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Abstract20

Understanding whole-brain-scale electrophysiological recordings will rely on the collective work21

of multiple labs. Because two labs recording from the same brain area often reach different22

conclusions, it is critical to quantify and control for features that decrease reproducibility. To23

address these issues, we formed a multi-lab collaboration using a shared, open-source24

behavioral task and experimental apparatus. We repeatedly inserted Neuropixels multi-electrode25

probes targeting the same brain locations (including posterior parietal cortex, hippocampus, and26

thalamus) in mice performing the behavioral task. We gathered data across 9 labs and developed27

a common histological and data processing pipeline to analyze the resulting large datasets. After28

applying stringent behavioral, histological, and electrophysiological quality-control criteria, we29

found that neuronal yield, firing rates, spike amplitudes, and task-modulated neuronal activity30

were reproducible across laboratories. To quantify variance in neural activity explained by task31

variables (e.g., stimulus onset time), behavioral variables (timing of licks/paw movements), and32

other variables (e.g., spatial location in the brain or the lab ID), we developed a multi-task neural33

network encoding model that extends common, simpler regression approaches by allowing34

nonlinear interactions between variables. We found that within-lab random effects captured by35

this model were comparable to between-lab random effects. Taken together, these results36

demonstrate that across-lab standardization of electrophysiological procedures can lead to37

reproducible results across labs. Moreover, our protocols to achieve reproducibility, along with38

our analyses to evaluate it are openly accessible to the scientific community, along with our39

extensive electrophysiological dataset with corresponding behavior and open-source analysis40

code.41
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42

Introduction43

Reproducibility is a cornerstone of the scientific method: a given sequence of experimental meth-44

ods should lead to comparable results if applied in different laboratories. In some areas of bi-45

ological and psychological science, however, the reliable generation of reproducible results is a46

well-known challenge (Baker, 2016; Voelkl et al., 2020; Li et al., 2021; Errington et al., 2021). In47

systems neuroscience at the level of single-cell-resolution recordings, evaluating reproducibility48

is difficult: experimental methods are sufficiently complex that replicating experiments is techni-49

cally challenging, and many experimenters feel little incentive to do such experiments since nega-50

tive results can be difficult to publish. Variability in experimental outcomes has nonetheless been51

well-documented on a number of occasions. These include the existence and nature of “preplay"52

(Dragoi and Tonegawa, 2011; Silva et al., 2015; Ólafsdóttir et al., 2015; Grosmark and Buzsáki,53

2016; Liu et al., 2019), the persistence of place fields in the absence of visual inputs (Hafting et al.,54

2005; Barry et al., 2012; Chen et al., 2016;Waaga et al., 2022), and the existence of spike-timing de-55

pendent plasticity (STDP) in nematodes (Zhang et al., 1998; Tsui et al., 2010). In the latter example,56

variability in experimental results arose fromwhether the nematode being studied was pigmented57

or albino, an experimental feature that was not originally known to be relevant to STDP. This high-58

lights that understanding the source of experimental variability can facilitate efforts to improve59

reproducibility.60

For electrophysiological recordings, several efforts are currently underway to document this61

variability and reduce it through standardization of methods (de Vries et al., 2020; Siegle et al.,62

2021). These efforts are promising, in that they suggest that when approaches are standardized63

and results undergo quality control, observations conducted within a single organization can be64

reassuringly reproducible. However, this leaves unanswered whether observations made in sepa-65

rate, individual laboratories are reproducible when they likewise use standardization and quality66

control. Answering this question is critical since most neuroscience data is collected within small,67

individual laboratories rather than large-scale organizations.68

We have previously addressed the issue of reproducibility in the context of mouse psychophys-69

ical behavior, by training 140mice in 7 laboratories and comparing their learning rates, speed, and70

accuracy in a simple binary visually-driven decision task. We demonstrated that standardized pro-71

tocols can lead to highly reproducible behavior (The International Brain Laboratory et al., 2021).72

Here, we build on those results by measuring within- and across-lab variability in the context of73

intra-cerebral electrophysiological recordings. We repeatedly insertedNeuropixelsmulti-electrode74

probes (Jun et al., 2017) targeting the same brain regions (including posterior parietal cortex, hip-75

pocampus, and thalamus) in mice performing the behavioral task from (The International Brain76

Laboratory et al., 2021). We gathered data across 9 different labs and developed a common histo-77

logical and data processing pipeline to analyze the resulting large datasets.78

After applying stringent behavioral, histological, and electrophysiological quality-control crite-79

ria, features such as neuronal yield, firing rate, andnormalized LFPpowerwere reproducible across80

laboratories; their within-lab averages did not significantly deviate from themean across labs. Sim-81

ilarly, the proportions of cells modulated by task events was largely reproducible across labs, as82

was the Fano Factor, a measure of neural variability. Finally, to quantify variance in neural activ-83

ity explained by task variables (e.g., stimulus onset time), behavioral variables (timing of licks/paw84

movements), and other variables (e.g., spatial location in the brain or the lab ID), we developed a85

multi-task neural network encoding model that extends common, simpler regression approaches86

by allowing nonlinear interactions between variables. Again, we found that within-lab random ef-87

fects captured by this model were comparable to between-lab random effects. Taken together,88

these results suggest that across-lab standardization of electrophysiological procedures can lead89

to reproducible results across laboratories.90

2 of 34

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 9, 2022. ; https://doi.org/10.1101/2022.05.09.491042doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.09.491042


Results91

Repeated-site recordings in the same task across multiple labs92

To quantify reproducibility across electrophysiological recordings, we set out to establish standard-93

ized procedures across the International Brain Laboratory (IBL) and to test whether this standard-94

ization was successful. Nine IBL labs collected Neuropixels recordings from one repeated site,95

targeting the same stereotaxic coordinates, during a standardized decision-making task in which96

head-fixed mice reported the perceived position of a visual grating (The International Brain Lab-97

oratory et al., 2021). The experimental pipeline was standardized across labs, including surgical98

methods, behavioral training, recording procedures, histology, and data processing (Figure 1a, b);99

see Methods for full details. In each experiment, Neuropixels 1.0 probes were inserted, targeted100

at −2.0 mm AP, −2.24 mm ML, 4.0 mm DV relative to bregma; 15° angle (Figure 1c). This site was101

selected because it encompasses brain regions implicated in visual decision-making, including vi-102

sual area A (Najafi et al., 2020; Harvey et al., 2012), dentate gyrus, CA1, (Turk-Browne, 2019), and103

thalamic nuclei LP and PO (Saalmann and Kastner, 2011; Roth et al., 2016).104

Probe placement contributes to experimental variability105

As a first test of experimental reproducibility, we assessed variability in Neuropixels probe place-106

ment around the planned repeated site location. Brains were perfusion-fixed, dissected, and im-107

aged using serial section 2-photon microscopy for 3D reconstruction of probes (Figure 2a). Whole108

brain auto-fluorescence datawas aligned to the Allen CommonCoordinate Framework (CCF) (Wang109

et al., 2020) using an elastix-based pipeline (Klein et al., 2010) adapted for mouse brain registra-110

tion (West, 2021). CM-DiI labelled probe tracks weremanually traced in the 3D volume. Trajectories111

obtained from our stereotaxic system and traced histology were then compared to the planned112

trajectory (Figure 2a,b, Figure 2b; supp. 1). To measure probe track variability, traced probe tracks113

were linearly interpolated (Figure 2c).114

Variability in brain insertions can be assessed by probe placement at the brain surface, and by115

probe angle. Probe placement at the brain surface comprises two components. The first, ’target-116

ing variability,’ was obtained by calculating the difference between the planned and actual probe117

placement, measured with the micro-manipulator at the time of recording (Figure 2d). Targeting118

variability is expected to be non-zero because experimenters sometimesmove probes slightly from119

the planned location to avoid blood vessels or irregularities (Figure 2d, top, total mean displace-120

ment = 115 µm, exclusion criteria passedmean displacement = 72µm). Reproducibility of targeting121

variability across labs was evaluated via a permutation test: values were shuffled between the lab122

identities 10,000 times, and the original targeting variability mean per lab distribution was com-123

pared to all permuted distributions to compute a p-value. Targeting variability shows no signifi-124

cant effect across laboratories across all probes (Figure 2d, bottom), permutation test p-value for125

all probes p=0.2118). When applying our exclusion criteria, including the anatomical requirement126

that the probe must record from three of our five repeated site brain regions, the computed p-127

value increased (Figure 2d, bottom), permutation test p-value for exclusion criteria passed probes128

p=0.2295), indicating the data are more likely from the same distribution. Thus, targeting repro-129

ducibility is enhanced with appropriate anatomical exclusion criteria.130

The second component of probe placement variability in brain insertions is ’geometrical vari-131

ability.’ Geometrical variability was obtained by calculating the difference between our planned132

position and the final identified probe position obtained from the reconstructed histology. This133

encompasses the targeting variance above, plus anatomical differences and errors in defining134

the stereotaxic coordinate system, including residual errors from a mismatch in skull landmarks135

and underlying brain structure. Geometrical variability was likewise non-zero (Figure 2e, top, total136

mean displacement = 392 µm, exclusion criteria passed mean displacement = 253 µm) with some137

individual insertion locations up to 1500 µm from the planned coordinate. Assessing geometrical138

variability for all probes with permutation testing revealed no significant effect across laboratories139
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Figure 1. Standardized experimental pipeline and apparatus; location of the repeated site. a, Thepipeline for electrophysiology experiments. b, Drawing of the experimental apparatus. c, Location and brainregions of the repeated site. VISa: Visual Area A; CA1: Hippocampal Field CA1; DG: Dentate Gyrus; LP: LateralPosterior nucleus of the thalamus; PO: Posterior Nucleus of the Thalamus. d, Acquired repeated sitetrajectories shown within a 3D brain schematic. e, Raster plot from one example session.
Figure 1–Figure supplement 1. Detailed experimental pipeline for the Neuropixels experiment.
Figure 1–Figure supplement 2. Spiking activity qualitatively appears heterogeneous across recordings.

(Figure 2e, bottom, permutation test p-value for all probes p=0.1974), which produced a higher140

p-value after the application of our exclusion criteria (Figure 2e, bottom, permutation test p-value141

for exclusion criteria passed probes p=0.0.5499). This demonstrates that after histology recon-142

struction, the reproducibility of probe placement is enhanced across labs for the brain insertion143

coordinate with the application of anatomical exclusion criteria.144

The final way to assess variability in brain insertions is via ’angle variability,’ also calculated from145

the histological reconstructions. We observed a consistent mean displacement from the planned146
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angle in both medio-lateral (ML) and anterior-posterior (AP) angles (mean difference in angle from147

planned: 7 degrees, Figure 2f, top). AP angle differences can be explained by the different ori-148

entation of the CCF and the stereotaxic coordinate system; ML differences may result from the149

histological asmples being compressed in the DV direction compared to the CCF. The difference150

in histology angle to planned probe placement was assessed with permutation testing across labs,151

and shows a significant difference with our exclusion criteria applied (Figure 2f, bottom, permu-152

tation test p-value for all probes p=0.1993; permutation test p-value for exclusion criteria passed153

probes p=0.0491). This significant result can be explained by the repeated use of the same rig154

and micromanipulator angle within each laboratory, resulting in reduced variability in probe angle155

within labs versus across labs.156

To determine the extent that anatomical differences drive geometrical variability, we used the157

micro-manipulator to histology distance at the brain surface and regressed this measurement158

against animal weight. This easily measured parameter should correlate with mouse brain size159

and provide a quantifiable predictor of anatomical differences. No such correlation was identified160

(R2 < 0.01), indicating differences between CCF and mouse brain sizes are not the major cause of161

variance. We therefore surmise that geometrical variance in probe placement at the brain surface162

is driven by inaccuracies in defining the stereotaxic coordinate system, including discrepancies163

between skull landmarks and the underlying brain structures.164

In conclusion, targeting, geometrical and angle variability revealed lab-to-lab differences that165

can hinder reproducibility. To control this variability we applied a “targeting" exclusion criterion,166

which discarded insertions from further analysis when they failed to include sites from at least 3167

of the 5 selected areas. This exclusion criterion improved the reproducibility of probe placement168

at the brain surface, and was used in all subsequent analyses. Probe angle reproducibility was not169

improvedwith the exclusion criterion, and this appears to be driven by variance between recording170

rigs repeatedly used for probe placement within labs. We were unable to identify a prescriptive171

analysis to predict probe placement accuracy, which may reflect that the major driver of probe172

placement variance derives from differences in skull landmarks used for establishing the coordi-173

nate system, and the underlying brain structures.174
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Figure 2. Probe placement shows variance that is reduced with exclusion criteria. a, The histology pipeline for electrode probe trackreconstruction and its assessment, consisting of serial section 2-photon microscopy, and manual probe tracing. Three separate trajectories canbe defined per probe: the planned trajectory; the micro-manipulator trajectory, based on the experimenter’s stereotaxic coordinates; and thehistology trajectory, interpolated from tracks traced in the histology data. b, Examples of tilted slices through the histology reconstructionsshowing the repeated site probe track. Plots show the green auto-fluorescence data used for CCF registration; and red cm-DiI signal, used tomark the probe track. White dots show the projections of channel positions onto each tilted slice. Scale bar: 1mm. c, Histology probetrajectories are interpolated from traced probe tracks and plotted as 2D projections in coronal and sagittal planes, tilted along the repeated sitetrajectory over the allen CCF, color coded by laboratory. Scale bar: 1mm. d, Targeting variability of probe placement on the brain surface:scatterplot showing the planned insertion coordinate on the brain surface in ML-AP dimensions, with the position of each subjects’ insertionplotted according to the experimenter’s stereotaxic coordinates of the probe, color coded by laboratory. Below, boxplots of the distances fromplanned to stereotaxic coordinates grouped by exclusion criteria, and dotplots by laboratory of stereotaxic-to-planned distances, colour codedby passing our exclusion criteria. e, Geometrical variability of probe placement on the brain surface: scatterplot of the planned insertioncoordinate on the brain surface in ML-AP dimensions, with the position of each subjects’ insertion plotted according to the histology-derivedcoordinates of the probe, color coded by laboratory. Below, boxplots of the distances from planned to histology coordinates grouped byexclusion criteria, and dotplots by laboratory of histology-to-planned distances, colour coded by passing our exclusion criteria. f, Anglevariability of probe insertion angle: scatterplot showing the magnitude and direction of the probe angle in ML-AP dimensions, derived fromhistological reconstructions. Below, boxplots of the relative angles from histology to planned trajectories grouped by exclusion criteria, anddotplots by laboratory of histology-to-planned angle, colour coded by passing our exclusion criteria.
Figure 2–Figure supplement 1. Tilted slices along the histology insertion for all insertions from all labs used in assessing probe placement.
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Criterion Definition
Targeting criterion At least 4 electrode channels in at least 3 of the 5 target

brain regions
Behavior criterion Mouse completed at least 400 trials
Yield criterion At least 0.1 neurons (that pass single unit criteria*) per

electrode channel in each region
Noise criterion Median action-potential band RMS (AP RMS) less than

40 uV and Median LFP power less than -140 dB
Session number criterion For analyses that directly compared between labs (per-

mutation tests: Fig 3d-f, Fig 4c, Fig 6), only labs with at
least 3 passing sessions per brain regionwere included.

*Single unit metrics Each neuron was defined as passing single unit QC
if it passed three metrics: a refractory period viola-
tion metric, a noise cutoff metric, and a median ampli-
tude threshold. Described further in (The International
Brain Laboratory et al., 2022a).

Table 1. Quality control criteria for sessions and neurons

Electrophysiological features are reproducible across laboratories175

In addition to the "targeting" exclusion criterion, we implemented four other exclusion criteria176

(see Table 1). We recorded a total of 74 sessions targeted at our planned repeated site (Figure 3a).177

Of these, 13 were excluded due to unsuccessful data acquisition that could occur from session178

interruptions (e.g. power outage). Three recordings did not pass our targeting criterion (at least 5179

electrode channels in at least 3 of the target brain regions). Six did not pass our behavior criterion180

(at least 400 trials completed). Nine did not pass our criteria for low yield recordings. Finally, three181

recordings did not pass our criterion for noise or other electrical artifacts. In subsequent figures,182

only recordings that passed these quality control criteria were included. In analyses that directly183

compared across labs (permutation tests; Fig 3d-f, 4c, 5d, 6), only labs which performed three184

or more successful sessions were included. Furthermore, single units had to pass three quality185

control metrics to be included in single unit analyses (The International Brain Laboratory et al.,186

2022a)). When plotting all recordings, including those that failed to meet quality control criteria,187

one can observe that discarded sessions were often clear outliers (Figure 3b-c, supp. 1). Overall,188

we analyzed data recorded from the 40 remaining sessions recorded in 9 labs to determine the189

reproducibility of our electrophysiological recordings.190

191
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We set out to answer the question whether electrophysiological features, such as firing rates192

and LFP power, were reproducible across laboratories. In other words, is there consistent varia-193

tion across laboratories in these features that is larger than expected by chance? We first visualized194

LFP power, a feature used by experimenters to guide the alignment of the probe position to brain195

regions, for all the repeated site recordings (Figure 3b). The dentate gyrus (DG) is characterized196

by high power spectral density of the LFP (Penttonen et al., 1997; Bragin et al., 1995; Senzai and197

Buzsáki, 2017) and this feature was used to guide physiology-to-histology alignment of probe po-198

sitions (Figure 3 supplementary 2). By plotting the LFP power of all recordings along the length of199

the probe side-by-side, aligned to the boundary between the DG and thalamus, we confirmed that200

this band of elevated LFP power was clearly visible in all recordings at the same depth. The probe201

alignment allowed us to attribute the channels of each probe to their corresponding brain regions202

to investigate the reproducibility of electrophysiological features for each of the target regions of203

the repeated site. To visualize all the neuronal data, each neuron was plotted at the depth it was204

recorded overlaid with the position of the target brain region locations (Figure 3b).205

The reproducibility of electrophysiological features over laboratories was investigated using206

permutation testing. The tested features included neuronal yield, firing rate, spike amplitude, LFP207

power, and action-potential band RMS (AP RMS). For each feature and each brain region, thewithin-208

lab and across-labmeanswere calculated (example in Figure 3c). If the electrophysiological feature209

is reproducible across laboratories, there should be a small deviation between the mean over an-210

imals within a lab and the mean over all the lab means. To investigate whether the deviation was211

significantly larger than expected by chance, we performed permutation testing in which the lab212

labels were shuffled and a p-value was calculated by comparing the actual deviation from the shuf-213

fled null-distribution. Because a test is performed per region-metric pair, the p-values were cor-214

rected for multiple testing using the Benjamini-Hochberg procedure (Seabold and Perktold, 2010;215

Benjamini and Hochberg, 1995). We found that all electrophysiological features were reproducible216

across laboratories for all regions studied.217
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Figure 3. Electrophysiological features are reproducible across laboratories. a, Number of experimental sessions recorded; number ofsessions used in analysis due to exclusion criteria. b, Power spectral density between 20 and 80 Hz of each channel of each probe insertion(vertical columns) shows reproducible alignment of electrophysiological features to histology. Insertions are aligned to the boundary betweenthe dentate gyrus and the thalamus. c, Firing rates of individual neurons according to the depth at which they were recorded. Colored blocksindicate the target brain regions of the repeated site; if no block is plotted the neurons are in a region that is not one of the targets. Dots areneurons, colors indicate firing rate, displacement along the x-axis indicates spike amplitude. d,e, Examples of permutation testing to determinewhether the deviation of lab means (short black lines) from the mean across labs (red line) was larger than expected by chance. For each region,only laboratories that had three or more recordings in that region were included in the permutation testing. Here the median spike amplitude inCA1 and median firing rate in LP is plotted per lab. A p-value was determined by shuffling the lab labels 10,000 times. CSHL: Cold Spring HarborLaboratory [(C): Churchland lab, (Z): Zador lab], NYU: New York University, SWC: Sainsbury Wellcome Centre, UCL: University College London,UCLA: University of California, Los Angeles.f, P-values for five electrophysiological metrics, computed separately for all target regions. P-valuesare plotted on a log-scale to visually emphasize values close to significance.
Figure 3–Figure supplement 1. Electrophysiological features of all recordings, including recordings that failed quality criteria.
Figure 3–Figure supplement 2. High LFP power in dentate gyrus was used to align probe locations in the brain.

9 of 34

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 9, 2022. ; https://doi.org/10.1101/2022.05.09.491042doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.09.491042


Task-driven activity of brain regions is reproducible across laboratories218

Concerns about reproducibility include not only basic electrophysiological properties, but also219

modulation of firing rates by task variables. To address this, we analysed the reproducibility of220

the relationship between neural activity and task variables across laboratories. In particular, we221

were interested in whether the brain regions targeted here have comparable neural responses222

to task events, such as stimulus onset, movement onset, and reward delivery. An inspection of223

individual neurons revealed clear modulation by, for instance, the onset of movement (Fig. 4a).224

When considering all neurons within a single region of a given session however, it becomes clear225

that, while a number of neurons are modulated, there is also a proportion of neurons that do226

not change their firing in relation to task events (Fig. 4b) (Urai et al., 2022). Plotting the session-227

averaged response for each experiment in a given area reveals that despite variability, many key228

features are reproduced, such as the general response time course and timing (Fig. 4c; also Fig.229

6d).230

Having observed that many individual neurons are modulated during the task, we then wanted231

to compare how the proportion of modulated neurons differed across labs. This is especially im-232

portant, as we are often interested in determining which regions are involved in the neural compu-233

tations underlying task performance. Therefore, within each brain region, we compared the pro-234

portion of the neural population that was sensitive to specific elements of the task. UsingWilcoxon235

sign-rank tests and Wilcoxon rank-sum tests (Steinmetz et al., 2019), we used seven tests to iden-236

tify neurons with significantly modulated firing rates during specific time-periods of the task. The237

general logic of these tests is displayed in Fig. 5b and Fig. 5-supplemental 1. The neurons that238

were found by these tests showed a clear modulation to the tested events, as expected (Fig. 5a-b).239

For most tests, the proportions of modulated neurons across sessions and across brain regions240

were quite variable (Fig. 5c and Fig. 5-supplemental 1). However, when applying a permutation241

test as used in our previous analyses, we found no significant differences across labs regarding242

the proportion of task-modulated units (Fig. 5d). We can therefore conclude that task-modulated243

activity is reproducible across labs.244

To further investigate neuronal task-modulation, we also measured the Fano Factor of single245

units. The Fano Factor is a useful measurement of firing rate variability and is defined as the spike246

count variance over trials divided by spike count mean. The Fano Factor enables the comparison247

of the fidelity of signals across neurons and regions, despite differences in firing rates (Tolhurst248

et al., 1983). Further, the temporal dynamics of the Fano Factor can be informative about under-249

lying neural computations (Churchland et al., 2010, 2011). We calculated the Fano Factor using a250

sliding window over each trial. In most brain regions, the Fano Factor, averaged over all neurons,251

decreased around the time of movement onset (Fig. 7-supplemental 4, left column). Based on the252

Fano Factor time course, we selected the period between 40-200ms aftermovement onset (for cor-253

rect trials with full-contrast stimuli on the right side) to calculate an average Fano Factor per neuron254

and quantify differences in Fano Factor across labs. While Fano Factor values varied between neu-255

rons and across sessions, we found no difference across labs after applying a permutation test256

(Fig. 5d). This argues that the decrease in neural variability around the time of movements is re-257

producible and is present not only in cortical structures, as previously reported (Churchland et al.,258

2010), but is also reliably present in the hippocampus and thalamus.259
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Figure 4. Neural activity is modulated during decision-making in 5 neural structures. (a) Neural activity in relation to movement onset towardsthe left for different contrasts, raster plot (top), peristimulus time histogram (bottom). (b) Peri-event time histograms (PETHs) for correct leftchoices of all neurons from CA1 of a single mouse, aligned to movement onset. These PETHs are baseline-subtracted by a pre-stimulus baseline.Shaded areas show standard error of mean (and propagated error for the overall mean). The thicker line shows the average over this entirepopulation, coloured by the lab from which the recording originates. (c) Average PETHs for correct left choices across regions within individualmice (same as thick line in (b)). Line thickness indicates how many neurons went into the average (min=4, max=86). (As we do not compareacross labs, we do not subset to labs with sufficient recordings here).
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Figure 5. Task-modulated neurons are not significantly different between laboratories. (a) Raster plots and firing rate time courses of anexample neuron in LP, aligned to either stimulus onset or movement onset; plotted only for right visual stimuli and correct movements. (Thefiring rates are calculated using a sliding window and are causal, such that each time point includes a 40 ms window prior to the indicated point.)
(b) Schematic of the time-warped (TW) pre-movement vs. pre-stimulus test for finding task-modulated neurons (left), where the firing rate priorto movement onset is compared against the firing rate during 200 ms before the stimulus. This is only calculated for trials where the timebetween pre-movement time and stimulus is at least 50 ms (third example trial is excluded). Also, the pre-movement time is considered only upto 200 ms prior to the movement onset, i.e., the pre-movement period can range anywhere from 50 ms to 200 ms prior to the onset of thestimulus (resulting in continuous firing rates in the right panel), unlike the pre-stimulus period which is always set to 200 ms (thus, firing rates inthe right panel change in increments of 5 sp/sec). (right) The change in firing rate of the example neuron in a, which is considered atask-modulated neuron using the TW pre-movement test; each gray line indicates one trial. Mean pre-stimulus and pre-movement firing ratesacross all trials are shown with filled circles (error bar: standard deviation). (c) Proportion of task-modulated neurons for each mouse in each ofthe five brain regions using the TW pre-movement test. Each column or color indicate, in order, a different recording session or lab. (Note thatthere is no correspondence here between columns across different brain regions.) (d) Permutation test results comparing across-lab variationin the proportion of task-modulated neurons found using each of the seven tests examined (the TW pre-movement test in b and c and six othertests described in Fig 5-Figure Supplement 1), as well as variation in the neuronal Fano Factors. All task-modulated comparisons wereperformed for correct trials with non-zero contrast stimuli.
Figure 5–Figure supplement 1. Proportion of task-modulated neurons, defined by six additional tests, across mice, labs, and brain regions.
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Principal component embedding analysis reveals little functional separation be-260

tween labs261

In the previous section, we tested specific hypotheses about modulations in task-driven activity at262

different times within the behavioral trial. We wondered if our conclusions about reproducibility263

would remain consistent if we perform comparisons across labs and brain regions at the level of264

the trial-averaged firing rate vectors computed over the entire trial.265

The first step is to choose a summary of each cell’s neural activity that can be directly compared266

across experimental sessions and labs. The peri-event time histogram (PETH) is one such summary267

that is commonly used. The PETH depends on the event used to align trials, and also discards in-268

formation about behavioral variability across trials. To retainmore of this information, we coarsely269

split trials into two sets, one with fast reaction times (< 0.15 s) and one with slower reaction times270

(> 0.15 s). Then we computed PETHs within each of these subsets and concatenated the resulting271

vectors to obtain a more informative summary of each cell’s average activity within these different272

types of behavioral trials. (The results described below did not depend strongly on the details of273

the trial-splitting we chose; for example, splitting trials by “left" vs “right" behavioral choice led to274

similar results.) See Figure 6a for two example cells’ PETHs, showing only the PETH obtained by275

averaging fast reaction time trials.276

Next, we project these high-dimensional summary vectors into a low-dimensional “embedding"277

space that captures the variability of the neuronal population but at the same time allows for278

easy visualization and further analysis. We found that a simple principal component analysis (PCA)279

provided a useful embedding. Specifically, we stack each cell’s summary double-PETH vector (de-280

scribed above) into a matrix (containing the summary vectors for all cells across all sessions) and281

run PCA to obtain a low-rank approximation of this matrix (see Methods). Figure 6a shows two282

cells and the corresponding two-dimensional PCA approximation, with one high-accuracy recon-283

struction example and one low-accuracy example shown here. Figure 6b displays the goodness of284

this PCA approximation over the full population as a function of the number of PCs used, showing285

that the PETHs of the majority of cells can be well reconstructed even with just 2 PCs.286

Now we have obtained a simple two-dimensional summary of each cell’s activity that we can287

visualize easily; see Figure 6c. This simple embedding is already sufficiently powerful to distinguish288

different brain regions: in Figure 6c we have colored cells by region, and we see that e.g. regions289

PO and CA1 show displaced clusters, illustrating clear regional differences in cell activities. These290

per-region differences are also visible in the region-averaged PETHs (Figure 6d). We quantified this291

separation via a permutation test, computing the sum across each region’s distance between its292

mean embedded activity and the mean across all regions and comparing that to the null distribu-293

tion of values obtained in the same way after shuffling the region labels. The p-value is < 0.0001,294

indicating a significant difference between regional PCA-reduced PETHs.295

To test for activity differences between labs, we subdivided the embedded point clouds (Figure296

6c) by lab (Figure 6e and supp. Figure 1). The standard deviation of these activity point clouds297

show large overlap across most labs, indicating similar activity. For each region separately, we298

determined whether the sum across each lab’s distance between its mean embedded activity and299

the mean across all labs is significantly different, using the same permutation test as described in300

the previous paragraph, this time shuffling lab labels. We obtain one false discovery rate corrected301

p-value for this lab-permutation test per region - PO 0.706, LP 0.065, DG 0.706, CA1 0.168, PPC302

p < 0.0001 - finding that for all regions except PPC the sum of mean lab embedded activities is303

not significantly different than the mean over all labs. We thus see that embedded activity differs304

clearly across regions but much less so across labs.305
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Figure 6. Principal component embedding of peri-event time histograms separates cells from different brain regions but not cells from
different labs. (a) Two example cells’ PETHs in black and 2-PC-based reconstruction; poor (top), good (bottom) fit with goodness of fit r2indicated on top. (b) Histograms of reconstruction goodness of fit across all cells based on reconstruction by 1-3 PCs. With only the first 2 PCsmost PETHs are well approximated, justifying the subsequent two-dimensional embedding analysis. (c) Two-dimensional embedding of PETHsof all cells, colored by region (each dot corresponds to a single cell). X’s and ellipses indicate the mean and standard deviation for each region.
(d)Mean firing rates of all cells in each of the studied regions. As in the 2D embedding, mean values for PO and CA1 clearly separate. (Error barsare standard deviation across cells divided by square root of number or recordings per region). (e) Embedded activity of CA1 neurons plottedseparately for each lab (colors). (f)Mean activity for all labs in CA1 (color conventions the same as in (e). See supp. Figure 1 for the other regions.(Error bars are standard deviation across cells divided by square root of number of recordings per lab). Note that only 6 labs are included in thisanalysis, as we only include labs that have at least 3 recordings per region (see exclusion criterion Table 1).
Figure 6–Figure supplement 1. Regional 2-PC embedding and average PETH per lab
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Differences inneuronal spatial positionand spike characteristics are aminor source306

of variability across sessions307

While we found little variability between laboratories in terms of electrophysiological features and308

task variables, we observed large variability between recording sessions and mice (Fig. 3, Fig. 5,309

and Fig. 5-supplemental 1). Since the spatial position of the Neuropixels probe was variable be-310

tween sessions (Fig. 2), we examined variability in targeting as a potential source of differences in311

neuronal activity for each of the five repeated site brain regions. We also considered single-unit312

spike waveform characteristics as a source of variability. In the next section, we examine other313

potential sources of variability (e.g., mouse movements).314

To investigate variability in session-averaged firing rates, we identified neurons which had fir-315

ing rates different from the majority of neurons within each brain region (absolute deviation from316

the median firing rate being >15% of the firing rate range). These outlier neurons, which mostly317

turned out to be high-firing (except in PO), were compared against regular neurons in terms of five318

features: spatial position (x, y, z, computed as the center-of-mass of each unit’s spike template on319

the probe, localized to CCF coordinates in the histology pipeline) and spike waveform character-320

istics (amplitude, peak-to-trough duration). We observed that recordings in all areas, such as LP321

(Fig. 7a), indeed spanned a wide space within that area. Interestingly, in areas other than DG, the322

highest firing neurons were not entirely uniformly distributed in space. For instance, in LP, high323

firing neurons tend to be positioned more laterally and centered on the anterior-posterior axis324

(Fig. 7b). In PPC and PO, the spatial position of neurons, but not differences in spike character-325

istics, contributes to differences in session-averaged firing rates (Fig. 7-supplemental 1b and 3c).326

In contrast, high-firing LP, CA1, and DG neurons have different spike characteristics compared to327

other neurons in their respective regions (7b and Fig. 7-supplemental 2b and 3a).328

To quantify the amount of variability in average firing rates that can be explained by spatial329

position or spike characteristics, we fit a linear regression model with these five features (x, y, z,330

spike amplitude, and duration) as the inputs. We found similar results: In PPC, z position, or neuron331

depth, explained part of the variance (had a significant weight); in CA1 andDG, spike amplitude, not332

spatial position, explained part of the variance; in LP, x and y positions as well as spike amplitude333

explained some of the variance; in PO, x and y position captured more variance than the other334

features. In LP, where the most amount of variability can be explained by this regression model,335

these features account for a total of ∼12% of the firing variability. In PPC, CA1, DG, and PO, they336

account for approximately 3%, 6%, 6%, and 5% of the variability, respectively.337

Next, we examined whether neuronal spatial position and spike features contributed to vari-338

ability in task-modulated activity. We found that all brain regions, except CA1, had minor, yet sig-339

nificant, differences in spatial positions of task-modulated and non-modulated neurons (using the340

definition of at least of one of the seven tests in Fig. 5d). For instance, task-modulated LP neu-341

rons defined by the time-warped pre-movement test, were positionedmore ventrally and centered342

along the anterior-posterior axis (Fig. 7c), while task-modulated LP neurons defined by the left ver-343

sus right pre-movement test, tended to be more ventral (Fig. 7d). Other brain regions had less344

spatial differences than LP (Fig. 7- supplemental 1, 2, 3). Spike characteristics were significantly345

different between task-modulated and non-modulated neurons only for some tests and only in346

PPC, DG, and PO (Fig. 6-supplemental 1c-d and 3)b-d. On the other hand, the task-aligned Fano347

Factor of neurons did not have any differences in spatial position except for in PPC, where lower348

Fano Factors (<1) tended to be located ventrally (Fig. 7- supplemental 4a). Spike characteristics of349

neurons with lower vs. higher Fano Factors were only different in the LP and PO (Fig. 7- supple-350

mental 4). Lastly, we trained a linear regression model to predict the 2D embedding of PETHs of351

each cell shown in Fig 6c from the x, y, z coordinates and found that spatial position contains little352

information (r2 ∼ 4%) about the embedded PETHs of cells.353

In summary, our results suggest that spatial position is a small contributor to variability for354

session-averagedfiring rates in all brain regions exceptDG, and to a lesser degree for task-modulated355
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neuronal activity in all brain regions except CA1. In all regions, spike characteristics also have a mi-356

nor contribution to the observed variability. Since, overall, the contributions of spatial position and357

spike features were small, despite being significant, we examine other sources of variability in the358

next section.359
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Figure 7. High-firing and task-modulated LP neurons have slightly different spatial positions than other LP neurons, potentially
contributing to variability between sessions. (a) Spatial positions of recorded neurons in LP, color-coded with their firing rates averaged overthe recording session. (b) Spatial positions of LP neurons plotted as distance from the planned target center of mass, indicated with the red x.(To enable visualization of overlapping data points, jitter was added to the unit locations.) Larger circles indicate outlier neurons (defined by anormalized firing rate deviation > 15%, resulting in a threshold of 12 sp/sec for LP, shown on the colorbar; here, 78 out of 805 neurons wereoutliers). Only histograms of the spatial positions and waveform features that were significantly different between the outlier (yellow) andregular (blue) units are shown (two-sample Kolmogorov-Smirnov test with Bonferroni correction for multiple comparisons; * and ** indicatecorrected p-values of <0.05 and <0.01, in order). Shaded areas indicate the area between 20th and 80th percentiles of the neurons’ locations. (c)(Left) Histogram of firing rate changes during the pre-movement period from the pre-stimulus period (using the time-warped test, Fig. 5b-c) fortask-modulated (orange) and non-modulated (gray) neurons. (Right) Spatial positions of task-modulated and non-modulated LP neurons, withhistograms of significant features (here, y and z positions) shown. (d) Same as c but using the pre-movement left vs. right test to identifytask-modulated units.
Figure 7–Figure supplement 1. High-firing and task-modulated PPC neurons.
Figure 7–Figure supplement 2. High-firing and task-modulated CA1 neurons.
Figure 7–Figure supplement 3. High-firing and task-modulated DG and PO neurons.
Figure 7–Figure supplement 4. Time-course and spatial position of neuronal Fano Factors.
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Figure 8. Schematic of the multi-task neural network model architecture: We adapt a multi-task neuralnetwork approach for unit-specific firing rate prediction. The model takes in a set of covariates, and outputstime-varying firing rates for each neuron for each trial. The covariates include the lab ID, 3-D unit location,and trial event times (e.g., stimulus onset); see Table 2 for a full list. The initial embedding layer of thenetwork is shared across all units, and serves to learn a useful (nonlinear) shared set of features that all theindividual units can regress onto for their predictions.

Amulti-task neural network accurately predicts activity and quantifies sources of360

neural variability361

As discussed above, variability in neural activity between labs or between sessions can be due to362

many factors. These include differences in behavior between animals, differences in probe place-363

ment between sessions, and uncontrolled differences in experimental setups between labs. How364

can we quantify and distinguish these different sources of variability? Simple linear regression365

models or generalized linear models (GLMs) are likely too inflexible to capture the nonlinear con-366

tributions that many of these variables, including lab IDs and spatial positions of neurons, might367

make to neural activity. On the other hand, fitting a different nonlinear regression model (involv-368

ing many covariates) individually to each recorded unit would be computationally expensive and369

could lead to poor predictive performance due to overfitting.370

To estimate a flexible nonlinear model given constraints on available data and computation371

time, we adapt an approach that has proven useful in the context of sensory neuroscience (McIn-372

tosh et al., 2016; Batty et al., 2016; Cadena et al., 2019). We use a "multi-task" neural network373

(MTNN; Figure 8) that takes as input a set of covariates (including the lab ID, the unit’s 3D spatial374

position in standardized CCF coordinates, the animal’s estimated pose extracted from behavioral375

videomonitoring, feedback times, and others; see Table 2 for a full list). Themodel learns a shared376

set of nonlinear features (shared over all recorded units) and fits a Poisson regression model on377

this shared feature space for each unit. (With this approach we effectively solve multiple nonlin-378

ear regression tasks simultaneously; hence the “multi-task" nomenclature.) The model extends379

simpler regression approaches by allowing nonlinear interactions between variables. In particular,380

previous reduced-rank regression approaches (Kobak et al., 2016; Izenman, 1975) can be seen as a381

special case of the multi-task neural network, with a single hidden layer and linear weights in each382

layer.383

Figure 9a showsmodel predictions on held-out trials for a single CA1 unit. We plot the observed384

and predicted peri-event time histograms and raster plots, split into left vs. right trials. As a visual385

overview of which behavioral covariates are highly correlated with this cell’s activity on each trial,386

various behavioral covariates that are input into the MTNN are shown in Figure 9b. Overall, the387

MTNN approach accurately predicts the observed firing rates. When the MTNN and GLMs are388

trained on a reduced set of covariates, consisting of stimulus onset timing, stimulus contrast and389

side, feedback type and timing, first movement onset timing, wheel velocity, andmouse’s prior, the390
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Variable Name Type Group Note
Lab ID Categorical / Static
Session ID Categorical / Static
Unit 3D
spatial position Real / Static Electrophysiological In standardized

CCF coordinates
Unit amplitude Real / Static Electrophysiological Template amplitude
Unit waveform width Real / Static Electrophysiological Template width
Paw speed Real / Dynamic Behavioral Inferred from DLC
Nose speed Real / Dynamic Behavioral Inferred from DLC
Pupil diameter Real / Dynamic Behavioral Inferred from DLC
Motion energy Real / Dynamic Behavioral
Stimulus Real / Dynamic Task-related Stimulus side,

contrast and onset timing
Go cue Binary / Dynamic Task-related
First movement Binary / Dynamic Task-related
Choice Binary / Dynamic Task-related
Feedback Binary / Dynamic Task-related
Wheel velocity Real / Dynamic Behavioral
Mouse Prior Real / Static Mouse’s prior belief
Last Mouse Prior Real / Static Mouse’s prior belief

in previous trial
Lick Binary / Dynamic Behavioral
Decision Strategy Real / Static Decision-making strategy

(Ashwood et al., 2022)
Brain region Categorical / Static Electrophysiological 5 repeated site regions

Table 2. List of covariates input to the multi-task neural network. See Appendix for additional details.

MTNNandGLMsperform similarly onpredicting the firing rates of held-out test trials. Furthermore,391

the MTNN trained on the full set of covariates in Table 2 outperforms the MTNN and GLMs trained392

on the reduced covariate set (See Figure 9 supplemental 2).393

Next we use the predictive model performance to quantify the contribution of each covariate394

to the fraction of variance explained by the model. FollowingMusall et al. (2019), we run two com-395

plementary analyses to quantify these effect sizes: single-covariate fits, in which we fit the model396

using just one of the covariates, and leave-one-out fits, in which we train the model with one of the397

covariates left out and compare the predictive explained to that of the full model. As an exten-398

sion of the leave-one-out analysis, we run the leave-group-out analysis, in which we quantify the399

contribution of each group of covariates (electrophysiological, task-related, and behavioral) to the400

model performance. Using data simulated from GLMs, we first validate that the MTNN leave-one-401

out analysis is able to partition and explain different sources of neural variability (See Figure 10402

supplemental 1).403

We then run single-covariate, leave-one-out, and leave-group-out analyses to quantify the con-404

tributions of the covariates listed in Table 2 to the predictive performance of themodel on held-out405

test trials. The results are summarized in Figure 10. According to the single-covariate analysis (Fig-406

ure 10a), face motion energy (derived from behavioral video), wheel velocity, and some task vari-407

ables (e.g., stimulus information and first movement onset timing) can individually explain about408

5-10% of variance of the units on average. The leave-one-out analysis (Figure 10b left) shows that409

most covariates have low unique contribution to the predictive power. This is because many vari-410

ables are correlated and are capable of capturing variance in the neural activity even if one of the411

covariates is dropped (See behavioral raster plots in Figure 9b). According to the leave-group-out412
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Figure 9. The MTNNmodel accurately estimates firing rates on held-out test trials from a CA1 neuron:
(a)MTNN model estimates of firing rates (50 ms bin size) of a CA1 neuron from an example subject duringheld-out test trials. The trials are split into those that had stimulus on the left/right and are aligned to the firstmovement onset time (vertical dashed lines). We plot the observed and predicted peri-event time histograms
(1st row) and the observed and predicted raster plots (2nd and 3rd rows). The blue ticks in the raster plotsindicate stimulus onset, and the green ticks indicate feedback times. The black horizontal dashed lineseparates the incorrect/correct trials (i.e., the trials above the dashed line are incorrect trials), and the trialsare ordered by reaction time. The trained model does well in predicting the (normalized) firing rates. TheMTNN prediction quality measured in R2 is 0.32 on held-out test trials and 0.90 on PETHs of held-out testtrials. (b)We plot the raster plots of behavioral variables (wheel velocity, paw speed, motion energy, nosespeed, and licks), ordering the trials in the same manner as in (a). We see that the MTNN firing ratepredictions are modulated synchronously with the behavioral variables.
Figure 9–Figure supplement 1. Scatter plot of MTNN prediction quality (R2) vs. mean firing rate (spikes/sec)
Figure 9–Figure supplement 2. MTNN slightly outperforms GLMs on predicting the firing rates of held-out
test trials.
Figure 9–Figure supplement 3. PETHs and MTNN predictions for held-out test trials

analysis, the behavioral covariates as a group have the highest unique contribution to the model’s413

performance while the task-related and electrophysiological variables have close-to-zero unique414

contribution. Most importantly, the leave-one-out analysis shows that lab and session IDs, condi-415

tioning on the covariates listed in Table 2, have close to zero effect sizes, indicating that within-lab416

and between-lab random effects are small and comparable.417
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Figure 10. Single-covariate, leave-one-out, and leave-group-out analyses show the contribution of
each (group of) covariate(s) to the model. Lab and session IDs have low contributions to the model. (a)Single-covariate analysis, colored by the brain region. Each dot corresponds to a single cell in each plot. (b)Leave-one-out analysis, colored by the brain region. The analyses are run on 246 responsive units across 20sessions. The leave-one-out analysis shows the unique contribution of each covariate to the model, and thesingle-covariate analysis shows the upper limit of the contribution of each covariate to the model. Theleave-group-out analysis shows how groups of electrophysiological, task-related, and behavioral covariatescontribute to the model. The leave-one-out analysis shows that lab/session IDs have low effect sizes onaverage, indicating that within-lab and between-lab random effects are small and comparable. The “noise"covariate is a dynamic covariate (white noise randomly sampled from a Gaussian distribution) and is includedas a negative control: the model correctly assigns zero effect size to this covariate. Covariates that areconstant across trials (i.e., lab and session IDs, unit’s 3D spatial location) are left out from the single-covariateanalysis.
Figure 10–Figure supplement 1. MTNN prediction quality on the data simulated from GLMs is comparable to
the GLMs’ prediction quality. The effect sizes computed by the MTNN leave-one-out analysis are similar to the
effect sizes computed by the GLMs’ leave-one-out analysis
Figure 10–Figure supplement 2. Pairwise scatterplots of MTNN single-covariate effect sizes.
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Discussion418

We set out to test whether electrophysiological responses, notoriously variable across labs, could419

be reproducible across geographically separated laboratories after appropriate standardization420

of experiments, data processing, and analyses. After applying stringent behavioral, histological,421

and electrophysiological quality-control criteria, we found that electrophysiological features such422

as neuronal yield, firing rate, and normalized LFP power were reproducible across laboratories;423

their within-lab averages did not significantly deviate from themean across labs. Similarly, the pro-424

portion of cells whose responses are tuned to behaviorally-relevant task events is reproducible425

across labs. Finally, a multi-task neural network approach can predict the firing rates of differ-426

ent units across sessions, and again, the within-lab random effects estimated by this model were427

comparable to between-lab random effects. Taken together, our results suggest that careful stan-428

dardization can lead to reproducible electrophysiological results across laboratories.429

Reproducibility in our electrophysiology studies depended on rigorous metrics of quality. We430

found that it was necessary to exclude a significant fraction of datasets to reach a desired level431

of reproducibility. Quality control was enforced for diverse aspects of the experiments, including432

histology, behavior, targeting, neuronal yield, and the total number of completed sessions. Among433

these measures, recordings with high noise and low neuronal yield were significantly represented434

in sessions that were excluded (40/74 sessions). A number of issues contributed here, including435

artifacts present in the recordings, inadequate grounding, and a decline in craniotomy health; all436

of these can potentially be improved with experimenter experience. Sub-standard behavior (for in-437

stance, too few trials in a session) led to the elimination of another substantial fraction of datasets.438

Trial counts are likely to be highly variable across labs, as there is currently no agreed upon stan-439

dard for what constitutes suitable behavior for an electrophysiology experiment. This has already440

been shown to cause differences in the internal states visited by animals as they make decisions441

(Ashwood et al., 2022).442

These observations suggest that future experiments might enjoy greater reproducibility if re-443

searchers followed, or at least reported, a number of agreed upon criteria, such as those we de-444

fine in Table 1. This approach has been successful in other fields: for instance, the neuroimaging445

field has agreed upon a set of guidelines for “best practices," and has identified factors that can446

impede those practices (Nichols et al., 2017). The genomics field likewise adopted the Minimum447

Information about a Microarray Experiment (MIAME) standard, designed to ensure that data from448

microarrays could be meaningfully interpreted and experimentally verified (Brazma et al., 2001).449

Our work here suggests the creation of a similar set of standards for electrophysiology and be-450

havioral experiments would be beneficial. These could include expectations for reporting (such451

as histological information and behavioral trial numbers) as well as suggestions for minimizing452

variability (e.g., agreed upon standards for the noise level that would exclude a recording).453

We found probe targeting to be a large source of variability, driven by micro-manipulator po-454

sitioning and anatomical discrepancies. The majority of the variance in targeting was due to the455

probe entry positions at the brain surface, which showed no bias in placement across the dataset.456

The source of this variance could be due to a discrepancy in skull landmarks compared to the un-457

derlying brain anatomy. Accuracy in placing probes along a planned trajectory is therefore limited458

by this variability (about 400µm). Probe angle also showed a small degree of variance, and a bias in459

both anterior-posterior andmedio-lateral directions; indicating that the Allen Common Coordinate460

Framework (CCF) (Wang et al., 2020) and stereotaxic coordinate systems are slightly offset. Mini-461

mizing variance in probe targeting is an important element in increasing reproducibility, as slight462

deviations in probe entry position and angle can lead to samples from different populations of463

neurons. Our approach suggests a path forward to minimize these biases: probe angles must be464

carefully computed from the CCF, as the CCF and stereotaxic coordinate systems do not define the465

same coronal plane angle. Small differences in probe location may be responsible for other stud-466

ies arriving at different conclusions, highlighting the need for agreed upon methods for targeting467
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specific areas (Rajasethupathy et al., 2015; Andrianova et al., 2022).468

Our results also highlight the critical importance of reproducible histological processing and469

subsequent probe alignment. Specifically, we used a centralized histology and registration pipeline470

to assign each recording site on each probe to a particular anatomical location, based on registra-471

tion of the histological probe trajectories to the CCF and the electrophysiological features recorded472

at each site. This differs from previous approaches, in which stereotaxic coordinates alone were473

used to target an area of interest and exclusion criteria were not specified; see e.g. (Najafi et al.,474

2020;Harvey et al., 2012;Goard et al., 2016; Raposo et al., 2014; Erlich et al., 2015). The reliance on475

stereotaxic coordinates for localization, instead of standardized histological registration, is a possi-476

ble explanation for conflicting results across labs. Our results speak to the importance of adopting477

standardized procedures more broadly across laboratories.478

A major contribution of our work is open-source data and code: we share our full dataset (link479

to data portal) and suite of analysis tools for quantifying reproducibility (link to code repository).480

The analyses here required significant improvements in data architecture, visualization, spike sort-481

ing, histology image analysis, and video analysis. Our analyses uncovered major gaps and issues482

in the existing toolsets that required improvements (see Methods and The International Brain483

Laboratory (2021a,b) for full details); the large-scale dataset analyzed here proved to be a use-484

ful stress test pointing to improved analysis pipelines. For example, we improved existing spike485

sorting pipelines with regard to scalability, reproducibility, and stability. These improvements con-486

tribute towards advancing automated spike sorting, andmove beyond subjective manual curation,487

which scales poorly and limits reproducibility. We anticipate that our open-source dataset will play488

an important role in further improvements to these pipelines and also the development of further489

methods for modeling the spike trains of many simultaneously recorded neurons across multiple490

brain areas and experimental sessions.491

Scientific advances rely on the reproducibility of scientific findings. The current study demon-492

strates that reproducibility is attainable for large-scale neural recordings during a standardized493

perceptual detection task across 9 laboratories. We offer several recommendations to increase494

reproducibility, including (1) standardized protocols for data collection, (2) data processing, and495

(3) rigorous data quality metrics. Furthermore, we have made improvements in data architecture496

and processing, now available to the public. Our study provides a framework for the collection and497

analysis of large neural datasets in a reproducible manner that will play a key role as neuroscience498

continues to move towards increasingly complex datasets.499
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Resources500

Data access501

Please visit https://int-brain-lab.github.io/iblenv/notebooks_external/data_release_repro_ephys.html502

to access the data used in this article.503

Code repository504

Please visit https://github.com/int-brain-lab/paper-reproducible-ephys/ to access the code used to505

produce the results and figures presented in this article.506

Protocols and pipelines507

Please visit https://figshare.com/projects/Reproducible_Electrophysiology/138367 to access the proto-508

cols and pipelines used in this article.509

Methods and Materials510

All procedures and experiments were carried out in accordance with local laws and following ap-511

proval by the relevant institutions: the Animal Welfare Ethical Review Body of University College512

London; the Institutional Animal Care and Use Committees of Cold Spring Harbor Laboratory,513

Princeton University, and University of California at Berkeley; the University Animal Welfare Com-514

mittee of New York University; and the Portuguese Veterinary General Board.515

Animals516

Mice were housed under a 12/12 h light/dark cycle (normal or inverted depending on the labora-517

tory) with food and water available ad libitum, except during behavioural training days. Electro-518

physiological recordings and behavioural training were performed during either the dark or light519

phase of the cycle depending on the laboratory. N=48 adult mice (C57BL/6, male and female, ob-520

tained from either Jackson Laboratory or Charles River) were used in this study. Mice were aged521

17-41 weeks and weighed 16.4-34.5 g on the day of the headbar implant surgery.522

Materials and apparatus523

For detailed parts lists and installation instructions, see Appendix 1 (The International Brain Lab-524

oratory, 2022a).525

Briefly, each lab installed a standardized electrophysiological rig (named ‘ephys rig’ throughout526

this text), which differed slightly from the apparatus used during behavioral training (The Interna-527

tional Brain Laboratory et al., 2021). The general structure of the rig was constructed from Thor-528

labs parts and was placed inside a custom acoustical cabinet clamped on an air table (Newport,529

M-VIS3036-SG2-325A). A static head bar fixation clamp and a 3D-printed mouse holder were used530

to hold a mouse such that its forepaws rest on the steering wheel (86652 and 32019, LEGO) (The531

International Brain Laboratory et al., 2021). Silicone tubing controlled by a pinch valve (225P011-532

21, NResearch) was used to deliver water rewards to the mouse. The display of the visual stimuli533

occured on a LCD screen (LP097Q × 1, LG). To measure the precise times of changes in the visual534

stimulus, a patch of pixels on the LCD screen flipped between white and black at every stimulus535

change, and this flip was captured with a photodiode (Bpod Frame2TTL, Sanworks). Ambient tem-536

perature, humidity, and barometric air pressure were measured with the Bpod Ambient module537

(Sanworks), wheel position was monitored with a rotary encoder (05.2400.1122.1024, Kubler).538

Videos of themouse were recorded from 3 angles (left, right and body) with USB cameras (CM3-539

U3-13Y3M-CS, Point Grey) sampling at 60, 150, 30 Hz respectively (for details see Appendix 1 (The540

International Brain Laboratory, 2022a)). A custom speaker (Hardware Teamof the Champalimaud541

Foundation for the Unknown, V1.1) was used to play task-related sounds, and an ultrasonic mi-542

crophone (Ultramic UM200K, Dodotronic) was used to record ambient noise from the rig. All task-543

related datawas coordinated by a Bpod StateMachine (Sanworks). The task logic was programmed544
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in Python and the visual stimulus presentation and video capture was handled by Bonsai (Lopes545

et al., 2015) and the Bonsai package BonVision (Lopes et al., 2021).546

All recordings were made using Neuropixels probes (Imec, 3A and 3B models), advanced in the547

brain using a micromanipulator (Sensapex, uMp-4) tilted by a 15 degree angle from the vertical548

line. The aimed electrode penetration depth was 4.0 mm. Data were acquired via an FPGA (for 3A549

probes) or PXI (for 3B probes, National Instrument) system and stored on a PC.550

Headbar implant surgery551

A detailed account of the surgical methods is in Appendix 1 (The International Brain Laboratory552

et al., 2021).553

Briefly, mice were anesthetized with isoflurane and head-fixed in a stereotaxic frame. The hair554

was then removed from their scalp, much of the scalp and underlying periosteum was removed555

and bregma and lambda were marked. Then the head was positioned such that there was a 0556

degree angle between bregma and lambda in all directions. The head bar was then placed in557

one of three stereotactically defined locations and cemented in place. The location of the future558

craniotomies weremeasured using a pipette referenced to bregma, andmarked on the skull using559

either a surgical blade or pen. The exposed skull was then coveredwith cement and clear UV curing560

glue, ensuring that the remaining scalp was unable to retract from the implant.561

Behavioral training and habituation to the ephys rig562

For a detailed protocol on animal training, see Appendix 2 (The International Brain Laboratory563

et al., 2021).564

Once themouse is classified as having learned thebiasedChoiceWorld task (criteria ‘ready4ephysRig’565

reached, cf Appendix 2 for definition (The International Brain Laboratory et al., 2021)), it is trans-566

ferred onto the ephys rig.567

The mouse is habituated to behave on the ephys rig in a series of steps that do not involve568

any electrophysiology recording. First, the mouse needs to perform one session of biasedChoice-569

World on the electrophysiology rig, with at least 400 trials and 90% correct on easy contrasts (col-570

lapsing across block types). Once this criterion is reached, time delays are introduced prior to the571

task; these delays would eventually serve to mimic the time it would take to insert electrodes in572

the brain. The mouse has to maintain performance for 3 subsequent sessions (same criterion as573

‘ready4ephysRig’), but with a minimum of one session that has a 15 minutes delay and is a mock574

recording.575

Electrophysiological recording using Neuropixels probes576

Data acquisition577

For details, see Appendix 2 and 3 (The International Brain Laboratory, 2022b,c).578

Briefly, upon the day of electrophysiological recording, the animal was anaesthetised using579

isoflurane and surgically prepared. The cement and glue were removed, exposing the skull over580

both hemispheres. A test was made to check whether the implant could hold liquid, and if suc-581

cessful a grounding pin was implanted. One or two craniotomies (1 × 1 mm) were made over the582

marked locations. The dura was left intact, and the brain was lubricated with ACSF. DuraGel was583

applied over the dura as a moisturising sealant, and covered with a layer of Kwikcast. The mouse584

was administered with analgesics subcutaneously, and left to recover in a heating chamber until585

locomotor and grooming activity were fully recovered.586

Once the animal was recovered from the craniotomy, it was fixed in the apparatus. Once a587

craniotomywasmade, up to 4 subsequent recording sessions weremade in that same craniotomy.588

Up to two probes were implanted in the brain on a given session. The probes were labelled with589

CM-DiI (see Appendix 4 (The International Brain Laboratory, 2022d) and (Liu, 2019)).590
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Spike sorting591

The spike sorting pipeline used at IBL is described in details in (The International Brain Laboratory592

et al., 2022a). Briefly, spike sorting was performed using a modified version of the Kilosort 2.5593

algorithm (Steinmetz et al., 2021). We found it necessary to improve the original code in several594

aspects (scalability, reproducibility, and stability, discussed below), and developed an open-source595

Python port; the code repository is here: (The International Brain Laboratory, 2021b).596

Regarding scalability: we found that the original code failed on recording sessions with a large597

number of detected spikes. Therefore we improved the CPU memory usage of the code to better598

handle these cases.599

Regarding reproducibility: spike sorting algorithms are still in heavy development; weneeded to600

tag and validate code versions and parameter settings internally so we could release the algorithm601

to our data-processing computers across multiple labs on our own schedule. We also defined602

a set of integration tests on short (100 seconds) recordings, using hybrid ground-truth datasets603

(Pachitariu et al., 2016) to validate algorithm changes before new version releases.604

Regarding stability: we observed a number of clear artifacts in the raw Neuropixels output605

("dead" channels, simultaneous "glitch" artifacts across multiple channels, mis-alignment errors,606

etc.) that were not handled properly by previous algorithms. We developed new methods to han-607

dle each of these artifact types, resulting in significantly more stable sorting outputs. See (The608

International Brain Laboratory et al., 2022a) for full details.609

Local field potential (LFP)610

Concurrently with the action potential band, each channel of the Neuropixel probe recorded a low-611

pass filtered trace at a sampling rate of 2500Hz. Thepower spectral density at different frequencies612

was estimated per channel using the Welch’s method with partly overlapping Hanning windows of613

1024 samples. Power spectral density (PSD) was converted into dB as follows:614

dB = 10 ∗ log(PSD) (1)
Serial section two-photon imaging615

Mice were given a terminal dose of pentobarbital and perfuse-fixed with PBS followed by 4%616

formaldehyde solution (Thermofisher 28908) in 0.1M PB pH 7.4. Wholemouse brain was dissected,617

and post-fixed in the same fixative for a minimum of 24 hours at room temperature. Tissues were618

washed and stored for up to 2-3 weeks in PBS at 4C, prior to shipment to the Sainsbury Wellcome619

Centre for image acquisition. For full details, see Appendix 5 (The International Brain Laboratory,620

2022e).621

For imaging, brains were equilibrated with 50mM PB solution and embedded into 5% agarose622

gel blocks. The brains were imaged using serial section two-photonmicroscopy (Ragan et al., 2012;623

Economo et al., 2016). The microscope was controlled with ScanImage Basic (Vidrio Technologies,624

USA), and BakingTray, a custom software wrapper for setting up the imaging parameters (Camp-625

bell, 2020). Image tiles were assembled using StitchIt (Campbell, 2021). Whole brain coronal image626

stacks were acquired with a resolution of 4.4 x 4.4 x 25.0 µm in XYZ, with a two-photon laser wave-627

length of 920nm, and power of 35% of 1800mW from the source laser, yielding approximately628

150mW at the block face. Serial section microscopy proceeded with 2 z slices taken for each 50µm629

tissue slice, at a depth of 30µm and 55µm from the tissue surface. Two channels of image data630

was acquired on two PMTs for green (bandpass filter ET525/50m) and red (bandpass filter ET570lp)631

fluorescence.632

Whole brain images were downsampled to 25µm XYZ pixels and registered to the adult mouse633

Allen common coordinate framework (Wanget al., 2020) usingBrainRegister (West, 2021), an elastix-634

based (Klein et al., 2010) registration pipeline with optimised parameters for mouse brain registra-635

tion. For full details, see Appendix 7 (The International Brain Laboratory, 2022g).636

26 of 34

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 9, 2022. ; https://doi.org/10.1101/2022.05.09.491042doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.09.491042


Probe track tracing and alignment637

Neuropixels probe tracks were manually traced to yield a probe trajectory using Lasagna (Camp-638

bell et al., 2020), a Python-based image image viewer equipped with a plugin tailored for this task.639

Traced probe track data was uploaded to an Alyx server (Rossant et al., 2021); a database designed640

for experimental neuroscience laboratories. Neuropixels channels were then manually aligned to641

anatomical features along the trajectory using electrophysiological landmarks with [ephys align-642

ment tool] (Faulkner, 2020) (Liu et al., 2021). For full details, see Appendix 6 (The International643

Brain Laboratory, 2022f).644

Permutation tests645

We use permutation tests to study the reproducibility of neural features across laboratories. To646

this end, we first defined a test statistic that is sensitive to systematic deviations between labora-647

tories: the sum of the absolute differences between laboratory means and overall mean. The648

null-hypothesis is that there is no difference between the different laboratory means, i.e. the649

assignment of mice to laboratories is completely random. We constructed the corresponding650

null-distribution by permuting these assignments between laboratories andmice randomly 10000651

times (leaving the relative numbers of mice in laboratories intact) and computing the test statistic652

on these randomised samples. Given this constructed null-distribution, the p-value of the permu-653

tation test is the proportion of the null-distribution that has more extreme values than the test654

statistic that was computed on the real data.655

Dimensionality reduction of peri-event time histograms via principal component656

analysis657

In Figure 6weuse principal component analysis (PCA) to embedperi-event timehistograms (PETHs)658

into a two-dimensional feature space for visualization and further analysis. Our overall approach659

is to compute PETHs, split into fast-reaction-time and slow-reaction-time trials, then concatenate660

these PETH vectors for each cell to obtain an informative summary of each cell’s activity. Next661

we stack these double PETHs from all labs into a single matrix and use PCA to obtain a low-rank662

approximation of this PETH matrix.663

In detail, the two PETHs consist of one averaging fast reaction time (< 0.15sec) trials and the664

other slow reaction time (> 0.15sec) trials, each of length T time steps. We used 20ms bins, from665

−0.5 sec to 1.5 sec relative to motion onset, so T = 100. We also performed a simple normalization666

on each PETH, dividing the firing rates by the baseline firing rate (prior to motion onset) of each667

cell plus a small positive offset term (to avoid amplifying noise in very low-firing cells), following668

Steinmetz et al. (2021).669

Let the stack of these double PETH vectors be Y , being aN×2T matrix, whereN is the total num-670

ber of neurons recorded across 5 brain regions and labs. Running principal components analysis671

(PCA) on Y (singular value decomposition) is used to obtain the low-rank approximation UV ≈ Y .672

This provides a simple low-d embedding of each cell: U is N × k, with each row of U representing673

a k-dimensional embedding of a cell that can be visualized easily across labs and brain regions. V674

is k × 2T and corresponds to the k temporal basis functions that PCA learns to best approximate675

Y . Figure 6(a) shows two cells of Y and the corresponding PCA approximation from UV .676

The scatter plots in Figure 6 show the embedding U across labs and brain regions, with the677

embedding dimension k = 2. Each k × 1 vector in U , corresponding to a single cell, is assigned to a678

single dot in Figure 6c.679

Video analysis680

Some of the behavioral time series used in the neural network analysis are derived from video681

recordings of the animals. Full details of the video analysis pipeline are here: (The International682

Brain Laboratory et al., 2022b), and the code is available here: (The International Brain Laboratory,683

2021a).684
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Briefly, in the recording rigs, there are three cameras, one called ’left’ at full resolution 1280x1024685

and 60 Hz filming the mouse from one side, one called ’right’ at half resolution (640x512) and 150686

Hz, filming the mouse symmetrically from the other side, and one called ’body’ filming the trunk of687

the mouse from above. Several quality control metrics were developed to detect video issues such688

as poor illumination (as infra red light bulbs broke) or accidental misplacement of the cameras.689

Marker-less tracking of body parts is achieved using Deeplabcut (Mathis et al., 2018), a deep-690

learning-based tool that is used within a fully automated pipeline in IBL to track various body parts691

such as the paws. The pipeline first detects 3 regions of interest (ROI) in each frame, crops these692

ROIs using ffmpeg (Tomar, 2006) and applies a separate network for each ROI to track features.693

For each side video we track the following points:694

• ROI eye:695

‘pupil_top_r’, ‘pupil_right_r’, ‘pupil_bottom_r’, ‘pupil_left_r’696

• ROI mouth:697

‘nose_tip’, ‘tongue_end_r’, ‘tongue_end_l’698

• ROI paws:699

‘paw_r’, ‘paw_l’700

The right side video was flipped and spatially up-sampled to look like the left side video, such that701

we could apply the same Deeplabcut networks.702

Extensive curating of the training set of images for each network was required to obtain reliable703

tracking across animals and laboratories. We annotated in total more than 10K frames, across sev-704

eral iterations, using a semi-automated tracking failure detection approach, which found frames705

with temporal jumps, 3d re-projection errors when combining both side views, and heuristic mea-706

sures of spatial violations. These selected ‘bad’ frames were then annotated and the network re-707

trained. To find further raw video and Deeplabcut issues, we inspected trial-averaged behaviors708

obtained from the tracked features, such as licking aligned to feedback time, paw speed aligned709

to stimulus onset and scatter plots of animal body parts across a session superimposed onto ex-710

ample video frames. See (The International Brain Laboratory et al., 2022b) for further details and711

example quality control images.712

Multi-task neural network model to quantify sources of variability713

Data preprocessing714

For the Multi-task neural network (MTNN) analysis, we used data from 20 sessions recorded in715

CCU, CSHL (C), SWC, Berkeley, and NYU. We included various covariates in our feature set (e.g. go-716

cue signals, stimulus/reward type, Deep Lab Cut behavioral outputs). For the “decision strategy"717

covariate, we used the posterior estimated state probabilities of the 4-state GLM-HMMs trained718

on the sessions used for the MTNN analysis (Ashwood et al., 2022). Both biased and unbiased719

data were used when training the 4-state model. For each session, we first filtered out the trials720

where no choice is made. We then selected the trials whose stimulus onset time is within 0.4721

seconds before the first movement onset time and feedback time is within 0.9 seconds after the722

first movement onset time. Finally, we selected responsive units whose mean firing rate is greater723

than 5 spikes/second for further analyses. For sessions with more than 15 responsive units, we724

randomly sampled 15 units.725

Model Architecture726

Given a set of covariates in Table 2, the MTNN predicts the target sequence of firing rates from727

0.5 seconds before first movement onset to 1 second after, with bin width set to 50 ms (30 time728

bins). More specifically, a sequence of feature vectors xdynamic ∈ ℝDdynamic×T that include dynamic729

covariates, such as Deep Lab Cut (DLC) outputs, and wheel velocity, and a feature vector xstatic ∈730
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ℝDstatic that includes static covariates, such as the lab ID, unit’s 3-D location, are input to the MTNN731

to compute the prediction ypred ∈ ℝT , where Dstatic is the number of static features, Ddynamic is the732

number of dynamic features, and T is the number of time bins. The MTNN has initial layers that733

are shared by all units, and each unit has its designated final fully-connected layer.734

Given the feature vectors xdynamic and xstatic for session s and unit u, themodel predicts the firing
rates ypred by:

estatic = f (wTstaticxstatic + bstatic) (2)
edynamic = f (wTdynamicxdynamic + bdynamic) (3)
ℎ(forward)
t = max(0, U1edynamic,t + V1ℎ

(forward)
t−1 + bforward) (4)

ℎ(backward)
t = max(0, U2edynamic,t + V2ℎ

(backward)
t+1 + bbackward) (5)

ypredt = f (wT
(s,u)concat(estatic, ℎ(forward)

t , ℎ(backward)
t ) + b(s,u)) (6)

where f is the activation function. Eqn. (2) and Eqn. (3) are the shared fully-connected layers735

for static and dynamic covariates, respectively. Eqn. (4) and Eqn. (5) are the shared one-layer736

bidirectional recurrent neural networks (RNNs) for dynamic covariates, and Eqn. (6) is the unit-737

specific fully-connected layer, indexed by (s, u). Each part of the MTNN architecture can have an738

arbitrary number of layers. For our analysis, we used two fully-connected shared layers for static739

covariates (Eqn. (2)) and three-layer bidirectional RNNs for dynamic covariates, with the embedding740

size set to 64.741

Model training742

The model was implemented in PyTorch and trained on a single GPU. The training was performed743

using Stochastic Gradient Descent on the Poisson negative loglikelihood (Poisson NLL) loss with744

learning rate set to 0.1, momentum set to 0.9, and weight decay set to 10−15. We used a learning745

rate scheduler such that the learning rate for the i-th epoch is 0.1× 0.95i, and the dropout rate was746

set to 0.2. We also experimented with mean squared error (MSE) loss instead of Poisson NLL loss,747

and the results were similar. The batch size was set to 512.748

The dataset consists of 20 sessions, 246 units and 6878 active trials in total. For each session,749

20% of the trials are used as the test data and the remaining trials are split 20:80 for the validation750

and training sets. During training, the performance on the held-out validation set is checked after751

every 3 passes through the training data. The model is trained for 100 epochs, and the model752

parameters with the best performance on the held-out validation set are saved and used for pre-753

dictions on the test data.754

Simulated experiments755

For the simulated experiment in Figure 10 supplemental 1, we first trained GLMs on the same set756

of 246 responsive neural units from 20 sessions used for the analysis in Figure 10, with a reduced757

set of covariates consisting of stimulus timing, stimulus side and contrast, first movement onset758

timing, feedback type and timing, wheel velocity, and mouse’s priors for the current and previous759

trials. The kernels of the trained GLMs show the contribution of each of the covariates to the firing760

rates of each unit. For each simulated unit, we used these kernels of the trained GLM to simulate761

its firing rates for 350 randomly initialized trials. The random trials were 1.5 seconds long with 50762

ms bin width. For all trials, the first movement onset timing was set to 0.5 second after the start763

of the trial, and the stimulus contrast, side, onset timing and feedback type, timing were randomly764

sampled. We used wheel velocity traces and mouse’s priors from real data for simulation. We765

finally ran the leave-one-out analyses with GLMs/MTNN on the simulated data and compared the766

effect sizes estimated by GLMs and MTNN.767
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Figure 1–Figure supplement 1. Detailed experimental pipeline for the Neuropixels experiment.
The experiment follows the steps indicated in the left-hand black squares in chronological order
from top to bottom. Within each, actions are undertaken from left to right; diamond markers
indicate points of control.
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Figure 1–Figure supplement 2. Spiking activity qualitatively appears as heterogeneous across
recordings. Example raster plots of neural activity recorded from the repeated site in N=12 mice.
The raster plots in the first top two rows originate from sessions marked as being of good quality.
The middle and bottom rows are raster plots from recordings that were excluded, based either on
the probe misplacement, or the low number of detected units.

960

Figure 2–Figure supplement 1. Plots of all subjects with a repeated site insertion that were in-
cluded in analysis of probe placement. Coronal tilted slices aremade along the linearly interpolated
best-fit to the histology insertion, shown through the raw histology (green: auto-fluorescence data
for image registration; red: CM-DiI fluorescence signal marking probe tracks). Traced probe tracks
are highlighted in white.
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Figure 3–Figure supplement 1. Recordings that failed quality control were often visible outliers.
a, Power spectral density between 20 and 80 Hz of all insertions, including those that failed tomeet
quality criteria. Recordings are labelled with the subject name above them; names in green passed
quality control whereas names in red did not. b, Plots as in a but with firing rates of single neurons
according to the depth at which they were recorded.
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Figure 3–Figure supplement 2. Power spectral density between 20 and 80 Hz recorded along
each probe shown in figure 3 overlaid on a coronal slice through brain. Each coronal slice has
been rotated such that the probe lies along the vertical axis.
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Figure 5–Figure supplement 1. (a)-(g) Schematics of six different tests performed (in addition
to the test in Figure 5b) for finding task-modulated neurons. The two example trials show po-
tential caveats of using each method; for instance, in a, the trial period may or may not include
movement, depending on the reaction time in each trial. Below each schematic, the proportion of
task-modulated neurons for the test is shown, across mice and brain regions, colored by lab ID.
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Figure 6–Figure supplement 1. Same as 6(e,f), for the remaining regions. Note that only Berkeley
lab in region PPC differs significantly from the mean of all labs.

965

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 9, 2022. ; https://doi.org/10.1101/2022.05.09.491042doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.09.491042


Figure 7–Figure supplement 1. High-firing and task-modulated PPCneurons are located in deeper
layers than other PPC neurons. (a-d) Similar to Figure 7 but for PPC.
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Figure 7–Figure supplement 2. High-firing, but not task-modulated, CA1 neurons are positioned
more dorsally and have lower spike amplitudes than other CA1 neurons. (a-d) Similar to Figure 7
but for CA1.
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Figure 7–Figure supplement 3. Spatial positions and spike characteristics of outlier and task-
modulated neurons in DG and PO are different from other neurons. (a) Spatial positions of DG
neurons plotted as distance from the planned target center ofmass, indicated with the red x. From
comparisons of spatial position and waveform features, histogram of only those that were signif-
icantly different between the outliers (yellow) and regular neurons (blue) are shown: here, high-
firing neurons have smaller waveform amplitudes. (b) Spatial positions of task-modulated and
non-modulated DG neurons (using the time-warped pre-movement test) with the histogram of sig-
nificant features shown (here, waveformamplitude andduration). For someother task-modulation
tests (not shown), spatial positions of DG neurons were also significantly different. (c-d) Same as
a-b but for PO neurons. In c, outliers included high and low firing neurons, making up 209 out of
879 neurons (44 of which are low firing). Shaded areas indicate the 20th and 80th percentiles of
the neuron’s spatial positions.
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Figure 7–Figure supplement 4. Time-course and spatial position of neuronal Fano Factors. (a) Left
column: Change in firing rate (top) and Fano Factor (bottom) averaged over all PPC neurons when
aligned to movement onset after presentation of left or right full-contrast stimuli (correct trials
only; Fano Factor calculation limited to neuronswith a session-averaged firing rate >1 sp/sec). Error
bars: standard errormeans between neurons. Right column: Neuronal Fano Factors (averaged over
40-200 ms post movement onset after right-side full-contrast stimuli) and their spatial positions.
Larger circles indicate neuronswith Fano Factor <1. (b-e) Same as a for CA1, DG, LP, and PO. Spatial
position between high vs. low Fano Factor neurons was only significantly different in PPC (deeper
neurons have lower Fano Factors) possibly due to higher drift in the activity of neurons closer to the
surface over long recordings, from drying of the craniotomy. In the thalamus, spike characteristics
between high and low Fano Factor neurons were significantly different (not shown).
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Figure 9–Figure supplement 1. For each unit in each session, we plot the MTNN prediction qual-
ity on held-out test trials against the firing rate of the unit averaged over the test trials. Each
lab/session is colored/shaped differently. R2 values on concatenations of the held-out test trials
are shown on the left, and those on PETHs of the held-out test trials on the right.
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Figure 9–Figure supplement 2. MTNN and GLMs performs similarly on predicting the firing rates
of held-out trials when trained on a reduced set of covariates, which includes stimulus onset time,
stimulus side and contrast, feedback time and type, first movement onset time, wheel velocity, and
mouse’s prior. MTNN trained on the full set of covariates in Table 2 outperforms the MTNN/GLMs
trained on the reduced covariate set.
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Figure 9–Figure supplement 3. The left half shows for each neuron the trial averaged activity for
left choice trials and next to it right choice trials. The vertical green lines show the first movement
onset. The horizontal red lines separate recording sessions while the blue lines separate labs. The
right half of each of these images shows the MTNN prediction of the left half. The trial-averaged
MTNN predictions for held-out test trials captures visible modulations in the PETHs.
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Figure 10–Figure supplement 1. To verify that the MTNN leave-one-out analysis is sensitive
enough to capture effect sizes, we simulate data from GLMs and compare the effect sizes esti-
mated by theMTNN and GLM leave-one-out analyses. We first fit GLMs to the same set of sessions
that are used for the MTNN effect size analysis and then use the inferred GLM kernels to simulate
data. (a)We show the scatterplot of the GLM and MTNN predictive performance on held-out test
data, where each dot represents the predictive performance for one neural unit. The MTNN pre-
diction quality is comparable to that of GLMs. (b)We run GLM and MTNN leave-one-out analyses
and compare the estimated effect sizes for 6 covariates. The effect sizes estimated by the MTNN
and GLM leave-one-out analyses are comparable.
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Figure 10–Figure supplement 2. We plot pairwise scatterplots of MTNN single-covariate effect
sizes. Each dot represents the effect sizes of one neural unit and is colored by lab. There is no
outlier lab. The effect sizes are highly correlated.
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