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Abstract

Although visual input arrives continuously, sensory information
is segmented into discrete events. Here, the neural correlates of
spatiotemporal binding in male/female human subjects were in-
vestigated with MEG using two tasks where separate flashes were
presented on each trial but were perceived, in a bi-stable way,
as either a single, or two separate, events. The first task (two-
flash fusion: TFF) involved judging one versus two flashes while
in the second task (apparent motion: AM) participants judged
coherent motion versus two stationary flashes. Results indicate
two different functional networks underlying two unique aspects
of visual temporal binding. In the TFF task, involving an inte-
gration window of ≈50 ms, evoked responses differed as a func-
tion of perceptual interpretation by ≈25 ms after stimuli presen-
tation. Multivariate decoding of subjective perception based on
prestimulus oscillatory phase was significant for alpha-band ac-
tivity in the right medial temporal (MT) area, with the strength
of pre-stimulus connectivity between early visual areas and MT
being predictive of performance. In contrast, the longer integra-
tion window (≈130 ms) for AM showed evoked field differences
only ≈250 ms after stimuli onset. Phase decoding of the percep-
tual outcome in the AM task was strongest for theta-band activ-
ity, localized to a right intra-parietal sulcus (IPS) source. Pre-
stimulus connectivity between MT and IPS seeds in the theta
band best predicted perceptual outcome. Overall, these results
show a strong relationship between specific spatiotemporal bind-
ing windows and specific oscillations, linked to the information
flow between different areas of the “where” and “when” visual
processing pathways.

Introduction
Many aspects of our lives, including motion processing,
speech recognition, reading, sound localization and visuo-
motor coordination requires temporal or spatio-temporal in-
tegration and segregation of sensory information in the sub-
second scale. This fundamental process represents a core
mechanism of perception, allowing change in the flow of sen-
sory input to be consciously represented without any experi-
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Significance Statement
Multiple neural rhythms seem relevant for sampling visual
information across space and time, but the cortical net-
works underlying these fundamental computational princi-
ples of the visual system remain unexplored. We filled
this gap by employing source-level multivariate decoding
and connectivity analyses of magnetoencephalographic data
recorded during an integration/segregation task of temporal
and spatio-temporal events. We identified a first and faster
network involving early visual areas (V2 to MT/V5) that de-
termines the basic temporal resolution of visual perception
at the speed of the alpha rhythm, and a second slower net-
work involving parietal regions (IPS) that had a key role in
the integration of more complex spatiotemporal events at a
theta speed. These findings elucidate the neural mechanisms
that transfer sensory information into temporal sequences.

ence of discontinuity (White, 2018).
After seminal neurophysiological investigations proposing
that perception depends on the rhythmic sampling of sen-
sory information (Bishop, 1932; Lansing, 1957; Harter, 1967),
the neural correlates of spatiotemporal integration/segregation
have been linked to ongoing neural oscillations using neu-
rophysiological techniques in humans (Varela et al., 1981;
Pöppel, 1997). The main hypothesis proposes that the alpha
rhythm (8-12 Hz) defines a neural computation cycle within
which integration of visual inputs occur (VanRullen, 2016).
This idea is supported by studies in non-human primates show-
ing that spikes in sensory areas are more likely to occur at
a specific phase of the local field potential oscillations (such
as the peak or trough) compared to opposing phases (Hae-
gens et al., 2011). However, we also know that different sen-
sory modalities have different preferential rhythms for orga-
nizing sensory evidence over time. For example, it is well
established that visual information is sampled in a much nar-
rower frequency band than auditory information due to the
different neural architecture of peripheral and central infor-
mation transmission (Morillon and Schroeder, 2015; White,
2018). It is reasonable to hypothesize that even within a sin-
gle sensory modality, the sampling rhythm may vary accord-
ing to the complexity of the temporal integration/segregation
to perform. Perceiving temporal variation related to complex
visual objects, such as words or faces, would require a more
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complex and extensive brain network as opposed to perceiving
changes in a simple stimulus, such as an oriented line or grat-
ing (e.g., Baldauf and Desimone 2014; de Vries and Baldauf
2019). Similarly, integrating information about a dynamic
event across space and time would involve a more complex
network, and potentially a longer computation cycle, com-
pared to a stationary stimulus.
Recent evidence has brought support in favor of the idea
that within the visual modality there are multiple preferen-
tial neural rhythms for the sampling of sensory information
across space and time. Specifically, the perceptual sampling
of stimuli that alternate in close temporal proximity and in the
same spatial position has been linked with alpha band activ-
ity (Cecere et al., 2015; Samaha and Postle, 2015; Gulbinaite
et al., 2017), whereas stimuli separated by larger temporal in-
tervals that also require sampling across space appear to in-
volve slower frequencies within the theta band (Ronconi et al.,
2017). This idea is in line with a theoretical framework of
rhythmic perception that suggests that the frequency of on-
going neural oscillations determines the resolution of rhyth-
mic sampling, in a way that higher oscillatory frequencies im-
ply shorter temporal integration windows (Samaha and Postle,
2015; Ronconi and Melcher, 2017; Ronconi et al., 2018; Wutz
et al., 2018).
However, a characterization of the networks supporting these
different sampling mechanisms, which co-exist to determine
our perception of the continuous sensory flow, is presently
lacking. Specifically, there is a need for a precise mapping
between the core spatiotemporal sampling mechanisms of hu-
man perception and the related rhythm-based cortical network
dynamics. In the present study, we aimed to fill this gap
by investigating the neural correlates of spatiotemporal sam-
pling in humans using magnetoencephalography (MEG). In
the same blocks of trials, participants performed two percep-
tual discriminations, a two-flash fusion and an apparent motion
task, measuring temporal and spatiotemporal integration/seg-
regation mechanisms, respectively. In both tasks, two separate
flashes were physically presented on each trial, but participants
perceived them in a bi-stable way. In the two-flash fusion con-
dition, temporal integration would lead to the conscious report
of a single stimulus as opposed to two discrete flashes, whereas
in the apparent motion condition spatio-temporal integration
would lead to a conscious report of single moving object as
opposed to two discrete flashes in different spatial position.

Methods

The main steps involved in the present study – and described
in detail below – developed as follows: first, we mapped the
cortical regions that differentiated integration versus segrega-
tion in the two different task conditions, by analyzing MEG
activity evoked after the stimulus onset as a function of the
subjective perceptual interpretation of the same bi-stable stim-
uli. Second, we trained a multivariate classifier to decode the
perceptual outcome from the phase of pre-stimulus oscillatory

activity within these networks. Finally, we used the resulting
information to characterize the network-level interactions in
terms of functional connectivity.

Participants

30 participants (20 females), aged 18-35, took part in the study
as paid volunteers. No participants reported history of neu-
rological disease or epilepsy. All of them reported normal
or corrected-to-normal vision and hearing and gave informed
written consent. Three subjects were removed for the subse-
quent analyses, one because of excessive MEG artifacts, and
two because they perceived apparent motion in 90% of trials or
more, thus their perception could not be considered bistable.
The experimental protocol was approved by the Ethics com-
mittee of the Center for Mind/Brain Science at University of
Trento and conformed to the principles of the Declaration of
Helsinki of 2013.

Apparatus, stimuli and task procedure

The display system used for presentation of visual stimuli
within the magnetically shielded room was a DLP projec-
tor (PROPixx, VPixx Technologies Inc., Saint-Bruno, QC,
Canada) running at a refresh rate of 100 Hz, aimed at a translu-
cent back-projection screen (projected screen size 510mm x
380mm) located in a dimly lit, magnetically shielded chamber
at a viewing distance of 100 cm. The stimulus presentation
methodology follows the one previously used in Ronconi et al.
(2017) and depicted in Figure 1A.
Each trial began with a fixation point for a variable presen-
tation time (ranging from 1350 to 1750 ms) and both target
flashes had a duration of 10 ms (one refresh rate). In the two
flash fusion (TFF) trials, the two target flashes appeared in the
same position, aligned to the horizontal axis (left or right hemi-
field, randomized across trials), with an eccentricity of 6 deg
from the fixation. They were always separated by an inter-
stimulus interval (ISI) of 40 ms (four refresh cycles).
In the apparent motion (AM) trials, the first of the two target
flashes were again displayed at 6 deg of eccentricity aligned to
the horizontal axis (left or right hemifield, randomized across
trials). The second target flash appeared after an ISI of 120 ms
(12 refresh rate) above or below the position of the first flash
(at a distance of 4 deg) at the same eccentricity and in the same
hemifield.
A blank screen of 1500 ms followed the target presentation,
and anticipated the appearance of a response screen, in which
participants had to report if they perceived one or two flashes
for TFF trials, or if they perceived motion or alternation (and
in which direction: upward or downward) for AM trials. No
time constraints were imposed, and we stressed that only an
accurate perception was important for the task and that reac-
tions times were not relevant. After a response was entered,
the subsequent trial started after an inter-trial interval of 1000
ms.
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Figure 1: Task design and event-related fields (ERFs) results. (A) Schematic representa-
tion of the task procedure, where suprathreshold visual stimuli (flashes) were presented
on the left or right hemifield either in a single (two-flash fusion or TFF condition) or in a
different spatial position (apparent motion or AM condition), and participants were asked
to judge if they perceive a single or moving stimulus or two distinct flashes. ISI=inter-
stimulus interval. (B) (C) MEG gradiometers (average of all sensors) activity for the TFF
(B) and the AM (C) conditions, differentiated as function of subjective perception (segre-
gation vs. integration). Time points where significant cluster-corrected differences were
found are highlighted with a black horizontal line above the time axis. Topographical
maps at the bottom of each plot represent the time course of the segregation–integration
difference, with black dots indicating significant clusters of channels.

Each participant completed 10 MEG recording blocks of 8
minutes each, with an average number of trials completed
equal to 751 (min. – max. range: 551-854). The different
types of trials were randomly intermixed. An additional 5%
of “catch” trials with longer ISI were presented for both trial
types (100 ms for the TFF task and 200 ms for the AM task),
with the aim of presenting clearly distinguishable targets that
would reinforce bistable perception during the standard trials.
Participants were unaware of the fact that bistable trials were
all identical.

MEG Data Acquisition

Participants’ whole-head MEG activity was recorded in a mag-
netically shielded room using a Neuromag 306 (Elekta) system
with 102 magnetometers and 204 planar gradiometers, with a
sampling rate of 1000 Hz. The system consisted of 102 sensors
containing a triplet of one magnetometer and two gradiome-
ters. To measure the head position while the participants’ head
was within the MEG helmet, for each subject a specific head-
frame coordinates set was defined before the experiment, us-
ing pre-defined cardinal points of the head (i.e. nasion and

left and right pre-auricular points), as well as the location of
five head-position indicator (HPI) coils and a minimum of 200
other head-shape samples that were digitized for motion track-
ing using a Polhemus FASTRAK 3D digitizer (Fastrak Polhe-
mus, Inc., Colchester, VA, USA). The subject’s head position
relative to the MEG sensors was estimated before each MEG
recording block (see Procedures) by activating the HPI coils
to ensure that no major movements occurred during the data
acquisition period.

MEG Data analysis

Raw data were initially processed using MaxFilter 2.0 (Elekta
Neuromag ®), which allows external sources of noise to be
separated from head-generated signals using a spatio-temporal
variant of signal space separation (tSSS) (Taulu and Kajola,
2005; Taulu et al., 2005). Before that, data were visually in-
spected and noisy channels were excluded from the tSSS fil-
tering and replaced by interpolation. Movement compensation
was applied and each run was aligned to an average head po-
sition.
After obtaining the Maxfiltered data, the subsequent data-
analysis steps were performed in Matlab with the follow-
ing freeware software packages: Fieldtrip for preprocessing,
event-related fields and time-frequency analyses (Oostenveld
et al., 2011), Brainstorm for cortical sources reconstruction
(Tadel et al., 2011) and CoSMoMVPA for multivariate pattern
analyses (Oosterhof et al., 2016).
Continuous MEG recordings were downsampled to 500 Hz
and epoched from -1.5 s before to 1 s after the onset of the
first stimulus. MEG epochs contaminated by artifacts were
visually identified and manually rejected (an average of M =
21.05%, SD = 7.27% of trials for each participant were dis-
carded after the artifact rejection procedure).

Event-related fields (ERFs)

ERFs were calculated from artifacts-free epochs as the average
in amplitude across trials, after combining data from planar
gradient pairs using vector addition. ERFs were baseline cor-
rected using an interval of -200 to 0 ms before the first stimulus
onset. Statistical analyses between segregation and integration
in the two tasks conditions were entirely data-driven; thus, we
decided to perform permutations statistics (N=10000) and to
apply a cluster-based correction for multiple comparison con-
sidering both time (all time points after stimulus onset) and
sensor space (204 gradiometers) as dimensions to correct for,
using a family-wise alpha level of .05.
Temporal windows where significant cluster-corrected differ-
ences emerged in the post-stimulus ERFs analyses where used
to temporally constrain the identification of region of interest
(ROIs) at the cortical source level, as described in the next
paragraph.
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Cortical source reconstruction and ROI defini-
tion

The entire source reconstruction process followed the most
recent guidelines for cortical sources reconstruction M/EEG
data and related statistical analyses (Tadel et al., 2019). Struc-
tural magnetic resonance images (MRIs) were available for
all participants (except one) and were all preprocessed with
FreeSurfer (Fischl, 2012). For the only participant for which
MRI was not available, we used the default cortical anatomy
of the Montreal Neurological Institute (MNI).
We co-registered the brain surfaces from their individual seg-
mented MRIs (Nolte, 2003) with an overlapping sphere head
model. Empty-room recordings (2 minutes) collected the same
day as the subject’s recordings were pre-processed following
the same steps as participants’ data, and used to calculate the
noise covariance matrix.
Forward modelling of electromagnetic fields was computed
through the overlapping-spheres method (Huang et al., 1999).
The estimation of distributed source amplitudes (inverse mod-
elling) was computed using a weighted minimum-norm in-
verse kernel (wMNE) (Hämäläinen and Ilmoniemi, 1994). A
z-score normalization was applied to each cortical source trace
with respect to the prestimulus period (-200, 0 ms): this stan-
dardization replaces the raw source amplitude (pAm) value
with new values that are suitable for hypothesis testing and,
moreover, reduces the influence of inter-individual fluctuations
in neural current intensity that is due to irrelevant anatomical
or physiological differences (Tadel et al., 2019). Absolute val-
ues were used to compute the contrast measure between con-
ditions regardless of the current’s polarity.
After obtaining the individual cortical maps of source
activity for each individual, cortical sources were nor-
malized onto a standard MNI brain (Montreal, Canada;
http://www.bic.mni.mcgill.ca/brainweb). Surface smoothing
was applied using a circularly symmetric gaussian kernel with
a full width half maximum (FWHM) size of 5 mm. Such fur-
ther steps improve the possibility to detect differential activity
in a specific cortical region at the group level by reducing noise
and inter-individual variability.
Finally, source data were averaged over the time points of in-
terest that emerged from the ERF analyses and compared be-
tween the different subjective perceptual outcomes (segrega-
tion vs. integration), separately for both tasks. The result-
ing anatomical structures that were differentially activated as
a function of subjective perception were labeled according to
both the Desikan-Killiany and Brodmann atlases (see Table 1)
and were used as ROIs for the MVPA of time-frequency data
and functional connectivity (phase coherence) analyses, both
described in the next paragraphs.

Time-frequency decomposition and ROI-based
single-trial phase decoding

Artifact-free epochs were transformed into time-frequency do-
main using a complex Morlet wavelet with varying number

Table 1: Anatomical structures differentially activated as a function of subjective per-
ception in the two task condition are listed together with their MNI coordinate (point of
maximum difference); these cortical areas were labeled according to both the Desikan-
Killiany and Brodmann atlases and were used as regions of interest (ROIs) for the MVPA
of time-frequency data in the pre-stimulus interval and for functional connectivity analy-
ses.

Task ROIs label MNI coord Cortical location (AAL)

TFF

V2 L -3,-95,-24 Cuneus L
V2 R 35, -86, -19 Occipital Inf R
MT R 54, -70, 4 Temporal Mid R
IFG R 53, 27, 8 Frontal Inf Tri R
MFG R 25, 58, 16 Frontal Sup R
MFG L -37, 54, 26 Frontal Mid L
IFG L -51, 19, -1 Frontal Inf Tri L
STG L -67, -12, 4 Temp Sup L

AM

TPJ 55, -47, 18 Temporal Sup R
IPS/SupPariet R 36, -63, 42 Angular R
MTG R 47, -21, -8 Temporal Mid R
Insula R 45, 1, 3 Insula R
SupFront R 27, -9, 69 Frontal Sup R
SupFront L -18, -8, 78 Frontal Sup L
IFG R 55, 18, -2 Frontal Inf Oper R
Insula L -43, -1, -4 Insula L
STG L -51, 18, -11 Temporal Pole Sup L
TempInf R 45, -47, -17 Temporal Inf R
V1 L -9, -95, 1 Calcarine L

of cycles (3 at the lowest frequency and 10 at the highest) to
obtain time-frequency (complex number) representation in 68
frequency bins from 3 to 30 Hz and 250 time points covering
the entire epoch length relative to the stimulus onset.
Following a similar method used in our previous study (Ron-
coni et al., 2017), we used for each participant a searchlight
with a cross-validated Naı̈ve Bayes phase classifier to classify
whether and at which frequencies the pre-stimulus phase of
ongoing ROI activity could predict subjective perception. For
the cross-validation, a split-half method was used on single
trial source activity estimated for each ROI: 50% of the trials
were selected pseudo-randomly for training the classifier, and
the remaining half were used for testing. We performed this
operation twice, training on one half and testing on the other
half, and vice versa. Classification accuracy was computed as
the number of correctly predicted condition labels divided by
the total number of predictions. In all cases the train and test
set were both balanced across the two conditions (integration
or segregation). In other words, the number of trials in each
condition was the same; where necessary (a few) trials were
dropped using sub-sampling from the train or test set to ensure
balance.
For the classifier, we used a custom re-implementation of some
of the functionality present in the Circular Statistics Toolbox
(Berens, 2009). We used a novel multivariate phase classifi-
cation approach which was previously published in Ronconi
et al. (2017). The input of the classifier was phase data from
a set of trials with two conditions for a set of k features (com-
bination of time points and frequencies). For each condition
label c (indicating integration or segregation) and feature i in
the training set, the average phase θc,i, and concentration pa-
rameter kc,i was computed. For each trial in the test set, the
probability pi,c that it belonged to class c according to feature
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i was computed using the von Mises circular probability den-
sity function (as implemented in circ vmpdf.m in the circstat
toolbox). Since our classification approach was Naı̈ve Bayes
(assuming independence across features), the combined class
probability Pc that a trial belonged to condition c was com-
puted as Pc = p1,c ∗ p2,c ∗ . . . pk,c integrating the informa-
tion across the k features. The predicted condition label was
set to the one with the highest probability. For improved ac-
curacy when using very small probability values, our imple-
mentation took the logarithm of the probabilities and summed
them. Since we used balanced trial counts for the two condi-
tions there was no need to assume different prior probabilities
accounting for class frequency.
For the temporal-frequency searchlight used in each ROI, each
searchlight was based on radii of 4 time points and 8 frequen-
cies. For a given ‘center’ feature (combination time point and
frequency), features within a distance of 4 time points and 8
frequencies were selected and used for cross-validated classi-
fication as described earlier. The classification accuracy was
then assigned to the center feature. This process was repeated
for each feature, resulting in a classification accuracy map for
all time points and frequencies within each ROI.

Functional connectivity

Connectivity analysis was performed between pairs of ROIs
defined at the cortical source level, using as hubs the specific
ROIs where perception could be successfully decoded. Esti-
mating functional connectivity at the source level has the ad-
vantage of reducing the effect of electromagnetic field spread
and preventing spurious (non-independent) source-leakage ef-
fects, such as linear mixing or cross-talk between time se-
ries (Schoffelen and Gross, 2009). Specifically, we hypothe-
sized that stronger connectivity states around the stimulus on-
set would lead to better communication between lower-order
and higher-order visual regions, in agreement with recent find-
ings (Rassi et al., 2019), thus promoting a more accurate rep-
resentation (i.e. segregation) of visual stimuli.
To estimate the coupling between pairs of ROIs, we employed
the magnitude squared coherence, a widely used measure of
phase-dependent connectivity (Schoffelen and Gross, 2009),
calculated in a pre-stimulus time period extending 1 second
before the first stimulus onset. As before, we used the same
number of trials to estimate connectivity in the two condi-
tions (integration or segregation), by subsampling the condi-
tion with more trials.
We focused our analysis in the frequency bands which
emerged as significant predictors of subjective perception in
the pre-stimulus phase decoding analyses. Based on our previ-
ous study (Ronconi et al., 2017) we expected these frequencies
to be in the theta and alpha band. Given that the frequency of
alpha could play a role in determining integration vs. segrega-
tion of visual stimuli (Samaha and Postle, 2015; Ronconi et al.,
2018; Wutz et al., 2018), the whole alpha band was split into
lower alpha (8-10 Hz) and upper alpha (11-14 Hz). Bonferroni
correction for multiple comparisons were employed to correct

for these different frequency bands tested.

Results

Behavioral results

Perceptual judgments of the stimuli, presented randomly in the
left or right visual hemifield, were bistable in both types of tri-
als (two-flash fusion/FTT and apparent motion/AM). Specifi-
cally, two distinct flashes were reported on average on 40.2%
(SD = 17.4%) of trials in the TFF condition and 46.3% (SD =
8.2%) of trials in the AM condition. The two trial types did not
differ significantly in the rate of segregation/integration trials
(t(26) = -1.6, p = .12). These results suggest that ISI values ef-
fectively caused the two stimuli to be integrated on about half
of the trials.

ERFs and cortical sources estimation

Cluster-based permutation tests allowed us to detect reliable
differences between the ERFs evoked by segregation and inte-
gration in both the TFF and AM tasks. The complete set of
sensors showing cluster-corrected significant differences for
each comparison can be seen in 1B. In the TFF condition,
ERFs started to differ as a function of subjective perception
as early as 84 ms after the first flash onset (around 24 ms after
both stimuli had offset) and continued till the end of the time
period considered (700 ms) in a large group of sensors (mini-
mum cluster-corrected p = .002; maximum cluster-corrected
p = .033). In the AM condition, ERFs started to differ in a
later time window, possibly because the second stimulus here
appeared 120 ms after the first one; specifically, ERFs differed
significantly starting from 390 ms (250 ms after both stim-
uli had been presented and removed) and continued till the
end of the time period considered (700 ms; minimum/maxi-
mum cluster-corrected p = .049). As a general pattern emerg-
ing from the ERF analysis visible both in the TFF and the
AM tasks, in all sensors where cluster-corrected differences
emerged, two stimuli that were segregated elicited higher ERF
amplitudes. Cortical sources estimation allowed us to identify
ROIs that showed differential activity as a function of the type
of percept (single/motion vs. double/alternation). They were
considered as ROIs for pre-stimulus analyses (MVPA decod-
ing and connectivity) only if their extension was equal or ex-
ceeded 10 cortical vertices.
The TFF and AM tasks elicited activities in two large and
mostly non-overlapping cortical regions (Figure 2). Specifi-
cally, the TTF task showed different activity in visual areas
including bilateral V1/V2 and the right MT area, in the left
superior temporal area and bilaterally in frontal areas, i.e. the
inferior and mid/superior frontal gyri. In contrast, the AM task
showed different activity in the right MT area, in the right in-
traparietal sulcus IPS, in the right temporo-parietal junction
(TPJ), in the right middle temporal gyrus, in the right insula
and bilaterally in the superior frontal gyrus. The complete
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Figure 2: Event-related neural activity at the source level for the TFF and AM task. Cortical maps of activity (segregation–integration difference expressed as t-values) at the source
level, averaged over the time windows where we found significant cluster-based permutation differences at the sensors level (from 100 to 700 ms after the first target onset for the
TFF task and from 400 to 700 ms after the first target onset for the AM task). These areas that responded differently in the post-stimulus period have been considered ROIs for
pre-stimulus MVPA and connectivity analyses if they passed the statistical threshold and also if extension was equal or above 10 cortical vertices. For details about the labelling and
cortical locations of ROIs see Table 1.

set of sources that for showed both tasks significant differ-
ent activations are displayed and their anatomical labels are
reported in Table 1 together with their MNI coordinates and
cortical locations as derived from Automated Anatomical La-
beling (AAL; Tzourio-Mazoyer et al. 2002).

Decoding of perceptual outcome from pre-
stimulus sources activity

Single-trials data from all ROIs were extracted and the relative
time-frequency transformations were obtained to evaluate if
prestimulus activity could be used to decode subjective percep-
tion, and if so, at which frequencies. The decoding accuracy
(t-values) for the different perceptual outcomes obtained with
the naive Bayes classifier searchlight performed on single-trial
phase values is shown in Figures 3 and 4. Cluster-corrected
permutation tests revealed that the time-frequency ranges in
which subjective perception could be accurately decoded was
different between the TFF and the AM task, and it was ob-
served in different ROIs. Indeed, the highest decoding accu-
racy in predicting subjects’ perceptual outcome from the phase
of prestimulus oscillation in the TFF task was found in the
MT area of the right hemisphere, with frequencies spanning
predominantly the theta and the alpha band (≈5-12 Hz) and

around -400/-200 ms relative to the onset of the first stimu-
lus (p=.048). On the contrary, decoding perceptual outcome in
the AM condition was significant in the right IPS area for fre-
quencies in theta band (≈4-7 Hz) at and around -700/-400 ms
relative to the onset of the first flash (p = .026). Notably, these
findings are perfectly in line in terms of time/frequency win-
dows with previous EEG evidence in an independent partici-
pant sample (Ronconi et al., 2017), representing thus a repli-
cation of our previous findings.

Prestimulus MEG connectivity is predictive of
upcoming perceptual integration/segregation

Based on results of MVPA that revealed significant decoding
performance from prestimulus activity of the right MT (for the
TFF task) and of the right IPS (for the AM task) areas, we
used these ROIs as hubs for pre-stimulus connectivity analyses
within the extended network that showed differential activa-
tion as a function of integration/segregation of visual stimuli.
For the TFF task (Figure 5), we found that perceptual segre-
gation (i.e. perception of two distinct flashes) was preceded
by a significant increase of prestimulus connectivity in the
upper alpha band (11-14 Hz) between the areas MT and V2
of the right hemisphere (p = 0.0384; one-tailed, Bonferroni
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Figure 3: Single-trial prestimulus activity of the right MT area successfully decoded subjective perception in the TFF task. The prestimulus activity of source-level ROIs defined based
on post-stimulus differences between perceptual outcome was the focus of a multivariate decoding analysis that aimed at evaluating whether ongoing phase at different oscillatory
rhythms could predict subjective perception (i.e. temporal integration/segregation; single vs. double flash) in the TFF task (for both left and right visual hemifields). For each ROI,
time-frequency plots show the group-level phase-decoding accuracy (difference against the chance level/50% decoding accuracy, expressed in t-values) obtained with a naive Bayes
classifier searchlight. The outlined areas of the plots delimit the time/frequency points in which a significant difference was obtained with cluster-corrected permutation tests.

corrected); similarly, a tendency for a significant increment
in pre-stimulus connectivity was found in the theta band (4-7
Hz) between the areas MT and IFG of the right hemisphere
(p = 0.0505; one-tailed, Bonferroni corrected). No other
pairwise differences in connectivity to/from the area MT were
found to be significant (all p > .289).
For the AM task (Figure 6), we found that perceptual segrega-
tion (i.e. perception of two distinct flashes) was preceded by
a significant increase of prestimulus connectivity in the theta
band (4-7 Hz) between the areas IPS/Superior Parietal and MT
of the right hemisphere (p = .045; one-tailed, Bonferroni cor-
rected). No other pairwise differences in connectivity to/from
the right IPS/Superior Parietal were found to be significant (all
p > .087).

Discussion

Starting from the idea that one cycle of low-frequency neural
oscillation represents the elementary unit for sampling sensory
information in different domains (Pöppel, 1997; Van Wassen-
hove, 2016; VanRullen, 2016), in the present study we used
multivariate decoding of MEG data to shed light on the neu-
ral networks underlying the fundamental ability of the human
visual system to integrate and segregate visual input. Our find-
ings clearly point to two different functional networks under-

lying two aspects of visual temporal processing. The first net-
work, involved in rapid temporal segregation of stimuli sepa-
rated by just a few tens of milliseconds, was associated with
early visual processing areas and visual area V5/MT. Indeed,
V5/MT is sensitive to stimuli presented at high temporal fre-
quency and has been previously associated with temporal per-
ception (Bueti et al., 2008a). Here, we showed that the phase
of alpha oscillations localized to this area predicted integra-
tion versus segregation in the two-flash fusion task. More-
over, V5/MT also showed increased functional connectivity
with early visual areas (V2) in the upper alpha-band when par-
ticipant segregated the two stimuli.
In contrast, for a longer temporal scale and with visual infor-
mation displayed in different spatial locations, higher-order
cortical areas in the parietal lobe (i.e. IPS/Superior parietal
cortex) were identified as the source of phase decoding in the
theta band. This area showed also increased theta-band con-
nectivity with the area V5/MT when participant segregated the
two stimuli as opposed to perceiving a single object in (appar-
ent) motion. These findings build on work showing a promi-
nent theta band rhythm in visual processing areas (Spyropou-
los et al., 2018) as well as in parietal cortex (Raghavachari
et al., 2006), and suggest the active integration and segrega-
tion of sensory stimuli, at least in the visual modality, relies
on a phase-dependent temporal coding at low-mid frequency
oscillations. Thanks to principles of phase-amplitude coupling
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Figure 4: Single-trial prestimulus activity of the right superior parietal areas (including IPS) successfully decoded subjective perception in the AM task. The prestimulus activity
of source-level ROIs defined based on post-stimulus differences between perceptual outcome was the focus of a multivariate decoding analysis that aimed at evaluating whether
ongoing phase at different oscillatory rhythms could predict subjective perception (i.e. temporal integration/segregation; motion vs. alternation) in the AM task (for both left and
right visual hemifields). For each ROI, time-frequency plots show the group-level phase-decoding accuracy (difference against the chance level/50% decoding accuracy, expressed
in t-values) obtained with a naive Bayes classifier searchlight. The outlined areas of the plots delimit the time/frequency points in which a significant difference was obtained with
cluster-corrected permutation tests.

previously demonstrated for both alpha and theta oscillations
(Jensen et al., 2014; Lisman and Jensen, 2013; Köster et al.,
2019), low-mid frequency oscillations would then modulate
gamma-band activity in order to organize simple perceptual
representations in time, limiting the number of representa-
tions that can be processed in each oscillatory cycle depend-
ing on ‘hardware’ limits, i.e. the basic temporal resolution
of our visual system, and also on whether they involve track-
ing of events in a single or different spatial location. The
co-existence of these different rhythms could theoretically ac-
count also for integration of stimuli of higher complexity than
the ones employed in the present study, such as words, ob-
jects or faces (Drewes et al., 2015; Wang and Luo, 2017), that
would require a more complex brain network of visual regions
to be tracked in their spatiotemporal dynamics (Baldauf and
Desimone, 2014; de Vries and Baldauf, 2019).
Our results are among the first to elucidate cortical origins of
alpha and theta activity in the context of visual temporal pars-
ing, building on previous sensor-level EEG findings (Ronconi
et al., 2017). In fact, in the present study we replicate, in a new
set of participants and with different neuroimaging tools, our
previous EEG finding showing that the perceptual interpreta-
tion (integration vs. segregation) depended on the phase of
ongoing/prestimulus oscillations at different frequency bands
(Ronconi et al., 2017). Not only were the frequencies show-

ing maximum decoding accuracy for the tasks closely match-
ing between the present MEG and the previous EEG data, but
there was a matching topography of the maximum decoding
accuracy with the right posterior channels found already pre-
viously compatible with results obtained here at the cortical
sources level. The current findings replicate and substantially
extend those findings to also uncover the network connectivity
that may underlie these two sampling frequencies. Our results
are in line with previous theoretical proposal claiming that tim-
ing does not involve a single, centralized clock for the visual
system, but that visual timing is dependent on the pattern of ac-
tivity within distributed networks (Burr and Morrone, 2006).
In addition, our findings agree with TMS evidence causally
linking V5/MT to timing processes in the visual domain that
have used temporal discrimination tasks (Bueti et al., 2008b,a;
Salvioni et al., 2013; Mioni et al., 2020).
Moreover, the evidence reported here are in line with other
studies showing dissociations between MT and parietal lobe
for spatiotemporal resolution of perception and motion extrap-
olation (Battelli et al., 2003, 2001) and with theoretical mod-
els proposing the existence of a “when” pathway in the human
visual system involving V5/MT and the parietal lobe of the
right hemisphere (Battelli et al., 2007). Interestingly, patients
with right parietal damage do not have impairment in low-level
temporal processing as measured by flicker detection thresh-

8

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 10, 2022. ; https://doi.org/10.1101/2022.05.09.491140doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.09.491140
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 5: Connectivity results for the TFF task. (A) Following the results obtained in
the MVPA analysis, we used the right MT area as the seed for testing functional con-
nectivity (based on phase coherence) between this area and the other ROIs differentially
activated in the TFF task. Results showed a significant increment of connectivity before
the onset of the targets between right MT and early visual areas (i.e. V2) in segregation
trials, as compared to integration trials, in the upper alpha band (11-14 Hz). A trend to-
ward a significant increment in connectivity in segregation trials was found also in slower
frequencies in the theta band between right MT and right IFG areas. (B) Schematic repre-
sentation of connectivity results obtained, where bold lines mean significant connectivity
variation between pairs of relevant ROIs, while dotted lines are displayed where no sig-
nificant connectivity differences were obtained.

olds (Battelli et al., 2003). In contrast, parietal patients have
shown a bilateral deficit in apparent motion perception (Bat-
telli et al., 2001), while deficits in other attentional tasks, such
as multiple-object tracking, were present only in the hemifield
contralateral to the parietal lesion. Such dependence of appar-
ent motion perception on right hemisphere areas – irrespective
of stimuli presentation hemifield – closely matches our data
showing the involvement of a network of right hemispheric re-
gions. Together, these results suggest that the parietal cortex
of the right hemisphere may serve as a main control hub for
theta-driven spatiotemporal integration in visual perception.
The definition of these different networks at the source-level
might stimulate future transcranial electrical stimulation (tES)
studies, in an attempt to bring causal evidence about the role
of oscillatory activity within these networks in determining

Figure 6: Connectivity results for the AM task. (A) Following the results obtained in
the MVPA analysis, we used the right IPS/Superior Parietal area as the seed for testing
functional connectivity (based on phase coherence) between this area and the other ROIs
differentially activated in the AM task. Results showed a significant increment of con-
nectivity before the onset of the targets between the right IPS/Superior Parietal and the
right MT are in segregation trials, as compared to integration trials, in the theta band
(4-7 Hz). (B) Schematic representation of connectivity results obtained, where bold lines
mean significant connectivity variation between pairs of relevant ROIs, while dotted lines
are displayed where no significant connectivity differences were obtained.

spatio-temporal aspects of perception. In particular, transcra-
nial alternating current stimulation (tACS) could be of central
relevance due to its ability to modulate brain oscillations in
a frequency-dependent manner, with initial evidence linking
tACS at specific frequencies with some basics binding pro-
cesses in the visual system (for a review see Ghiani et al.
2021). Using the two-flash fusion tasks, (Battaglini et al.,
2020) showed recently that participants tend to integrate two
subsequent flashes more often (i.e., they tend to report just one
flash) when 10 Hz tACS (i.e., alpha tACS) was applied over
V5/MT of the right hemisphere and surrounding extrastriate
visual regions. On the contrary, 18Hz tACS (i.e., tACS within
the beta band) and sham had no significant effect on the re-
ported number of flashes. These findings provide initial con-
firmation to the idea of a causal link between alpha activity in
V5/MT and extra-striate visual regions and temporal integra-

9

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 10, 2022. ; https://doi.org/10.1101/2022.05.09.491140doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.09.491140
http://creativecommons.org/licenses/by-nc-nd/4.0/


tion/segregation for short temporal scales.
The importance of the current replication and extension of pre-
vious results using this same (Ronconi and Melcher, 2017;
Ronconi et al., 2017) or similar paradigms (Varela et al., 1981;
Mathewson et al., 2009; Wutz et al., 2014, 2016; Milton and
Pleydell-Pearce, 2016) is heightened by multiple null findings
in recent studies investigating the impact of ongoing alpha os-
cillations on perception. In fact, several recent works show
no effect of alpha phase in stimuli detection (Ruzzoli et al.,
2019), visual awareness and accuracy (Benwell et al., 2017,
2021) or reaction times (Vigué-Guix et al., 2020). In another
study using both flashes and sounds, Buergers and Noppeney
(2022) found no effect of alpha frequency (both as an individ-
ual trait and as a varying state) on visual integration, posing
an important challenge to the claim that ongoing alpha oscil-
lations impact the temporal precision of visual perception.
Given the set of null findings just cited, the relevance of the
current work is twofold: firstly, it reinforces the idea that the
phase of ongoing alpha band oscillations shapes our conscious
perception, and that this contribution is critical in the integra-
tion and segregation of visual stimuli. Secondly, contrarily to
Buergers and Noppeney (2022), we provide evidence of the
role of ongoing alpha oscillations in pacing visual perception,
by demonstrating a pattern of connectivity between V2 and
MT critically specific to the upper alpha band and to the seg-
regation of visual stimuli. Reasons of this discrepancy might
have to be searched into the different sources of alpha oscil-
lations (Womelsdorf et al., 2014), characterizing either top-
down cortical influences (Van Kerkoerle et al., 2014; Halgren
et al., 2019) or thalamo-cortical communications (Bollimunta
et al., 2011; Hughes et al., 2011).
To summarize, the current results demonstrate the existence
of two networks for visual temporal integration: an alpha fre-
quency network involving relatively early visual processing ar-
eas that determines the temporal resolution of rapid visual per-
ception, and a slower, theta frequency network involving pari-
etal regions in the interpretation of more complex spatiotem-
poral events. The different sampling frequencies, alpha and
theta, may reflect different network activity and connectivity
patterns in right-lateralized cortical regions that form the hu-
man dorsal “where” and “when” systems.
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Köster, M., Martens, U., and Gruber, T. (2019). Memory en-
trainment by visually evoked theta-gamma coupling. Neu-
roImage, 188:181–187.

Lansing, R. W. (1957). Relation of brain and tremor rhythms
to visual reaction time. Electroencephalography and clini-
cal neurophysiology, 9(3):497–504.

Lisman, J. E. and Jensen, O. (2013). The theta-gamma neural
code. Neuron, 77(6):1002–1016.

Mathewson, K. E., Gratton, G., Fabiani, M., Beck, D. M.,
and Ro, T. (2009). To see or not to see: prestimulus α
phase predicts visual awareness. Journal of Neuroscience,
29(9):2725–2732.

Milton, A. and Pleydell-Pearce, C. W. (2016). The phase of
pre-stimulus alpha oscillations influences the visual percep-
tion of stimulus timing. Neuroimage, 133:53–61.

Mioni, G., Grondin, S., Bardi, L., and Stablum, F. (2020).
Understanding time perception through non-invasive brain
stimulation techniques: A review of studies. Behavioural
brain research, 377:112232.

Morillon, B. and Schroeder, C. E. (2015). Neuronal oscilla-
tions as a mechanistic substrate of auditory temporal pre-
diction. Annals of the New York Academy of Sciences,
1337(1):26–31.

Nolte, G. (2003). The magnetic lead field theorem in the quasi-
static approximation and its use for magnetoencephalog-
raphy forward calculation in realistic volume conductors.
Physics in Medicine & Biology, 48(22):3637.

Oostenveld, R., Fries, P., Maris, E., and Schoffelen, J.-M.
(2011). Fieldtrip: open source software for advanced anal-
ysis of meg, EEG, and invasive electrophysiological data.
Computational intelligence and neuroscience, 2011.

Oosterhof, N. N., Connolly, A. C., and Haxby, J. V. (2016).
Cosmomvpa: multi-modal multivariate pattern analysis of
neuroimaging data in matlab/gnu octave. Frontiers in neu-
roinformatics, 10:27.
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