Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Meta-analysis of transcriptomes in insects showing density-dependent polyphenism

View ORCID ProfileKouhei Toga, View ORCID ProfileHidemasa Bono
doi: https://doi.org/10.1101/2022.05.09.490177
Kouhei Toga
1Laboratory of BioDX, PtBio Co-Creation Research Center, Genome Editing Innovation Center, Hiroshima University, 3-10-23 Kagamiyama, Higashi-Hiroshima city, Hiroshima, 739-0046, Japan
2Laboratory of Genome Informatics, Graduate School of Integrated Sciences for Life, Hiroshima University, 3-10-23 Kagamiyama, Higashi-Hiroshima city, Hiroshima, 739-0046, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Kouhei Toga
Hidemasa Bono
1Laboratory of BioDX, PtBio Co-Creation Research Center, Genome Editing Innovation Center, Hiroshima University, 3-10-23 Kagamiyama, Higashi-Hiroshima city, Hiroshima, 739-0046, Japan
2Laboratory of Genome Informatics, Graduate School of Integrated Sciences for Life, Hiroshima University, 3-10-23 Kagamiyama, Higashi-Hiroshima city, Hiroshima, 739-0046, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Hidemasa Bono
  • For correspondence: bonohu@hiroshima-u.ac.jp
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Data/Code
  • Preview PDF
Loading

Abstract

With increasing public data, a statistical analysis approach called meta-analysis, which combines transcriptome results obtained from multiple studies, has succeeded in providing novel insights into targeted biological processes. Locusts and aphids are representative of insect groups that exhibit density-dependent plasticity. Although the physiological mechanisms underlying density-dependent polyphenism have been identified in aphids and locusts, the underlying molecular mechanisms remain largely unknown. In this study, we performed a meta-analysis of public transcriptomes to gain additional insights into the molecular underpinning of densitydependent plasticity. We collected RNA sequencing data of aphids and locusts from public databases and detected differentially expressed genes (DEGs) between crowded and isolated conditions. Gene set enrichment analysis was performed to reveal the characteristics of the DEGs. DNA replication (GO:0006260), DNA metabolic processes (GO:0006259), and mitotic cell cycle (GO:0000278) were enriched in response to crowded conditions. To date, these processes have scarcely been the focus of research. The importance of the oxidative stress response and neurological system modifications under isolated conditions has been highlighted. These biological processes, clarified by meta-analysis, are thought to play key roles in the regulation of density-dependent plasticity.

Simple Summary Population density can be an environmental cue to induce modification of insect morphology, physiology, and behavior. This phenomenon is called density-dependent plasticity. Aphids and locusts exhibit textbook examples of density-dependent plasticity but there is a lack of integrative understanding for insect density-dependent plasticity. To address this problem, we combined public gene expression data obtained from multiple studies and re-analyzed them (this process is called meta-analysis). The present study provides additional insight into the regulatory mechanisms of density-dependent plasticity, demonstrating the effectiveness of metaanalyses of public transcriptomes.

Competing Interest Statement

The authors have declared no competing interest.

Footnotes

  • tog-chemi{at}hiroshima-u.ac.jp

  • https://doi.org/10.6084/m9.figshare.19689244.v1

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license.
Back to top
PreviousNext
Posted May 10, 2022.
Download PDF
Data/Code
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Meta-analysis of transcriptomes in insects showing density-dependent polyphenism
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Meta-analysis of transcriptomes in insects showing density-dependent polyphenism
Kouhei Toga, Hidemasa Bono
bioRxiv 2022.05.09.490177; doi: https://doi.org/10.1101/2022.05.09.490177
Digg logo Reddit logo Twitter logo Facebook logo Google logo LinkedIn logo Mendeley logo
Citation Tools
Meta-analysis of transcriptomes in insects showing density-dependent polyphenism
Kouhei Toga, Hidemasa Bono
bioRxiv 2022.05.09.490177; doi: https://doi.org/10.1101/2022.05.09.490177

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Subject Areas
All Articles
  • Animal Behavior and Cognition (3586)
  • Biochemistry (7545)
  • Bioengineering (5495)
  • Bioinformatics (20732)
  • Biophysics (10294)
  • Cancer Biology (7951)
  • Cell Biology (11610)
  • Clinical Trials (138)
  • Developmental Biology (6586)
  • Ecology (10168)
  • Epidemiology (2065)
  • Evolutionary Biology (13578)
  • Genetics (9520)
  • Genomics (12817)
  • Immunology (7906)
  • Microbiology (19503)
  • Molecular Biology (7641)
  • Neuroscience (41982)
  • Paleontology (307)
  • Pathology (1254)
  • Pharmacology and Toxicology (2192)
  • Physiology (3259)
  • Plant Biology (7018)
  • Scientific Communication and Education (1293)
  • Synthetic Biology (1947)
  • Systems Biology (5418)
  • Zoology (1113)