaBayesC and ST-BayesC, with ntrait/ f actor8

= 2 and n f actor = 9. Results for other combinations of n f actor,9

ntrait/ f actor, and nqtl/ f actor are shown in Appendix (Figure 9).10

In Scenario 1, the number of latent factors had no direct effect11

on the performance of ST-BayesC beyond its effect on the num-12

ber of QTL. Also, the number of traits linked to each factor13

(i.e. ntrait/ f actor) did not significantly affect the performance of14

MegaBayesC in both Scenario 1 and Scenario 2. This shows the15

ability of MegaBayesC to capture the underlying sources of cor-16

relations among traits by optimizing the utilization of secondary17

traits, even when each factor only has one linked secondary trait18

included in the model.19

For ST-BayesC, the RMSE of estimated marker effects in-20

creased significantly as marker-explained variances decreased21

in both scenarios. Compared to Scenario 1, the increase of RMSE22

for estimated effects of QTL was greater in Scenario 2, while the23

increase of RMSE for estimated effects of SNPs were similar be-24

tween the two scenarios. This indicates that the performance of25

ST-BayesC to identify QTL was affected by the marker-explained26

variance as well as the variance structure of the focal trait.27

In contrast, the performance of MegaBayesC was relatively28

constant across scenarios as measured by RMSE. In terms of the29

estimation of effect sizes of QTL, the influence of the variance30

Figure 3 Root mean square error (RMSE) of estimated QTL
effects and SNP effects, respectively, under two scenarios.The
upper panels show RMSE of estimated QTL effects under
two scenarios. The lower panels show RMSE of estimated
SNP effects under two scenarios. The left panels show RMSE
for Scenario 1, where all latent factors had high heritability
(h2 = 0.95). The right panels show RMSE for Scenario 2, where
only one of the factors had high heritability (i.e., factor 1 had
h2 = 0.95 and the remainder factors had h2 = 0). Results
are shown for the simulation setting with ntrait/ f actor = 2 and
n f actor = 9. The average proportion of total variance explained
by one QTL was shown in the parenthesis.
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structure and the marker-explained variance was negligible,1

which lead to a relatively constant RMSE across the simulation2

settings. At the same time, MegaBayesC was able to shrink3

most SNPs more effectively towards zero, especially in Scenario4

2, when the ratio of number of QTL to number of SNPs was5

smaller.6

To further explore the differences in the performance of ST-7

BayesC and MegaBayesC in Scenario 2, we plotted the estimated8

marker effects under one example simulation with n f actor = 9,9

nqtl/ f actor = 30, and ntrait = 2 (Figure 4).10

Figure 4 Scatter plot of estimated marker effects versus true
marker effects for the simulation setting with n f actor = 9,
nqtl/ f actor = 30, and ntrait = 2 in Scenario 2, where all factors
have effects on the focal trait but only one of them is a genetic
factor (i.e., h2 > 0). Red and blue colors specify QTL (effect
size 6= 0) and SNP (effect size = 0), respectively. The solid
black line represents the line y = x.

For ST-BayesC, some QTL were successfully select by the11

model and their effect sizes were accurately estimated close to12

the true value of 0.1. However, for the majority of QTL, the13

estimated marker effects were shrunk toward 0s. On the other14

hand, ST-BayesC erroneously estimated effect sizes of SNPs with15

true effect sizes of 0 from -0.07 to 0.06. In contrast, the marker16

effects of QTL and null-effect SNPs were accurately estimated17

by MegaBayesC (Figure 4).18

Estimation of Explained Variance of Markers in a Population19

Simulated Using Real Genotype Data20

To explore the ability of MegaBayesC to accurately identify QTL21

and estimate their effect sizes in the presence of LD, we gen-22

erated simulated phenotypes based on real genotypes from an23

Arabidopsis population. We then ran association analyses using24

three methods: The direct (i.e. one-stage) method, ST-GCTA,25

that only uses the focal trait, and two two-stage methods: ST-26

BayesC and MegaBayesC, which both rely on a pre-selection27

stage to select a set of candidate SNPs using one partition of the28

population, and then an assay stage where the effects of those29

SNPs on the focal trait are modeled in the second partition of30

the population. We compared the performance of the models31

by the RMSE of estimated marker effects and marker-explained32

variances.33

Figure 5 shows the RMSE of estimated marker effects and34

estimated marker-explained standard deviations from the sim-35

ulated phenotype data. The two-stage MegaBayesC method36

achieved the lowest RMSE for both marker effects and marker-37

explained standard deviations, followed by the two-stage analy-38

sis incorporating ST-BayesC, and then the one-stage single-trait39

GWAS (ST-GCTA). The RMSE of the one-stage single-trait GWAS40

Figure 5 Root mean square error (RMSE) of estimated marker
effects and estimated marker-explained standard deviations
(i.e., square root of marker-explained variances) across dif-
ferent methods. The performance of two-stage (ST-BayesC
and MegaBayesC) methods and one-stage (ST-GCTA) method
were compared.

was around ten times larger than that of the two-stage BayesC- 41

based analyses, while the difference between ST-BayesC and 42

MegaBayesC was much smaller. Furthermore, the RMSE of es- 43

timated marker-explained standard deviations was generally 44

lower than that of estimated marker effects. The larger RMSE of 45

estimated marker effects is likely due to the selection of linked 46

SNPs rather than the true causal QTL in the pre-selection stage. 47

Figure 6 The relationship between estimated and true values
of marker effects and marker-explained proportion of variance
for focal trait. Three different methods (ST-GCTA, ST-BayesC,
and MegaBayesC) were compared. Details of each method are
presented in Materials and Methods.

To further explore the difference in the performance of ST- 48

BayesC and MegaBayesC in this simulation scenario, we present 49

the relationship between true and estimated marker effects for 50

one replicate in Figure 6. In this simulation, 19/20 true causal 51

QTL were selected by ST-GCTA, and only 16 were selected in 52

the pre-selection stage for the two-stage methods, ST-BayesC 53
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and MegaBayesC. In all these three cases, the effect sizes of these1

selected QTL were accurately estimated. However, the effect2

sizes of many null-effect SNPs were dramatically overestimated3

by ST-GCTA, leading to an overall high false positive rate. In4

contrast, although a few true causal QTL were missed in the pre-5

selection stage, SNPs with null effects that were moved forward6

into stage two were estimated to have very small effects by both7

ST-BayesC and MegaBayesC.8

Note that in some cases, SNPs that are in LD with true QTL9

were selected instead of the causal QTL. When the linkage phase10

was negative, the estimated effect sizes for linked SNPs have11

the opposite sign, which increases the reported RMSE. However,12

even in these cases, the proportion of variance explained by13

these linked markers is close to the proportion that would have14

been explained by the true QTL, so the effect of LD on the RMSE15

of marker-explained variances is minimized.16

Identifying Candidate Genes for Flowering Time in Arabidop-17

sis using Gene Expression Data as Secondary Traits18

Figure 7 Marker-explained proportion of variance for po-
tentially important SNPs by the two-stage analysis using
MegaBayesC. The top 14 SNPs that explained the greatest
proportions of variance in flowering time are highlighted.

We applied the two-stage MegaBayesC and the one-stage19

single-trait GWAS (ST-GCTA) to the task of identifying candi-20

date genes that regulate flowering time in Arabidopsis thaliana21

using actual flowering time measurements and genotype data22

from 1003 A. thaliana accessions. In MegaBayesC, we included23

the expression of 20843 genes measured on 649 of the accessions24

as secondary traits.25

Potentially important SNPs with marker-explained variance26

greater than 0.1% in MegaBayesC and potentially important27

SNPs with p-value smaller than 10−5 in ST-GCTA were selected28

as significant SNPs. MegaBayesC was better able to select a29

limited number of candidate SNPs based on per-marker variance30

explained (Figure 7) then ST-GCTA (Figure 8) by shrinking the31

vast majority of SNP effects close to zero.32

We assessed the accuracy of these associations by checking33

whether known flowering time-related genes are located near34

to the SNPs selected by each model. Using MegaBayesC, we35

Figure 8 Marker-explained proportion of variance for poten-
tially important SNPs by the one-stage ST-GCTA analysis. The
top 14 SNPs that explained the greatest proportions of vari-
ance in flowering time are highlighted.

selected 14 significant SNPs and 13 of these were located within 36

100Kb of known flowering time-related genes. Note that these 37

known genes were generally not the nearest gene to the signifi- 38

cant SNPs, but associations at this distance are not uncommon in 39

Arabidopsis (Sasaki et al. 2021). For ST-GCTA, we selected 34 sig- 40

nificant SNPs, among which 26 SNPs were located within 100Kb 41

of known flowering time-related genes. In total, based on our 42

prior knowledge, 14 and 15 genes were detected by MegaBayesC 43

and ST-GCTA, respectively. Detailed comparison on detected 44

genes between MegaBayesC and ST-GCTA is shown in Table 1. 45

Method
Number of

Significant SNPs

Number of

False Positives
Detected Genes

MegaBayesC 14 1

AGL17, CRY2, FLC, FT, FRL1,

GRP7, HDA6, NF-YC4, PIE1, SEF,

VP, VIN3, ZTL, and DOG1

ST-GCTA 34 8

CIB2, FLC, FT, FRL1, JMJ14,

LATE, LIF2, MRG1, AtNDX, PIE1,

PRMT4A, TSF, VIN3, ZTL, and DOG1

Table 1 Detailed information on detected genes from ST-GCTA
and MegaBayesC. Bold fonts are used to indicate genes that
are detected in both methods.

Discussion 46

The emergence of new types of phenotype data, such as gene 47

expression or spectral reflectances, has created a demand for 48

the development of robust models that are able to analyze large 49

numbers of phenotypes in genome-enabled analysis. Although 50

Bayesian regression models with mixture priors allow for more 51

biologically meaningful prior assumptions on the effect size dis- 52

tributions of causal variants, their corresponding multivariate 53

models (Cheng et al. 2018b) suffer from a high computational bur- 54

den. In this paper, we developed a Bayesian sparse factor model 55
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with mixture priors on marker effects (MegaBayesianAlphabet)1

to implement both genome-wide prediction and association for2

analyses with hundreds to tens-of-thousands of phenotypes.3

MegaBayesianAlphabet uses a moderate number of latent fac-4

tors (K) to account for the covariance among the observed traits.5

This substantially reduces the computational burden relative to6

either a multivariate Bayesian regression model or a multivariate7

linear mixed model with fully-parameterized trait covariance8

matrices when the number of traits (t) is large.9

However, the sparse factor structure of MegaBayesianAlpha-10

bet does not reduce the model complexity enough to enable11

mixture priors over the millions of genetic markers that are12

available in many systems from high-density genotyping arrays13

or whole genome sequencing. When marker effects of the factors14

and the trait-specific residuals are both included in the model,15

the number of marker effects to be estimated is equivalent to16

(t + K)× p, with t being the number of observed traits, K being17

the number of factors, and p being the number of total SNPs,18

which would require a tremendous amount of computational19

time and memory storage for whole-genome analysis.20

We therefore developed two approximations to greatly re-21

duce the time complexity of the full model. First, we forced the22

marker effects to affect the secondary traits through the K factors23

(although we do allow marker effects to independently control24

the focal trait). This reduces the number of marker effects to25

(K + 1)p. Second, we developed a two-stage approach to prune26

the candidate markers before subjecting the pruned markers to27

the MegaBayesC analysis. For our MegaBayesC analysis of the28

Arabidopsis dataset with n = 649, t = 20844, and p = 2804, it took29

around 3 hours to sample a MCMC chain of 10,000 iterations on30

a computer with 1 node and 20 CPU.31

While MegaBayesC, and MegaBayesianAlphabet more gener-32

ally, shows promise in its ability to integrate thousands of traits33

in genome-wide prediction and association, the trade-off be-34

tween the benefit of incorporating secondary traits and the com-35

putational cost brought from the increased model complexity36

must be considered. Based on our simulated study, MegaBayesC37

can effectively disentangle the genetic and non-genetic sources38

of covariation among observed traits. When there is an impor-39

tant environmental component in the variation of focal trait,40

and this environmental component is shared by many other41

highly correlated traits, we expect MegaBayesianAlphabet mod-42

els to provide a large benefit by providing a tool to effectively43

control for this environmental variation. However, when the44

secondary traits are not highly correlated with the focal trait,45

or the heritability of the focal trait is already sufficiently high,46

MegaBayesianAlphabet may prove less useful.47

In this paper, we have focused on two versions of48

MegaBayesianAlphabet: MegaBayesC with the BayesC prior49

on the marker effects, and MegaRRBLUP with a ridge prior on50

the marker effects. Implementing other mixture priors in the51

MegaLMM R package is relatively straightforward, and we antic-52

ipate that the BayesA, BayesB or BayesR priors may provide53

benefits in specific datasets.54

Appendix55

Gibbs Sampler Updates56

Sample F given all other parameters57

To sample F, we transpose Eq. 1:

YT = ΛTFT + MT
R + ET

R (4)

where MR = X1B1 + X2RB2R. Conditioning on B2F, B2R,
columns of FT and MT

R are uncorrelated and we can represent
Eq. 4 as a set of simple linear regressions:

(ỸT)i = Λ̃
T
(FT)i + (M̃T

R)i + (ẼT
R)i (5)

(FT)i ∼ N(µ(FT)i
, D f ) (6)

(ẼT
R)i ∼ N(0, D(ỸT)i

) (7)

where ·̃ denotes the removal of missing trait data from the cor- 58

responding entity. For example, (ỸT)i is the sub-vector of non- 59

missing traits in the ith row of Y. (FT)i denotes the ith row 60

of F, which follows a multivariate normal distribution with 61

mean µ(FT)i
= BT

2F(X
T
2F)i and (co)variance matrix D f = ΨFE. 62

D(ỸT)i
= Ψ̃RE. ΨFE and Ψ̃RE are diagonal matrices. 63

Let (ỸT
cor)i = (ỸT)i − (M̃T

R)i, we have

(ỸT
cor)i = Λ̃

T
(FT)i + (ẼT

R)i (8)

For simplicity, let (ỸT
cor)i = ycori , Λ̃

T
= ΛT , (FT)i = fi, 64

µ(FT)i
= µ fi

and D(ỸT)i
= DY . The full conditional posterior 65

distribution for (FT)i is derived as: 66

f (fi|ELSE) ∝ f (ycori |ΛT , fi, DY) f (fi|µ fi
, D f )

∝ exp{−1
2
(ycori −ΛTfi)

T(DY)
−1(ycori −ΛTfi)}

× exp{−1
2
(fi − µ fi

)T(D f )
−1(fi − µ fi

)}

∝ exp{−1
2
(fT

i (D
−1
f + ΛD−1

Y ΛT)fi − 2(yT
cori

D−1
Y ΛT + µT

fi
D−1

f )fi)}

∝ exp{−1
2
(fT

i Cfi − 2rTfi)}

∝ N(C−1r, C−1)

Therefore, (FT)i|ELSE ∼ N(µ, Σ) with

Σ =

[
D−1

f + Λ̃D−1
(ỸT)i

Λ̃
T
]−1

(9)

µ = Σ

[
Λ̃D−1

(ỸT)i
(ỸT

cor)i + D−1
f µ(FT)i

]
(10)

Sample parameters in Λ 67

Full conditional posterior distribution of Λ The prior for λj is 68

specified as follows: 69

λkj =

N(0, τ−1
k σ2

Rj
) probability (1− πk)

0 probability (πk)

 (11)

σ2
Rj
∼ iG(aσ, bσ) (12)

τk =
k

∏
h=1

δh (13)

δ1 = 1, δh ∼ Ga(aδ, bδ) h = 2...k (14)

This mixture prior for λj can be parameterized as: Dγj βλj
,

where Dγj = Diag(γλj
) with

γλj(k) =

1 probability (1− πΛk )

0 probability (πΛk )
(15)
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and βλj
∼ N(0, σ2

Rj
Dλ = σ2

Rj
Diag(τ−1

k )) for k = 1, 2, ... K.1

Conditional on F, Eq. 1 can be simplified into t independent
univariate linear mixed models for the columns of Y. For the jth
column of Y:

yj = X1b1j + FDγj βλj
+ X2Rb2Rj + eRj (16)

where eRj ∼ N(0, σ2
Rj

I).2

f (βλj
|ELSE) ∝ f (yj|b1j, F, Dγj , βλj

, b2Rj , σ2
Rj
) f (βλj

|Dλ, σ2
Rj
)

∝ exp{− 1
2σ2

Rj

(ε− FDγj βλj
)T(ε− FDγj βλj

)} × exp{− 1
2σ2

Rj

βT
λj

D−1
λ βλj

}

∝ exp{−1
2
[βT

λj
(

DT
γj

FTFDγj

σ2
Rj

+
D−1

λ

σ2
Rj

)βλj
− 2

εTFDγj

σ2
Rj

βλj
]}

∝ exp{−1
2
(βT

λj
Cβλj

− 2rT βλj
)}

∝ N(C−1r, C−1)

where ε = yj − X1b1j − X2Rb2Rj , C =
DT

γj
FT FDγj+D−1

λ

σ2
Rj

, and r =3

DT
γj

FT ε

σ2
Rj

.4

Besides the full conditional posterior distribution for the mul-5

tivariate βλj
as derived above, a univariate version for the ele-6

ments in βλj
is also derived as follows to prepare for the deriva-7

tion of γλkj
.8

f (βλkj
|ELSE) ∝ f (yj|b1j, F, Dγj , βλj

, b2Rj , σ2
Rj
) f (βλkj

|σ2
Rj

, τk)

∝ exp{− 1
2σ2

Rj

(ε−
K

∑
i=1

F·iγλij βλij )
T(ε−

K

∑
i=1

F·iγλij βλij )} × exp{−
τkβ2

λkj

2σ2
Rj

}

∝ exp{− 1
2σ2

Rj

(ε∗ − F·kγλkj
βλkj

)T(ε∗ − F·kγλkj
βλkj

)} × exp{−
τkβ2

λkj

2σ2
Rj

}

∝ exp{−1
2
[(

FT
·kF·kγλkj

σ2
Rj

+
τk

σ2
Rj

)β2
λkj
− 2

ε∗TF·kγλkj

σ2
Rj

βλkj
]}

∝ exp{−1
2
[Akjβ

2
λkj
− 2rβλkj

]}

∝ N(A−1
kj r, A−1

kj )

where ε∗ = yj − X1b1j − X2Rb2Rj − ∑K
i=1,i 6=k F·iγλij βλij , Akj =9

FT
·kF·kγλkj+τk

σ2
Rj

, and r =
ε∗T F·kγλkj

σ2
Rj

.10

Full conditional posterior distribution of γλkj
From the model11

specification, γ variables can take either 0 or 1. Let θ denote12

all other parameters except for βλkj
and γλkj

, the marginal full13

conditional distribution of γλkj
that integrates βλkj

is shown as:14

f (γλkj
|θ, y) =

f (γλkj
, θ, y)

∑γλkj
f (γλkj

, θ, y)
(17)

=
f (y|θ, γλkj

) f (θ) f (γλkj
|πΛk )

∑γλkj
f (y|θ, γλkj

) f (θ) f (γλkj
|πΛk )

(18)

=
f (y|θ, γλkj

) f (γλkj
|πΛk )

∑γλkj
f (y|θ, γλkj

) f (γλkj
|πΛk )

(19)

Since f (y|θ, γλkj
) =

∫
f (y, βλkj

|θ, γλkj
)dβλkj

, the derivation 15

for f (y|θ, γλkj
) is shown as follows. 16

f (y|θ, γλkj
) =

∫
f (y, βλkj

|θ, γλkj
)dβλkj

=
∫

f (y|βλkj
, θ, γλkj

) f (βλkj
|σ2

Rj
, τk)dβλkj

∝
∫

exp{−1
2
[(

FT
·kF·kγλkj

+ τk

σ2
Rj

)β2
λkj
− 2

ε∗TF·kγλkj

σ2
Rj

βλkj
]}dβλkj

× exp{−ε∗Tε∗

2σ2
Rj

}

∝
∫

exp{−1
2
[Akjβ

2
λkj
− 2rβλkj

+ r2 A−1
kj ]}dβλkj

× exp{−1
2
(

ε∗Tε∗

σ2
Rj

− r2 A−1
kj )}

∝ exp{−1
2
(

ε∗
T
ε∗

σ2
Rj

− r2 A−1
kj )}

where ε∗ = yj − X1b1j − X2Bb2Rj − ∑K
i=1,i 6=k F·iγλij βλij , Akj = 17

FT
·kF·kγλkj+τk

σ2
Rj

, and r =
ε∗

T
F·kγλkj

σ2
Rj

. 18

Given Eq. 19, we have

f (γλkj
= 0) =

f (y|θ, γλkj
= 0) f (γλkj

= 0|πΛk )

∑γλkj
f (y|θ, γλkj

) f (γλkj
|πΛk )

=
πΛk × exp{ 1

2 r2 A−1
kj }

∑γλkj
πΛk × exp{ 1

2 r2 A−1
kj }

=
πΛk

πΛk + (1− πΛk ) exp{ 1
2 (

ε∗T F·k
σ2

Rj

)2(
FT
·kF·k+τk

σ2
Rj

)−1}

Full conditional posterior distribution of δl In order to sample
τk, we need to firstly sample δl when K > 1. To derive the full
conditional posterior distribution of δl , vectorize Λ as λ. Then,
we have

λ =


λ1

· · ·

λt


Kt×1

∼ N(0, Σ =



τ−1
1 σ2

R1

. . .

τ−1
K σ2

R1

τ−1
1 σ2

Rt

. . .

τ−1
K σ2

Rt


Kt×Kt

)

Note that the determinant of a diagonal matrix is the product 19

of elements of its diagonal. 20
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f (δl |ELSE) ∝ f (λ|Σ) f (δl |aδ, bδ)

∝
K

∏
k=1

t

∏
j=1

[(τk)
−1×(−1/2) exp{−1

2

λ2
kj

τ−1
k σ2

Rj

} ]

× (δl)
aδ−1 exp{−bδδl}

∝ [
K

∏
k=l

t

∏
j=1

(δl)
1/2]× δaδ−1

l × exp{−1
2

K

∑
k=l

t

∑
j=1

λ2
kjτk

σ2
Rj

} exp{−bδδl}

∝ [
K

∏
k=l

t

∏
j=1

(δl)
1/2]× δaδ−1

l × exp{−bδδl}

× exp{−1
2

K

∑
k=l

t

∑
j=1

λ2
kj(∏

k
h=1,h 6=l δh)δl

σ2
Rj

}

∝ (δl)
t(K−l+1)

2 +aδ−1 exp{−bδδl}

× exp{−1
2
[

K

∑
k=l

(
k

∏
h=1,h 6=l

δh)
t

∑
j=1

λ2
kj

σ2
Rj

]δl}

∝ Ga(aδ +
t(K− l + 1)

2
, bδ +

1
2

K

∑
k=l

(
k

∏
h=1,h 6=l

δh)
t

∑
j=1

λ2
kj

σ2
Rj

)

Parallel Model Setting1

Given F and Λ, although the design matrices may differ for2

columns of Y and F, the form of both sets of conditional model3

can be similarly expressed as:4

y = X1α + X2Dγβ + e (20)

where

α ∼ N(0, ∞) (21)

β ∼ N(0, σ2
βI) (22)

Dγ = Diag(γ) (23)

γi =

1 probability (1− π)

0 probability (π)

 (24)

e ∼ N(0, σ2I) (25)

σ2 ∼ iG(a0, b0) (26)

σ2
β ∼ iG(aβ, bβ) (27)

Conditional on F and Λ, Eq. 1 can be simplified into t in-
dependent univariate linear mixed models for the columns of
Ycor = Y− FΛ:

ycorj = X1b1j + X2BβB2Rj
◦ γB2Rj

+ eRj (28)

where

b1j ∼ N(0, ∞I) (29)

βB2Rj
∼ N(0, σ2

B2Rj
I) (30)

γB2Rj(i)
=

1 probability (1− πj)

0 probability (πj)
(31)

eRj ∼ N(0, σ2
Rj

In) (32)

Besides the columns of Y, the columns of F (Eq. 2) can be
similarly expressed into K independent univariate linear mixed
models:

fk = X2FβB2Fk
◦ γB2Fk

+ eFk (33)

where

βB2Fk
∼ N(0, σ2

B2Fk
I) (34)

γB2Fk(i)
=

1 probability (1− πFk )

0 probability (πFk )
(35)

eFk ∼ N(0, σ2
Fk

In) (36)

(37)

Here, factor-specific and trait-specific prior on the marker
exclusion probability (πFk and πj) and the variance of marker
effects (σ2

B2Fk
and σ2

B2Rj
) are used for each latent factor and ob-

served trait. We can see that the columns of Y and F can be gen-
erally expressed by Eq. 20. That is, for columns of YYY, y = ycorj ,
α = b1j , Dγ = Diag(γB2Rj

), β = βB2Rj
, e = eRj , σ2 = σ2

Rj
,

σ2
β = σ2

B2Rj
. Similarly, for columns of F, y = fk, α is empty,

Dγ = Diag(γB2Fk
), β = βB2Fk

, e = eFk , σ2 = σ2
Fk

, σ2
β = σ2

B2Fk
.

Furthermore, we defined the following term based on the nota-
tion in Eq. 20:

Vβ = X2DγXT
2 σ2

β + σ2I

Full conditional posterior distribution of α The conditional pos- 5

terior distribution for α(i.e., b1j) is derived as (integrating out 6

β): 7

f (α|·) ∝ f (y|α, Vβ)

∝ exp{−1
2
(y− X1α)TV−1

β (y− X1α)}

∝ exp{−1
2
(αTXT

1 V−1
β X1α− 2yTV−1

β X1α)}

∝ exp{−1
2
(αTAαα− 2rTα)}

∝ N(A−1
α r, A−1

α )

where Aα = XT
1 V−1

β X1 , r = XT
1 V−1

β y. The dimension of Aα 8

is a(b1)× a(b1), and the dimension of Vβ is n× n. 9

Full conditional posterior distribution of σ2 The conditional
posterior distribution for σ2(i.e., σ2

Rj
and σ2

Fk
) is derived as:

f (σ2|·) ∝ f (y|α, Dγ, β, σ2) f (σ2|a0, b0)

∝ (σ2)−
n
2 exp{− 1

2σ2 (y− X1α− X2Dγβ)T(y− X1α− X2Dγβ)}

× (σ2)−a0−1 exp{− b0

σ2 }

∝ (σ2)−(
n
2 +a0)−1 exp{−εTε/2

σ2 } exp{− b0

σ2 }

∝ iG(
n
2
+ a0,

εTε

2
+ b0)

where ε = y− X1α− X2Dγβ. 10
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Full conditional posterior distribution of β The conditional pos-1

terior distribution for β is derived as:2

f (β|·) ∝ f (y|α, Dγ, β, σ2) f (β|σ2
β)

∝ exp{− 1
2σ2 (y− X1α− X2Dγβ)T(y− X1α− X2Dγβ)}

× exp{− 1
2σ2

β

βT β}

∝ exp{− 1
2σ2 (ε− X2Dγβ)T(ε− X2Dγβ)} × exp{− 1

2σ2
β

βT β}

∝ exp{−1
2
(βT(

DT
γXT

2 X2Dγ

σ2 +
1

σ2
β

I)β− 2
εTX2Dγ

σ2 β)}

∝ exp{−1
2
(βTAββ− 2rT β)}

∝ N(A−1
β r, A−1

β )

where Aβ =
DT

γ XT
2 X2Dγ

σ2 + 1
σ2

β

I, r =
DT

γ XT
2 ε

σ2 . The dimension3

of Aβ is b × b. For columns of Y, b = b2R, ε = ycorj − X1b1j .4

For columns of F, b = b2F, ε = fk. Besides the full conditional5

posterior distribution of the multivariate β as derived above,6

a univariate version for the elements βl in β is also written as7

follows.8

f (βl |·) ∝ f (y|α, Dγ, β, σ2) f (βl |σ2
β)

∝ exp{− 1
2σ2 (y− X1α−

b

∑
i=1

X2·iγiβi)
T(y− X1α−

b

∑
i=1

X2·iγiβi)}

× exp{−
β2

l
2σ2

β

}

∝ exp{− 1
2σ2 (ε− X2·lγl βl)

T(ε− X2·lγl βl)} exp{−
β2

l
2σ2

β

}

∝ exp{−1
2
[(

X2
T
·l X2·lγl

σ2 +
1

σ2
β

)β2
l − 2

εTX2·lγl
σ2 βl ]}

∝ exp{−1
2
(Aββ2

l − 2rβl)}

∝ N(A−1
β r, A−1

β )

where ε = y− X1α− ∑b
i=1,i 6=l X2·iγiβi, Aβ =

X2
T
·l X2 ·l γl

σ2 + 1
σ2

β

,9

r = εT X2 ·l γl
σ2 .10

Full conditional posterior distribution of γl Let θ denote all11

other parameters except for βl and γl , the marginal full con-12

ditional distribution of γl that integrates out βl is shown as:13

f (γl |θ, y) =
f (γl , θ, y)

∑γl
f (γl , θ, y)

(38)

=
f (y|θ, γl) f (θ) f (γl |π)

∑γl
f (y|θ, γl) f (θ) f (γl |π)

(39)

=
f (y|θ, γl) f (γl |π)

∑γl
f (y|θ, γl) f (γl |π)

(40)

Since f (y|θ, γl) =
∫

f (y, βl |θ, γl)dβl , the derivation for14

f (y|θ, γl) is shown as follows.15

f (y|θ, γl) =
∫

f (y, βl |θ, γl)dβl

=
∫

f (y|βl , θ, γl) f (βl |σ2
β)dβl

∝
∫

exp{− 1
2σ2 (ε− X2·lγl βl)

T(ε− X2·lγl βl)} exp{−
β2

l
2σ2

β

}dβl

∝
∫

exp{−1
2
[(

X2
T
·l X2·lγl

σ2 +
1

σ2
β

)β2
l − 2

εTX2·lγl
σ2 βl ]}dβl

× exp{− 1
2σ2 εTε}

∝
∫

exp{−1
2
(Aββ2

l − 2rβl + r2 A−1
β )}dβl

× exp{−1
2
(εTε/σ2 − r2 A−1

β )}

∝ exp{−1
2
(εTε/σ2 − r2 A−1

β )}

where ε = y − X1α − ∑b
i=1,i 6=l X2·iγiβi, Aβ =

X2
T
·l X2 ·l γl

σ2 + 1
σ2

β

, 16

r = εT X2 ·l γl
σ2 . 17

Given Eq. 40, we have

f (γl = 0) =
π × exp{ 1

2 r2 A−1
β }

∑γl
πγl × exp{ 1

2 r2 A−1
β }

=
π

π + (1− π) exp{ 1
2 (

εT X2 ·l
σ2 )2(

X2
T
·l X2 ·l
σ2 + 1

σ2
β

)−1}

f (γl = 1) =
(1− π)× exp{ 1

2 r2 A−1
β }

∑γl
πγl × exp{ 1

2 r2 A−1
β }

=
(1− π)× exp{ 1

2 (
εT X2 ·l

σ2 )2(
X2

T
·l X2 ·l
σ2 + 1

σ2
β

)−1}

π + (1− π) exp{ 1
2 (

εT X2 ·l
σ2 )2(

X2
T
·l X2 ·l
σ2 + 1

σ2
β

)−1}

Full conditional posterior distribution of σ2
β

f (σ2
β) ∝ f (β|σ2

β) f (σ2
β|aβ, bβ)

∝ (σ2
β)
− b

2 exp{− 1
2σ2

β

βT β} × (σ2
β)
−aβ−1 exp{−

bβ

σ2
β

}

∝ (σ2
β)
− b

2−aβ−1 exp{− 1
σ2

β

(
βT β

2
+ bβ)}

∝ iG(
b
2
+ aβ,

βT β

2
+ bβ)

Specification of parameters for the real data analysis per- 18

formed in the paper 19

Model (Analysis) K Chain Length Burn-in

MegaBayesC (GP) 100 10K 2K

MegaGBLUP (GP) 100 10K 2K

MegaRRBLUP (GP) 100 10K 2K

MegaBayesC (GWAS) 100 80K 20K

20
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Supplementary Plots1

Figure 9 RMSE of estimated marker effects under two scenar-
ios for the total 36 different simulation settings. The perfor-
mance of single-trait BayesC and MegaBayesC were compared.
The performance of models for the simulation setting with
ntrait = 2 and 20 are presented at the first and second row, re-
spectively. The performance of models for the simulation set-
ting with n f actor = 2, 6, 9 are presented at the first, second, and
third column, respectively.
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