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Abstract 13 

Extant ray-finned fishes (Actinopterygii) dominate marine and freshwater 14 

environments, yet their spatiotemporal diversity dynamics following their origin in the 15 

Palaeozoic are poorly understood. Previous studies investigate face-value patterns of 16 

richness, with only qualitative assessment of potential biases acting on the Palaeozoic 17 

actinopterygian fossil record. Here, we investigate palaeogeographic trends and apply 18 

richness estimation techniques to a recently-assembled occurrence database for Palaeozoic 19 

ray-finned fishes. We reconstruct patterns of local richness of Palaeozoic actinopterygians, 20 

alongside sampling standardised estimates of ‘global’ diversity. We identify substantial fossil 21 

record biases, such as geographic bias in the sampling of actinopterygian occurrences centred 22 

around Europe and North America. Similarly, estimates of diversity are skewed by extreme 23 
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unevenness in the abundance distributions of occurrences, reflecting past taxonomic practices 24 

and historical biases in sampling. Increasing sampling of poorly represented regions and 25 

expanding sampling beyond the literature to include museum collection data will be critical in 26 

obtaining accurate estimates of Palaeozoic actinopterygian diversity. In conjunction, applying 27 

diversity estimation techniques to well-sampled regional subsets of the ‘global’ dataset may 28 

identify accurate local diversity trends. 29 

Keywords 30 

diversity; sampling standardisation; Actinopterygii; fossil record bias; Palaeozoic. 31 

Introduction 32 

There are around 32,000 species of living ray-finned fishes (actinopterygians), 33 

amounting to over half of extant vertebrate diversity, and split roughly evenly between marine 34 

and freshwater environments (1). Ray-finned fishes originated in the Palaeozoic, which saw 35 

major evolutionary events and changes in the vertebrate fauna, such as the emergence of 36 

jaws (2), the rise of actinopterygians (3), and the move onto land (4). Despite these pivotal 37 

changes, and a long history of research on actinopterygians, there are relatively few 38 

macroevolutionary studies investigating diversity trends in their early evolution, and all 39 

examine face-value patterns of taxonomic richness (3,5–9).  40 

Few studies investigate the suitability of the Palaeozoic ray-fin record for investigating 41 

diversity patterns, or potential biases. Notably, biases may impact the marine and freshwater 42 

record differently – late Palaeozoic Lagerstätten influence freshwater osteichthyan diversity 43 

more than marine (5). Low taxonomic diversity in the Devonian followed by an explosive 44 

increase in the early Carboniferous is generally interpreted as representing a genuine 45 

biological signal (3,10). Some authors qualitatively suggest that low Permian diversity is linked 46 

to the rarity of suitable deposits (11), or attribute the decline in richness among freshwater 47 

taxa to the loss of extensive Euramerican freshwater habitats (5). Other authors propose that 48 

the consistent ecomorphologies in typical Palaeozoic actinopterygians hint at constraints on 49 
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diversification into new ecologies and habitats and thus low richness (10). To date, previous 50 

studies only present face-value counts of actinopterygians through time without employing 51 

recent advances in methodologies to estimate diversity trends. An exception to this (5) 52 

performed coverage-based rarefaction to compare the Permian and Triassic as a whole, rather 53 

than to estimate diversity trends through time. 54 

Assessing the degree to which fossil record biases affect interpretations of richness is 55 

critical to obtaining an accurate estimate of diversity trends (12–14). These biases can be 56 

geological (15,16), geographic (17–19), or anthropogenic (20,21) in nature, and recent 57 

analyses show that ‘global’ fossil records are intimately linked to the spatial extent of that 58 

record (17,18). Various statistical methods attempt to tease apart bias from genuine changes 59 

(e.g. classical rarefaction and residual modelling), though not without complications (e.g. 60 

classical rarefaction can flatten diversity patterns (22–25). Recent years have seen the 61 

application of Shareholder Quorum Subsampling (SQS), also termed coverage-based 62 

rarefaction (25,26), to palaeobiological occurrence databases (17–19,27–31) as a means of 63 

deducing trends in palaeodiversity through time. As SQS subsamples intervals to equal levels 64 

of completeness it returns more accurate relative richness estimates between sampled 65 

intervals than size-based rarefaction (23), although is still susceptible to some biases (21,24). 66 

Principally, SQS estimates can have a significant evenness signal (21,24,32), which may be 67 

particularly important for datasets that are biased in ways that skew the evenness of frequency 68 

distributions within sampled intervals. A new richness estimator, squares (33), estimates 69 

higher richness when there are numerous rare taxa (i.e. singletons) and when common taxa 70 

are especially abundant. Squares is more robust to uneven distributions than SQS, though 71 

falls short when the ratio of richness counts to total number of taxa within intervals is very high 72 

(24). 73 

Until recently, no comprehensive through-Palaeozoic occurrence database existed (9), 74 

with previously-published databases limited in scope or not updated (3,5). Here, we apply 75 

coverage-based sampling standardisation to a newly-assembled occurrence database of 76 
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Palaeozoic actinopterygians to examine patterns of diversity, the suitability of the dataset, and 77 

the likely extent and impact of sampling biases. 78 

Methods 79 

Data preparation 80 

 Global occurrences of Palaeozoic Actinopterygii (9) were screened for taxonomically 81 

indeterminate occurrences and scale- and teeth-based occurrences. After removal, this 82 

resulted in a dataset of 1,611 occurrences of 468 species (belonging to 225 genera), from 507 83 

unique geographic localities. All occurrences were assigned to intervals of roughly equal 84 

length (~9 Ma), determined by either combining shorter intervals (e.g. Kasimovian [3.3 Ma] 85 

and Gzhelian [4.8 Ma] = Kasimovian and Gzhelian [8.1 Ma]), or splitting longer intervals (e.g. 86 

Visean [15.8 Ma] = early Visean [Chadian-Holkerian; 8.7 Ma] and late Visean [Asbian-87 

Brigantian; 7.1 Ma]; boundary based on the age of the Dunsapie basalt, see (34)). The cleaned 88 

dataset was used for local richness and diversity estimation. All analyses were conducted 89 

within R 4.1.0 (35). 90 

Alpha diversity (local richness) 91 

Species per locality were counted as a measure of alpha diversity (local richness (36)). 92 

Modern coordinates for these localities were translated into palaeocoordinates using the R 93 

‘chronosphere’ package (37). Local richness was then subset by marine and freshwater 94 

environment (brackish environments were included in marine counts) and plotted against 95 

palaeolatitude. Additionally, palaeogeographic maps showing local richness were produced in 96 

‘chronosphere’ (37) for each interval. It is uncertain whether some Permian localities (Pastos 97 

Bons – Brazil; Deep Red Run, Dundee, McCann Quarry, Pond Creek, South Dakota State 98 

Cement Plant Quarry – USA; Sobernheim – Germany) are Artinskian or Kungurian in age, and 99 

these localities are therefore plotted in both palaeogeographic maps.  100 

Sampling standardisation and diversity estimation 101 
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Coverage-based sampling standardisation (22,26,38,39) was used to estimate global 102 

diversity patterns via the R package iNEXT (version 2.0.19 (40)), following the procedure 103 

outlined in Dunne et al. (28). The data were rarefied by geographic locality by analysing 104 

incidence-frequency matrices of the occurrence data. Extrapolated estimates were limited to 105 

no more than twice the observed sample size (40). Coverage-standardised richness was 106 

computed at genus level using roughly equal length bins, at quorum levels 0.3, 0.4, 0.5 for 107 

genus-level analysis and up to 0.6 quorum for species-level analysis; higher quorums were 108 

unattainable. Devonian bins were excluded due to the very small sample-sizes and low levels 109 

of coverage. Rank abundance distributions and size- and coverage-based rarefaction curves 110 

were generated for each interval to investigate the reliability of coverage-based rarefaction 111 

estimates. 112 

Squares extrapolated estimates of genus and species richness were conducted in R 113 

by applying Alroy’s equation (33), following the same procedure as Allen et al. (30). 114 

Results 115 

Alpha diversity (local richness) 116 

Local richness is generally low in the Devonian (figure 1), with only one locality 117 

containing more than three genera (Paddy’s Valley, Gogo Formation, Frasnian, Australia). 118 

Levels of local richness are highest in the Carboniferous, particularly around the 119 

Serpukhovian-Moscovian boundary (figure 1), before declining steadily in the latest 120 

Carboniferous (Kasimovian and Gzhelian) and early Permian (Cisuralian). Notable localities 121 

contributing to the mid-Carboniferous peak include Glencartholm (Scotland, late Visean, 122 

marine), Ardenrigg (Scotland, Bashkirian, freshwater), Longton (England, Bashkirian, marine) 123 

and the Bear Gulch localities (USA, Serpukhovian, marine) (figure 1a). Sampling of marine 124 

and brackish palaeoenvironments in the latest Carboniferous (Kasimovian and Gzhelian) and 125 

earliest Permian (Asselian and Sakmarian) is very poor. Freshwater localities are also poorly 126 

sampled in the Artinskian and Kungurian, yielding very low richness, while richness and 127 
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sampling also remains low in marine deposits. In the latest Permian (Wuchiapingian and 128 

Changhsingian), marine localities generally have much higher genus counts than freshwater 129 

localities.  130 

Palaeomaps and geographic spread 131 

Devonian 132 

Despite their earliest occurrence being just north of the palaeoequator (Meemannia, 133 

Lochkovian, South China), actinopterygians are known almost exclusively from southern 134 

palaeolatitudes in the Devonian (figure 1b; figure 2a). Only two other northern hemisphere 135 

occurrences are reported (Cheirolepis, Givetian, Svalbard (41); Krasnoyarichthys, 136 

Famennian, Russia (42)). The majority of taxa occur at low palaeolatitudes (0° to -30°), with a 137 

small number just crossing into the mid-palaeolatitudinal band (-30° to -60°). A clear outlier, 138 

near the southern palaeopole (-83.81°), is the recently-reported Austelliscus ferox from Brazil 139 

(43). 140 

Devonian actinopterygian occurrences mirror both continental configurations—the 141 

majority of landmasses and shallow seas were palaeoequatorial and in the southern 142 

hemisphere (44)—and the broader Devonian fossil record (18,45,46). Givetian and Eifelian 143 

occurrences are dominated by European (especially Scottish) deposits, with limited 144 

contributions from the USA, Australia, the Antarctic and Brazil (figure 2a). In contrast, Frasnian 145 

occurrences (figure 2b) are dominated by the Australian Gogo Formation, with fewer 146 

occurrences from Europe and North America, and a single occurrence from Iran. The USA 147 

dominates Famennian occurrences (figure 2c), with additional occurrences from Russia, 148 

Greenland and Belgium. 149 

Carboniferous 150 

In general, Carboniferous localities have both higher local richness and a broader 151 

palaeolatitudinal spread than in the Devonian, although are generally still restricted to low and 152 

southern palaeolatitudes (figure 1b). Most Tournaisian localities are clustered at low 153 
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palaeolatitudes around the southern edge of Euramerica in regions that correspond to present-154 

day Canada, USA, UK, and European Russia. Localities with lower local richness are found 155 

in Australia, Turkey, and Siberia. In contrast, early Visean (Chadian-Holkerian) low- to mid-156 

palaeolatitudes are depauperate (figure 2e), although the Waaipoort Formation in South Africa 157 

(-78°) represents the richest high-palaeolatitude locality of the entire Palaeozoic. 158 

For much of the rest of the Carboniferous, local richness greatly increases while 159 

palaeolatitudinal spread decreases. Other than single occurrences from Australia and the 160 

USA, all late Visean actinopterygians are clustered in the UK and Ireland, including the highly 161 

diverse Glencartholm locality (figures 1b and 2f). Similarly, in the Serpukhovian (figure 2g), 162 

only a single occurrence is found outside a 20° palaeolatitudinal band centred around the 163 

palaeoequator encompassing UK localities, a single Belgian locality, and the speciose Bear 164 

Gulch localities. Geographic spread continues to decline in the Bashkirian (figure 2h) and 165 

Moscovian (figure 2i), with all occurrences within 10° of latitude of the palaeoequator. Again, 166 

localities only are only known in Europe (Belgium, Czechia, France, Ireland, UK) and North 167 

America (Canada, USA). The only latest Carboniferous (Kasimovian and Gzhelian; figure 2j) 168 

locality outside of this band is the -60° Gzhelian Ganigobis Shale, which outcrops in South 169 

Africa and Namibia, albeit with low local richness. Broadly, Carboniferous actinopterygian 170 

palaeolatitudinal distribution matched other contemporaneous groups (18,46). 171 

Permian 172 

Compared to the Carboniferous and Devonian, Permian occurrences generally display 173 

a broader geographic spread (reflecting increases in the broader fossil record (18,46)) but 174 

lower local richness. The extent of palaeogeographic sampling in the Asselian and Sakmarian 175 

(figure 2k) is greater than the Kasimovian and Gzhelian, with more occurrences at higher 176 

palaeolatitudes, including the diverse Uruguayan fauna from Rio Negro (-53°). The Artinskian 177 

(figure 2l) is the most depauperate interval of the Palaeozoic outside of the Devonian, despite 178 

a comparatively high palaeogeographic spread: the locality with the highest local richness, 179 
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Loeriesfontein, contains only four genera. Contrary to most other Palaeozoic intervals, there 180 

are very few European Artinskian localities.   181 

From the Kungurian (figure 2m) onwards, localities occur across the broadest 182 

palaeolatitudinal spread of the entire Palaeozoic. This includes the first sampling of northern 183 

mid-palaeolatitudes since the Tournaisian. Wordian and Roadian localities (figure 2n) with the 184 

highest local richness are found in Russia, centred around 30° palaeolatitude, although less 185 

diverse occurrences are seen at high southern palaeolatitudes in Brazil, India, and Zimbabwe. 186 

In contrast to most other intervals, only two depauperate localities occur near the 187 

palaeoequator. This trend continues into the Capitanian (figure 2o), where localities yielding 188 

few genera are found across a wide range of palaeolatitudes, with very few at equatorial 189 

latitudes, and most diversity stems from Russia. 190 

The Wuchiapingian and Changhsingian interval (figure 2p) has the broadest 191 

geographic spread in sampling of the Palaeozoic, possibly due to intensive research focus on 192 

the Permo-Triassic mass extinction event (47,48). Numerous localities are spread from 193 

southern mid- to high-palaeolatitudes, including opposing sides of the palaeopole (present-194 

day South Africa and Australia). Notably, this interval contains the first Palaeozoic 195 

actinopterygians from the eastern Palaeotethys (present-day China) aside from a single 196 

Lochkovian occurrence. Northern low- to mid-palaeolatitudes have the highest local richness, 197 

stemming from assemblages in the UK and Germany, Russia, and Greenland.  198 

Palaeodiversity estimates 199 

Coverage-based rarefaction 200 

Estimates of relative genus richness using coverage-based rarefaction (figure 3a) 201 

suggest a gradual overall decline in diversity through the Carboniferous, with a sharp rise then 202 

subsequent fall in the Permian. Richness levels decrease from the Tournaisian through to the 203 

late Visean (the most intensely sampled interval of the Carboniferous), before peaking in the 204 

Serpukhovian. The remainder of the Carboniferous is marked by a decline, with the lowest 205 
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observed values in the Kasimovian and Gzhelian, another intensely sampled interval. 206 

Richness estimates rise slightly across the Carboniferous-Permian boundary, followed by a 207 

precipitous rise in the Kungurian, where the highest levels in the Palaeozoic are reached. A 208 

steady decline marks the remainder of the Permian.  209 

Coverage-rarefied estimates of species richness differ notably from genus estimates 210 

(figure 3b). Overall, estimates of species diversity generally increase, albeit irregularly, across 211 

the Carboniferous until a crash in the Kasimovian and Gzhelian, followed by two distinct peaks 212 

and declines in the Permian. Species richness initially decreases through the Tournaisian and 213 

Visean and increases in the Serpukhovian, with a drop into the Bashkirian and subsequent 214 

rise into the Moscovian, which represents the highest richness levels of the Carboniferous. 215 

This peak is immediately followed by a Kasimovian and Gzhelian trough. Levels rise steeply 216 

in the Asselian and Sakmarian followed by another abrupt drop in the Artinskian. There is only 217 

a modest rise into the Kungurian, with the major peak in species-level estimates seen in the 218 

Roadian and Wordian. A relative decrease in the Capitanian is followed by a minor decline 219 

through the Wuchiapingian and Changhsingian.  220 

Squares 221 

Squares diversity estimates contrast starkly with coverage-based rarefaction 222 

estimates: where coverage-based rarefaction returns low estimates, squares estimates are 223 

generally high. Squares-extrapolated genus richness estimates (figure 4a) gradually increase 224 

throughout the Devonian and into the Tournaisian. Early Visean estimates drop back to 225 

Famennian levels, before gradually rising in the late Visean to Serpukhovian. A slight decrease 226 

into the Bashkirian is followed by a steeper decline in the Moscovian. The highest estimates 227 

thus far are seen in the latest Carboniferous with a further increase into the Asselian and 228 

Sakmarian, followed by a precipitous drop in the Artinskian. Richness estimates rise in the 229 

Kungurian and marginally in the Roadian and Wordian before dropping in the Capitanian. The 230 

latest Permian (Wuchiapingian and Changhsingian) is the most diverse interval of the 231 

Palaeozoic. 232 
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Squares-extrapolated species richness trends (figure 4b) differ again from genus 233 

richness estimates. The pattern in the Devonian is in direct contrast, with estimates decreasing 234 

from the mid- through to late-Devonian in the Givetian and Eifelian, although a rise is observed 235 

across the Devonian-Carboniferous. As with genus estimates, the early Visean has lower 236 

richness than the Tournaisian. Species richness estimates rise significantly in the late Visean, 237 

quadrupling relative to the early Visean. The Serpukhovian sees a moderate decrease in 238 

richness, and this trend continues throughout the Bashkirian and Moscovian. Richness rises 239 

sharply in the Kasimovian and Gzhelian to the highest level of the entire Palaeozoic. A slight 240 

decrease across the Carboniferous-Permian boundary is followed by a precipitous drop in the 241 

Artinskian. Richness increases slightly in the Kungurian, recovers further in the Roadian and 242 

Wordian, declines again in the Capitanian, and finally increases in the latest Permian. 243 

 244 

Discussion  245 

Biogeographic trends and biases 246 

Palaeozoic actinopterygian occurrences are overwhelmingly geographically biased 247 

towards the northern hemisphere: fewer than 9% of known localities (52/586) are from the 248 

southern hemisphere (9). Certain regions are notably underrepresented throughout the 249 

Palaeozoic, such as the northern, eastern and southern Palaeotethys (present-day Middle 250 

East, south and east Asia, north Africa) and the northern coastline of Laurussia (present-day 251 

Siberia, Kazakhstan and interior of Asia). Sampling through much of the Devonian and 252 

Carboniferous is limited to a narrow band around the palaeoequator, largely corresponding to 253 

present-day Europe and North America (figure 2), which also contain localities with the highest 254 

local richness (9). The most diverse localities trend from low- to mid-palaeolatitudes through 255 

the Palaeozoic, essentially tracking the migration of North America and Europe (figure 1b). 256 

Reporting new taxa from underrepresented regions (41,43) will have major implications for 257 

palaeogeographical spread, patterns of diversity, and interpretations of ray-finned fish 258 
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evolution, especially in the face of taxonomic revisions invalidating many existing generic 259 

referrals (49,50).  260 

Ideally, rarefaction curves for sampled intervals should be close to asymptote before 261 

performing diversity estimation techniques to ensure that future sampling will not drastically 262 

alter face-value counts of richness. Inspection of the Palaeozoic ray-finned fish record 263 

suggests this condition has not yet been reached (figure S1). In the short term, increased 264 

sampling of the most under sampled intervals will improve comparability. However, research 265 

focus on taxa from well-sampled regions that are languishing undescribed in museum 266 

collections (51,52) is also vital for attaining accurate estimates of actinopterygian diversity in 267 

the Palaeozoic, particularly at local scales. 268 

Both marine and freshwater deposits are recorded throughout the Palaeozoic, with the 269 

number of sampled marine and freshwater deposits roughly tracking each other through much 270 

of the Carboniferous. However, marine palaeoenvironments are scarce in the later 271 

Palaeozoic. This long-recognised Permian imbalance (10,11,53) also extends back into the 272 

late Carboniferous (figure 1a). The near-complete lack of marine deposits suggests that low 273 

marine diversity in this period is linked to a geological bias and relative absence of these rocks 274 

rather than a true biological signal. There is certainly a change in the sampling of terrestrial 275 

vertebrates from aquatic to dryland terrestrial environments across the Carboniferous-276 

Permian (54), and a similar change may explain the drop in sampling of Permian 277 

actinopterygians. Concurrent with this environmental shift is a noticeable palaeogeographical 278 

expansion: rather than being restricted to palaeoequatorial regions, Permian occurrences are 279 

reported from much higher and lower palaeolatitudes. It is unclear to what extent this 280 

represents a shift in sampling regime rather than an ecological expansion.  281 

 282 

Palaeozoic actinopterygian diversity patterns 283 
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Changes in local richness largely track changes in ‘global’ (gamma) raw diversity (9), 284 

with the exception of the latest Carboniferous and earliest Permian (figure 1). In the late 285 

Carboniferous and early Permian, high levels of sampling (localities and equal-area grid cells 286 

(9)) of isolated localities with low alpha diversity drives high ‘global’ diversity, with few 287 

contributions from diverse assemblages. These richness patterns are drastically different to 288 

those reported for Palaeozoic tetrapods (28), and the overall decrease from the Carboniferous 289 

to Permian contrasts the biodiversification of invertebrates over the same period (55). 290 

In contrast to coverage-rarefied diversity estimates, extrapolated estimates from 291 

squares analysis return very similar trends to face-value counts of richness (3,5,9). These 292 

differences persist regardless of whether sampling is via equal length intervals or geological 293 

stages and are likely due to taxonomic biases (see below). This recalls recent work on 294 

Palaeozoic tetrapods, which found that diversity patterns among reptiles and synapsids 295 

changed significantly depending on the quorum levels or use of squares (56). For example, 296 

coverage-rarefied actinopterygian diversity decreases from the Tournaisian to the late Visean 297 

in contrast with previous hypotheses (3,6,9), yet both the face-value counts and squares 298 

estimates increase significantly from the early to late Visean. There is consensus however, in 299 

the high diversity of the Serpukhovian (3,9), indicating genuine diversity, though the vast 300 

majority of this is driven by the highly-diverse Bear Gulch fauna.  301 

Trends into the Pennsylvanian also differ, with the greatest difference in the 302 

diametrically opposed estimates for the Kasimovian and Gzhelian, which is attributable to the 303 

ways in which the methods estimate diversity. The same is also true for the Asselian and 304 

Sakmarian and late Permian. Coverage-rarefied diversity estimates depend on the attainable 305 

level of coverage, and examination of abundance distributions (figure S2) and rarefaction 306 

curves (figure S3) reveals that at higher coverage, the Kasimovian and Gzhelian would most 307 

likely represent one of the most diverse intervals. Squares, however, estimates higher 308 

richness when there are many singletons and when common taxa are especially common 309 
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(24), and these intervals fulfil both of these criteria. The combined presence of superabundant 310 

taxa and numerous singletons results in these conflicting estimations. 311 

Taxonomy also plays a key role. The observed rise in early Permian species-level 312 

diversity estimates in both analyses and face value readings (9) reflects the presence of 313 

numerous species of few genera (namely Amblypterus and Paramblypterus). The problem of 314 

superabundant genera is not unique to actinopterygians; such genera are known to bias other 315 

osteichthyan groups (57). In contrast, Kungurian estimates are based on very few occurrences 316 

of monospecific genera, and sampling of a high number of genera at low quorums results in 317 

high—yet unreliable—genus-level coverage-rarefied diversity estimates. The extremely high 318 

Roadian and Wordian species-level estimates in both analyses, not reflected at genus-level, 319 

can also be explained by high numbers of singletons and relative absence of common genera.  320 

 321 

Unevenness in the actinopterygian fossil record  322 

Coverage-based rarefaction techniques produce the most reliable richness estimates 323 

when rank abundance does not differ considerably between samples, even when samples 324 

have comparable face-value richness (22–26,32,38). Unevenness in abundance distributions 325 

can therefore heavily influence the reliability of diversity estimates. Rank abundance 326 

distribution plots for Palaeozoic actinopterygian genera and species indicate extreme 327 

unevenness within intervals and variation in evenness between intervals (figure S2). Some 328 

intervals (e.g. Kasimovian and Gzhelian) contain one or two taxa with more than 60 329 

occurrences, a handful with between 30 and ten occurrences, and a long tail of singletons or 330 

doubletons; others (e.g. Frasnian) have a more even distribution. Differences can even arise 331 

between the genus- and species-level abundance distributions in the same interval: in the 332 

Asselian and Sakmarian most species-level diversity stems from multiple species of two 333 

genera (Amblypterus and Paramblypterus), resulting in low genus estimates at lower 334 
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quorums, but higher species-level estimates due to the more even abundance distributions 335 

(compare figures S2a and S2b; S3f and S3i). 336 

Much of this imbalance is driven by ‘waste-basket’ genera erected by monographic 337 

descriptions (58–61), despite a wide range of varied morphologies and extensive temporal 338 

and geographic ranges within genera (9,62,63). These ‘waste-baskets’ serve to concentrate 339 

frequency counts of the most common genera, contributing to unevenness in the abundance 340 

distribution and distortion of coverage-based rarefaction estimates (22,23). The intervals most 341 

heavily biased towards superabundant taxa are the late Visean (Elonichthys: 54/266 342 

occurrences; Rhadinichthys: 54/266 occurrences), Kasimovian and Gzhelian (Elonichthys: 343 

65/230; Sphaerolepis: 60/230), Asselian and Sakmarian (Paramblypterus: 53/154 344 

occurrences; Amblypterus: 30/154 occurrences), and Wuchiapingian and Changhsingian 345 

(Palaeoniscum: 66/225 occurrences; Platysomus: 26/225 occurrences). As coverage-based 346 

rarefaction produces lower estimates when evenness is low (23), highly uneven intervals have 347 

low richness estimates at lower quorum levels (figure 3; figure S3). In contrast, at high 348 

quorums, where more taxa in the abundance distribution can be sampled, uneven intervals 349 

receive much higher richness estimates (see exponential rise in the rarefaction curves of 350 

uneven intervals at high coverage; figure S3).  351 

‘Waste-basket’ taxa may also mask true diversity: the dominance of highly abundant 352 

taxa means that a high proportion of sampled taxa consists of these few taxa, likely 353 

contributing to lower diversity estimates. Revisionary taxonomic work, such as recognising 354 

new genera among previously congeneric actinopterygians (49), and restriction of Elonichthys 355 

to just three species (50) rather than its previous 57, will alleviate this issue and mitigate the 356 

dominance of superabundant forms. These revisions, however, have the potential to increase 357 

unevenness in the other direction, as new taxa may end up as singletons or doubletons. 358 

Concurrently, the biostratigraphic significance of actinopterygians in deposits from the 359 

Permian of Russia (64–66) may contribute to oversplitting of taxa, echoing problems prevalent 360 

in the marine invertebrate fossil record (23). 361 
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Major variation in evenness between intervals is highlighted in the different trajectories 362 

of coverage-based rarefaction curves (figure S3). Taxonomic and geographic biases are 363 

exacerbated by small sample sizes and low coverage, with rarefaction curves crossing 364 

multiple times. Higher (more reliable) quorum levels are unobtainable for Palaeozoic 365 

actinopterygians due to the high number of singleton taxa (figure S3) controlling Good’s u (67). 366 

As a result, coverage is generally low (figure S2) and only low quorums—at which evenness 367 

signals are more pronounced (24)—can be used. When evenness varies at low levels of 368 

sampling, size-based rarefaction can in fact be less biased than coverage-based rarefaction, 369 

especially at low levels of coverage (23). Trends between coverage- and size-based 370 

rarefaction estimates generally agree (figure S4), although size-based rarefaction estimates 371 

higher diversity in some highly uneven intervals (e.g. late Visean; Wuchiapingian and 372 

Changhsingian). Small sample sizes (<200 occurrences) also have an effect on the accuracy 373 

of coverage estimates using Good’s u (23): only four of the sampled Palaeozoic intervals have 374 

more than 200 occurrences (late Visean: 266; Serpukhovian: 204; Kasimovian and Gzhelian: 375 

230; Wuchiapingian and Changhsingian: 232). Coverage-based rarefaction curves (figure S3) 376 

show these intervals to have among the highest coverage, along with the Bashkirian and 377 

Moscovian, highlighting the greater sampling of the Carboniferous than the Permian. 378 

Consequently, variation in evenness between intervals is having an overriding effect on 379 

sampling-standardised diversity estimates through time, with diversity estimates mostly 380 

tracking evenness and reflecting biases in the underlying data (23,68). 381 

 382 

 Conclusions and future directions 383 

We present here the first local richness and palaeogeographic trends in Palaeozoic 384 

ray-finned fishes. Sampling of the Palaeozoic actinopterygian fossil record is heavily biased 385 

towards western Europe (especially the UK) and North America, which translates to a very 386 

restricted palaeogeographic spread for most of the Palaeozoic. A suite of compounding 387 

problems plagues the actinopterygian fossil record and results in bias towards occurrences of 388 
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both superabundant and singleton taxa, variation and unevenness in and between sampled 389 

intervals, and distortion of relative richness estimates. A combination of flawed taxonomic 390 

practices, differential researcher effort, and geographic sampling biases confounds attempts 391 

to accurately estimate relative richness between intervals. Meanwhile, sampling is poor for 392 

regions other than Europe and North America for all but a few Carboniferous and Permian 393 

intervals. The result of this poor sampling is the inability to reach the high levels of coverage 394 

that allow statistical methods of sampling standardisation to generate meaningful diversity 395 

estimates.  396 

Identifying the underlying issues with Palaeozoic actinopterygian data and the 397 

interweaving biases that are impacting the fossil record is crucial, and improving sample sizes 398 

and coverage will help to mitigate the sensitivity to evenness (25). Documenting and including 399 

existing ‘dark data’ (51,52) in museum collections, as well as focus on new material from under 400 

sampled regions, represent key first steps. As a result, size-based rarefaction curves for 401 

Palaeozoic intervals will likely not reach asymptote soon (figure S1). More complete sampling 402 

of well-known regions (69) may facilitate deduction of accurate local richness patterns (36). 403 

This strategy also goes some way towards accounting for the significant spatial structuring of 404 

‘global’ fossil records (17–19,27).  405 

Other recently proposed methods, such as coverage-rarefaction of extrapolated 406 

richness estimates (instead of face-value counts) (23), represent prospective avenues of 407 

research, both at local and global scales. However, existing global occurrence data for 408 

Palaeozoic actinopterygians is as yet inadequate for extrapolation in this way: sample sizes 409 

vary widely between intervals, which may result in inaccurate extrapolated richness trends 410 

(23,70,71); sample sizes in all intervals are too low for size-based rarefaction curves to 411 

asymptote (figure S1), meaning sample size has an overwhelming effect on diversity estimates 412 

(23); and abundance distributions are also highly uneven, which biases extrapolators (though 413 

to a lesser extent than coverage-based rarefaction; 17). 414 
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  Overall, the occurrence data recorded in the literature is heavily impacted by sampling 415 

and likely results in inaccurate estimated diversity trends at present. Localised diversity 416 

estimates for well-sampled regions presents a feasible avenue of research for reconstructing 417 

regional diversity. In addition, research efforts to fix problematic taxonomy of ‘waste-basket’ 418 

taxa, in hand with a general increase in sampling, open the possibility of estimating diversity 419 

in a spatially-standardised framework, so that we can truly begin to understand the origin, rise 420 

and establishment of the largest vertebrate clade. 421 
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 620 

 621 

Figures  622 

Figure 1 – Local richness (number of species per fossil locality) of actinopterygians through 623 

the Palaeozoic. (a) Local richness plotted by environment, separated by freshwater (red) and 624 

marine (blue; incorporates brackish occurrences). Colour saturation (transparency) indicates 625 

density of localities, and the most genus-rich localities are labelled. Note that purple 626 

indicates contemporary localities with similar diversity of marine and freshwater 627 

actinopterygians. (b) Palaeolatitude of localities through time, with local richness indicated by 628 

colour (yellow localities have low richness, progressing through green to the most diverse 629 

localities in indigo). 630 
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Figure 2 – Palaeomaps showing palaeogeographic spread and local richness of individual 631 

localities through time plotted in roughly even-length intervals. Colour scales correspond to 632 

the richness of localities, ranging from low (light blue) to high (pink) richness.  633 

Figure 3 – Coverage-based rarefaction estimates of Carboniferous and Permian 634 

actinopterygian diversity at (a) genus- and (b) species-level, showing estimates for different 635 

quorum levels in different colours from low quorums (0.3) in light blue to higher quorums 636 

(0.6) in darker blue. The shaded areas for each quorum are confidence intervals of 637 

estimates. Devonian intervals removed (see Methods). Estimates were either interpolated 638 

(circles) or extrapolated (squares) up to twice the reference sample size (40). 639 

Figure 4 – Squares diversity estimates of Devonian to Permian (a) genus (circles) and (b) 640 

species (triangles) richness, plotted at the midpoints of equal-length intervals.  641 

Figure S1 – Size-based rarefaction curves for (a) Carboniferous genus-level occurrences, 642 

(b) Permian genus-level occurrences, (c) Carboniferous species-level occurrences, (d) 643 

Permian genus-level occurrences. 644 

Figure S2 – Rank order abundance distributions of the sampled equal-length intervals 645 

(coloured correspond with the International Commission on Stratigraphy; ICS) at (a) genus-646 

level occurrences and (b) species-level occurrences. 647 

Figure S3 – Sample completeness (a-c, k-l) and coverage-based rarefaction curves (d-i) for 648 

Carboniferous (b, e, h, k) and Permian (c, f, i, l) intervals. Solid lines are interpolated 649 

measures, points are observed data and dotted lines are extrapolated estimates. 650 

Carboniferous intervals are in green and Permian intervals are in red according to the ICS 651 

colours. 652 

Figure S4 – Estimates of Carboniferous and Permian actinopterygian diversity using size-653 

based (classical) rarefaction of (a) occurrences of genera and (b) occurrences of species, 654 

showing estimates for different sample sizes. 655 
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