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Light microscopy is a powerful single-cell technique that al-

lows for quantitative spatial information at subcellular res-

olution. However, unlike flow cytometry and single-cell se-

quencing techniques, microscopy has issues achieving high-

quality population-wide sample characterization while main-

taining high resolution. Here, we present a general framework,

data-driven microscopy (DDM), that uses population-wide cell

characterization to enable data-driven high-fidelity imaging of

relevant phenotypes. DDM combines data-independent and

data-dependent steps to synergistically enhance data acquired

using different imaging modalities. As proof-of-concept, we ap-

ply DDM with plugins for improved high-content screening and

live adaptive microscopy. DDM also allows for easy correla-

tive imaging in other systems with a plugin that uses the spatial

relationship of the sample population for automated registra-

tion. We believe DDM will be a valuable approach for reduc-

ing human bias, increasing reproducibility, and placing single-

cell characteristics in the context of the sample population when

interpreting microscopy data, leading to an overall increase in

data fidelity.
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Introduction

Over the last decade, advances in light microscopy, including
faster and more precise motorized components, automated
focusing and image acquisition, and more integrated compu-
tational power, have changed the field. Today, researchers
are capable of collecting and analyzing thousands of images,
accumulating millions of data points on cellular processes
over a few hours. In parallel, we see an increasing focus on
single-cell data, including at high spatiotemporal or super
resolution level. Analysis and selection of such data could
benefit from placing the cells in a population-wide context,
with access to overall cell feature distribution, similar to how
flow cytometry is routinely used. However, when studying
cell populations in microscopy, researchers typically face a
trade-off between cellular resolution and overall population
assessment. It is thus technically challenging to put high-
resolution single-cell data in a population-wide context.

Correlative imaging is one technique that aims at partially

solving this trade-off. By correlating points between images
captured in different modalities, the strengths of each
technique can be combined. Such systems are typically
tailored for the high-resolution to super-resolution domain,
custom-built, and require specialized expertise. Because of
the inherent spatial resolution of this domain, such systems
are difficult to calibrate and force researchers into using
single-system multi-modal imaging (1, 2), with on-stage
fixation and labeling protocols (1, 3, 4). On the other hand,
multi-system correlative imaging (5, 6, 7, 8, 9) is dependent
on finding a transformation between the respective coordi-
nate systems. While differences between the systems may
prohibit off-the-shelf registration solutions (10, 11, 12, 13),
the introduction of external cues such as markings (6) or
calibration beads may influence the sample and obstruct
image quality. Ideally, reference points should be derived
from as little information as possible to achieve multi-system
correlative imaging consistently.

At the other end of the spectrum, high content screening
(HCS) has become a central method to assess large quantities
of single-cell data in a population-wide context (14, 15, 16).
With automated image analysis pipelines, HCS enables
researchers to extract rich and unbiased information from
datasets that would otherwise overwhelm any human op-
erator (17, 18, 19, 20, 21, 22, 23). In other settings where
high-spatiotemporal information is necessary and can be
acquired, HCS has successfully been integrated (24, 25).
The alternative to HCS in high-spatiotemporal settings,
acquiring data from selected points, typically leads to the
loss of population context and risk of bias, especially since
data selection is often left to human operators. Integrating
image analysis, including machine learning classification
algorithms, into the data selection has reduced the overall
bias of the acquired subsample. These solutions, referred to
as feedback-microscopy or intelligent microscopy, allow for
the high-throughput targeted imaging of cells of interest in
high-spatiotemporal settings (26, 27, 28, 29). However, there
is no framework capable of relating targeted high-resolution
image data to the overall sample across multiple modalities
and platforms.

Here, we present a general microscopy framework, data-
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driven microscopy (DDM), which uses population-wide
data to improve and control microscopy and enables cross-
experiment image data validation. A data-independent
acquisition phase performs high-throughput imaging and
generates a population-wide phenotype assessment. This
data includes the relative coordinates of each data point for
the system, which feeds into the automated data-dependent
acquisition of selected phenotypes. Combining the two
orthogonal data sets yields population-wide data with high-
fidelity object characterization data. DDM also inherently
includes what constitutes an objective representation of the
sample population. The general DDM framework applies
to any motorized microscope, and all steps can be fully
automated, including phenotype targeting. As a proof-
of-principle, we apply DDM to target and enhance HCS
quantification of multi-labeled cells, carefully assess cancer
cell migration phenotypes using live feedback microscopy,
and perform automated correlative microscopy across dif-
ferent microscopy systems, in all cases without human input
with regards to data acquisition. Placing the combined data
in a population context yields a more robust, reproducible,
and efficient method for selecting, acquiring, and correlating
data in microscopy.

Results

Data-driven microscopy as an approach for auto-

mated targeted image acquisition of relevant data.

We first asked what a representative cell is in a given
sample. To address this question, we asked an experienced
microscopist to acquire images of fixed triple-transfected
cells in a usual manner (Fig. 1a, i). Next, we acquired
a scan of the whole sample and quantified morphological
features of the different channels in all cells (N=169988)
(Fig. 1a, ii). Feature analysis demonstrated an expected
feature heterogeneity across the sample (Fig. 1a, iv), and the
cell heterogeneity is visualized as a UMAP of the combined
features (Fig. 1a, v). The population analysis allowed us
to place the high magnification – and manually targeted –
cells in a feature distribution and population-wide context.
Mapping the selected cell data onto the population data
revealed an unconscious bias in the manual acquisition that
did not represent the whole population of cells in the feature
distribution (Fig. 1a, iii, iv) and UMAP space (Fig. 1a, v,
vi). This experiment highlighted common issues with how
light microscopy imaging is performed today, which also
opened an obvious opportunity. We hypothesized that it
should be possible to reverse the order of the approach and
use population-wide data to target either truly representative
cells or interesting sub-populations.

The principle of DDM is based on two general imaging
strategies linked by a server-based database to achieve
automated population-wide characterization or targeted
single-cell high-magnification imaging (Fig. 1b). The imple-
mentation of DDM can be seen as sequence of modules (Fig.
1c). The first module is data-independent acquisition (DIA),

where whole populations are imaged in low magnification
and analyzed at a single-cell level. From this low-resolution
image data, phenotypes are typically characterized by
morphology, signal, or event-based interactions but can be
any feature that can be extracted from the image data.

The second strategy, data-dependent acquisition (DDA),
aims at the targeted acquisition of specific phenotypes.
Initially, population-wide single-cell data is acquired and
assessed in real-time using an integrated microscope-server
solution (Supplementary Fig. 1-2). This data is normalized
according to previously acquired data through DIA and
DDA. If present, the positions of phenotypes of interest are
recorded until the criterium for triggered high-magnification
imaging is met. This criterium can either be a satisfied count
of observed phenotypes, cellular events, or a combination.
By obtaining low- and high-magnification single-cell data
and low-magnification population wide-data, high spa-
tiotemporal characteristics seen in the phenotypes of interest
can be inferred onto phenotypes not yet imaged in high
magnification. Taken together, a synergistic relationship
can be established between DIA and DDA, increasing the
fidelity of the data collected through each strategy. As
a proof-of-concept, we apply DDM to create data-driven
enhanced applications of HCS, live feedback microscopy,
and correlative microscopy (Fig. 1d).

DDM enables targeted high magnification imaging of

multi-labeled subpopulations based on data-driven

criteria. To test whether DDM could improve HCS, we
developed a data-driven enhanced variant of HCS (Fig. 2a)
whereby automated sub-sampled high-magnification data
could curate the low-magnification population-wide data
(Fig. 2b). The goal was to assess transfection efficiency
by targeting cells transfected with multiple plasmids. We
acquired the entire cell populations in 16 wells (Fig. 2c)
and characterized the signal of each plasmid at a single-cell
level. Each cell was categorized (non-, single-, double-
or triple-transfected) according to a signal threshold per
channel. Figure 2d shows an example of a field of view and
cells from the respective automatically assigned transfection
categories. The normalized intensity in each channel across
the whole population of cells is shown in Figure 2e. The
distribution of cells (N=109065) with the low-resolution data
was found to be heavily skewed towards non-transfected
(41.9% ± 1.0%) or single-transfected (53.5% ± 1.0%). Only
small fractions of cells were identifiable as expressing two
plasmids (4.6% ± 0.1%) or more (<1%) (Fig. 2f).

Following the DIA procedure, an even distribution of cells
(N=50) from each category was automatically targeted for
imaging in DDA (Fig. 2g). Figure 2h shows an example
of a targeted triple-transfected cell in high-resolution (60X
magnification); in this case, the same cell (nr 4) as shown
in Figure 2d. The resulting high-resolution data from DDA
was used to test the accuracy of the targeting criteria for
each group. The resulting confusion matrix of predicted
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Fig. 1. Data-driven microscopy as an approach for automated targeted image acquisition of relevant data. a. Objectively representative cells can be identified through
the combined use of data from two traditional image acquisition strategies. HeLa cells were labeled with fluorescent tubulin, integrin, actin, and DNA. Targeted imaging (i)
typically involves the manual selection of cells of interest. This leads to selected, high-resolution data (N=78 cells) that lack population context (ii). Population-wide automated
imaging leads to a complete dataset (iv; N=169988 cells) of all present phenotypes but lacks high-resolution information about cells of interest (iii). There exist several types
of heterogeneity in the data (UMAP space of multidimensional collapsed cell features; v). Combining the two orthogonal data sets provides the population context (v, vi)
to identify features that would describe a representative cell (vii). b. Principle schematic of data-driven microscopy (DDM). A data-independent acquisition step (DIA; i)
acquires population-wide data on a single-cell level. This data is stored in a database for sample health validation and future reference (ii). A data-dependent acquisition
step (DDA; iii) uses the data stored in the database to target phenotypes of interest for high-fidelity, high-intelligence smart microscopy imaging. High-fidelity data captured
in a population-wide context can lead to new biological insights which drive future experiments (iv). The combined high-fidelity data and population-wide single cell data has
the potential for data-mining and machine learning training algorithms that can drive future DDA experiments (v). c. A schematic representation of DDM implementation.
DDM consists of two imaging strategies, with indicated modules that when combined lead to both high-resolution and population-wide data. Through DIA, whole-population,
single-cell imaging is coupled with automated image and data analysis pipelines. This results in a seamless and unbiased data stream that the operator can explore. DDA can
perform targeted acquisition at higher fidelity by characterizing cells of interest in the data. Through population-wide, low magnification imaging, phenotypes are monitored,
and if found, the system performs an automated switch to high-fidelity imaging (e.g., high magnification, high sensitivity , or multiparameter imaging). d. Examples of different
applications suitable for data-driven microscopy (DDM) and what modules of DDM would be used to run the various pipelines.

and manually curated cells (N=278) revealed an overly
conservative prediction by the categorization during DIA
(Fig. 2i). The prediction of single-transfected cells in DIA
was inaccurate, as non-transfected cells were confirmed to
be single-transfected 57% of the time compared with the
predicted 29%. The DIA analysis module also misclassified

triple transfected as double transfected (51%) or single
transfected (23%). Triple transfected cells were accurately
predicted (96%). With the confusion matrix, the inaccuracy
in classification during DIA could be accounted for, and the
distribution of categorized cells could be corrected (Fig. 2j).
The transfection data illustrates that low magnification DIA
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Fig. 2. DDM enables high magnification imaging of targeted multi-labeled subpopulations. a. Illustration of the DDM setup used when studying multi-metric distributions
of cells. b. Illustration of how DDM can increase data fidelity through the combination of DIA and subsampling of cells for DDA. c. The distribution of transfected HeLa cells
in a sample imaged through DIA in 10X. d. Examples of negative, single, double, and triple transfected cells. e. The intensity of each channel per category normalized on
the population-wide data and binned into quantiles. The rightmost (11th) pixel represents outlier cells (> 99th quantile). See also Supplementary Fig. 3. f. Quantification of
transfection distribution of cells (N=109065) from different wells in each transfection category. g. In DDA, 50 cells per category were sampled for targeted high-magnification
imaging. h. An example of a DDA-targeted triple transfected cell in 60X magnification. i. Confusion matrix of manually verified cells and the classification by the DIA
algorithm (N=278). The heatmap represents the accuracy of the classifier. j. Confusion matrix-corrected DIA data of transfected cells (N=109065).

(like HCS) is useful for initial acquisition and targeting of
population data, but with clear misclassification of image
data. However, after the DDM-enhanced analysis with
high-resolution DDA data, the original DIA data could
be corrected, increasing data fidelity, resulting in a large
(N=109065), high-quality data set. Thus, we conclude
that DDM can accurately characterize the distribution of
multi-labeled cells through DIA, like traditional HCS, and
subsequently perform high-magnification targeted imaging
of subpopulations through DDA, leading to higher fidelity
HCS through data-driven enhancement.

DDM allows for high-spatiotemporal adaptive feed-

back microscopy of migratory subpopulations. To
test the capacity of DDM on live feedback microscopy, we
decided to study cancer cell migration at high spatiotemporal
resolution. An adaptive feedback microscopy module was
developed and implemented with DDM (Fig. 3a-b). Through
DIA, H1299 mKate-paxillin cells (N=24940) were imaged
every 10 minutes for 6 hours, and single-cell migration was
characterized. The parameter space was collapsed using
UMAP analysis to categorize the migration modes. To inves-
tigate this space, single-cell migration tracks from different

regions were overlayed onto the UMAP (Supplementary
Fig. 4). As expected, a wide range of phenotypes in terms
of migratory behavior were present. To investigate further,
we grouped the cells into their top and bottom percentiles
(>90th and <10th, respectively) in terms of mean migration
speed. This separation revealed distinct phenotypes, with the
bottom percentile containing different migratory behaviors
compared to the longer and generally smooth tracks in
the top percentile (Fig. 3c). Grouping the cells based on
their meandering index also showed a distinction between
the respective groups. In the bottom percentile, cells were
migrating around their original starting position, some of
them in long smooth tracks. The top percentile migrates
greater distances than the bottom percentile and in straighter
paths (Fig. 3d). So far, analysis of the low-resolution DIA
data shows a wide heterogeneity in the migratory behavior
of the cells in the population.

For understanding cell migratory behavior in more detail,
we decided to target cells for data-driven imaging at high
magnification. Through DIA, cells were imaged every
10 min for 100 min total, and single-cell migration was
characterized. Figure 3e shows cells successfully tracked
for the duration of the DIA. Since mean-speed as a metric
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Fig. 3. DDM allows for the characterization and high-spatiotemporal imaging of migratory subpopulations. a. Illustration of the DDM setup used for live-feedback
microscopy. b. In DIA, cells were imaged every 10 min and analyzed post-acquisition. Cells were analyzed in multiple migration properties and categorized into slow and
fast (<10th and >90th quantile respectively) in terms of mean speed. In DDA, subsampling of the two categories for high magnification imaging was aided by an automated
water-dispenser. c,d UMAP space colored using mean-speed (c) and meandering index (b) revealed distinct migratory phenotypes. e,f Example image of cells migrating
in different speeds in DIA (e) and a targeted cell in DDA (f) migrating in the top percentile with overlayed coordinates from the DIA and DDA (large and small markers
respectively). Highlighted are fast (group 10; top left, top right, and middle rectangle) and slow (group 1; bottom left rectangle) cells in terms of mean speed. g. Cell migration
was continuously tracked between DIA and DDA. h. From the DDA datasets, neighboring cells (blue) to the targeted cells (yellow) significantly increased the overall cell count.
A small portion of the cells (gray) were excluded during analysis due to autofocus or tracking error. i. Speed variation over time during DIA (N=4798) vs DDA (N=391) for the
two speed groups.
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p Æ 0.01, *** for p Æ 0.001, **** for p Æ 0.0001. ns not significant.

previously displayed distinct migratory phenotypes in the
extremes (Fig. 3c), we decided to sample (N=100) the fastest

and slowest (>90th, <10th percentile, respectively) migrating
cells for DDA. Figure 3f shows a targeted fast migrating
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cell, in this case, the same cell as one of the highlighted
cells in Figure 3e. In DDA, images were taken every 3
min for 3 hours and the speed was monitored. Because
both DIA and DDA were performed on the same system,
the continuous tracking of cells between modalities could
easily be performed (Fig. 3g). This could also be done on
neighboring cells next to the targeted cells, which increased
the overall dataset of fast and slow migrating cells to 391
(165 and 226, respectively, Fig. 3h). The final dataset also
included 958 unique observations of cells in the intermediate
groups (10th-90th percentiles), which further increased the
total sample size to 1336. The increased spatial and temporal
resolution of the DDA data resulted in a much more detailed
tracking of cell migration, clearly seen in the increased
variance of both groups in DDA (Fig 3i). In addition,
although we see a decrease in the mean speed of the fast-
migrating cells in DDA, they were continuously faster than
the slow-migrating cells, indicating that most of the cells
in each targeted group maintain their speed profile over the
duration of the experiment. Taken together, DDM enables
monitoring cells in a population-wide context in combination
with an automated targeted high-spatiotemporal acquisition,
resulting in increased overall fidelity and integrity of the data.

DDM allows for multimodal correlative microscopy

using cell-based coordinate transformation. DDM
inherently collects information about the sample population,
including the coordinates of each object in the population.
We realized that this information can be used to infer the
relative position of all cells in a sample, and thus theo-
retically allow for image registration across microscopy
systems. Since the relative position of cells is independent
of the imaging system, all that is needed for identifying
cells across systems is to acquire a few fields of view in the
new system and then calculate the coordinate transformation
needed to relate the cell positions (Supplementary Fig. 6).
This data-driven approach to correlative microscopy obviates
the need for specialized markers and cumbersome image
registration routines and can compensate for misplacement
of the sample in the microscope, as the samples do not need
to be in the same place for the coordinate transformation to
work.

As a proof-of-concept for data-driven based correlative
microscopy, we aimed to expand upon the experiment in
Figure 3 with correlative SIM and TIRF microscopy and
explore the focal adhesion (FA) properties of migratory
H1299 subpopulations in more detail (Fig. 4a). Wildtype
H1299 cells were imaged for 6 hours every 10 min and char-
acterized on a wide-field microscope using DIA. We fixed
and permeabilized the cells during the last time point, and
subsequently stained the cells for high-resolution imaging
(Fig. 4b). On two secondary systems (SIM and TIRF micro-
scopes in separate buildings), spatial relationships between
objects were recorded, and the DIA data was converted and
mapped onto the coordinate system of the corresponding
microscope (Supplementary Fig. 6). The correlation of

sample coordinates between microscopes was achieved
without manual adjustment and simply involved placing the
sample in the new system and acquiring correlative data of
data-driven targeted cells. The slowest (<10th percentile –
mean speed: 5.64 ± 1.26 µm/h) and fastest (>90th percentile
– mean speed: 43.20 ± 8.04 µm/h) populations were sampled,
and we targeted 50 cells per group for high-magnification
imaging. Figure 4c exemplifies the same cells imaged on
separate wide-field, SIM, and TIRF microscopes.

Time-resolved information, such as the direction of cellular
migration, is unknown when performing fixed, high-
resolution imaging. The overall shape of a cell can be used
to predict the direction of migration when the sample is
fixed, but this type of classification is highly uncertain.
By combining migration data from DIA (Fig. 4d) with
high-resolution data of FAs from DDA, we could correlate
migration data from live imaging with high-resolution FA
properties (Fig. 4e). The alignment of the major axis of
the FAs to that of the direction of the cell movement in
the last 10 min of migration was used to calculate the
orientation. A comparison to shape-predicted migration
vectors demonstrates the strength of having access to the true
migration data, where the slow-moving cell would have been
inaccurately classified otherwise.

Combining data from different microscopes allows for
cross-correlative analysis, potentially revealing relationships
that cannot be seen when only having access to data from
one system or approach. In Figure 4f we grouped the FAs
based on the respective speed group of each cell. We saw
a significant increase in the number of FAs per cell, as well
as a strong decrease in the adhesion localized paxillin signal
intensity in fast migrating cells (group 10). We also see a
small increase in the size of FAs (area) and a change in their
shape (elongated axis ratio) of slow migrating cells (group
1). Multivariate statistical analyses of FA and cell properties
showed a shift between the groups in linear discriminant
analysis (Fig. 4g) and principal component analysis (Fig.
4h). This analysis shows that, while they share many char-
acteristics, migratory subpopulations can be identified and
tracked by DDM, and that they maintain certain properties
over time. Overall, this automated application of correlating
live-cell data to super-resolution imaging in multiple systems
highlights the power of DDM and the benefit of using a
data-driven approach to microscopy.

Discussion

The operator dependency within microscopy leads to unin-
tentional bias in data, difficulties in reproducing results, and
potential misrepresentation of biological relevance according
to the whole sample population. We have developed a new
methodology for image data acquisition and selection, DDM,
which uses a combination of automated multimodality imag-
ing. Through DIA, we acquire population-wide data and
profile single-cell phenotypes in the context of the population
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distribution. Using this data, we can acquire further data
with other imaging modalities (DDA) that provide additional
information about targeted phenotypes of interest. DDM is
synergistic in that DDA complements DIA data, making both
more relevant, leading to enhanced fidelity of the combined
image data.

As proof-of-principle, we have used DDM with Nikon
hardware to identify and profile representative cells in multi-
labeled samples and perform advanced characterization
and multimodal correlative acquisition of cell migration
subpopulations. The framework is compatible with any
microscope as long as the controlling software can send
images to the server or invoke external programs to achieve
this. Upon identifying phenotypes of interest, we have
automatically acquired additional images of these targets and
assessed their relevance according to the population-wide
data. We believe that these experiments have highlighted
the versatility and benefits of DDM compared to traditional
microscopy approaches.

DDM increases the throughput of biologically relevant data.
The novelty of DDM compared to traditional HCS methods
(15, 17, 30, 31) is that the image acquisition can easily be
adapted according to the questions being asked and based
on the population characteristics. The improvement is espe-
cially true for high-resolution applications and is exemplified
through the transfection experiment we performed. The
question was trivial, but the results were clear. If a traditional
HCS approach had been used, it would have resulted in a
large low-quality data set with misrepresented transfection
distribution. If a traditional high-magnification approach had
been used, it would have resulted in a small sampling of
high-quality data with an uncertain transfection distribution.
DDM uses the best aspect of each modality and controls
acquisition in an automated and efficient manner, resulting
in large data sets with high fidelity.

DDM inherently provides information on what constitutes
representative objects in the sample population. Cells can
be considered representative when they are placed in the
context of the population feature distribution; it also opens
the possibility to do analysis and targeting of outlier cells,
as we did with the cell migration analysis, where we studied
the slowest and fastest migrating cells in more detail. Since
DDM essentially provides a population fingerprint for each
experiment, it makes it less prone to human error and bias
and could provide a basis for automated curation of large
datasets (32), making it a powerful approach for AI-based
analysis.

One of the most evident benefits of DDM comes when cor-
relative microscopy is performed across different microscope
setups. We easily acquired the correlative data sets with
DDM, and the same cells were identified and imaged across
wide-field, SIM, and TIRF microscopes placed in different
labs. This allowed us to combine time-resolved single-cell

data with specialized high-resolution spatial data and then
cross-correlate the data. This correlative aspect alone
opens for studies of many questions that are very difficult
or require specialized equipment to address. An obvious
future application of DDM would be different spatial omics
solutions, where samples can be removed from the stage and
easily automatically registered after offline processing.

To increase introspection and reproducibility, DDM inher-
ently logs all operations performed, as well as the state
of the running experiment, providing clear status updates
to the user. The ability to fully interoperate the popular
programming language Python allows DDM to be easily in-
tegrated into other already existing workflows and methods.
More advanced image analysis, such as machine-learning
approaches (33, 34, 35, 36), should make it possible to map
the data collected through DDA backward onto the DIA
data. In the future, this could potentially remove the need for
DDA for specific applications. A similar development has
been shown within the mass spectrometry field (37), where
DIA data can be mined after the fact to provide high-quality
data for new questions. In summary, we believe that DDM
offers a useful framework for a more robust and unbiased
acquisition of high-fidelity microscopy data.

Methods

Cell culture The cell lines herein are not members of the
ATCC list of commonly misidentified cell lines. All cells
were maintained and used between passages 5-25. Human
cervix epithelioid carcinoma cells (HeLa; Sigma Aldrich)
were cultured in Dulbecco’s Modified Eagle’s (DMEM;
Gibco, Thermo Fisher Scientific) supplemented with 10
% heat-inactivated fetal bovine serum (FBS) (Gibco) at
37 ºC in a humidified 5 % CO2 incubator. For imaging,
µ-slide 8-well glass-bottom slides (Ibidi) were coated with
2 µg/mL fibronectin human plasma (FN) (Sigma Aldrich)
and incubated for 30 min at 37 ºC. Cells were transfected
in suspension ( 70 000 cells/mL) with 500 ng/plasmid
using Lipofectamine 3000 (Invitrogen) according to the
manufacturer’s protocol. All plasmids used are listed in
Table 1. Cells were plated at 20 000 cells cm2 in each
well and incubated for 48 hours before fixing with 4 %
paraformaldehyde (PFA; Thermo Scientific) for 15 min at
room temperature (RT).

H1299 cells expressing mKate-Paxillin and H1299 WT
were kindly provided by Staffan Strömblad. H1299 cells
(mKate-Paxillin and WT) were cultured in Roswell Park
Memorial Institute (RPMI 1640; Gibco) supplemented with
10 % heat-inactivated FBS at 37 ºC in a humidified 5 % CO2
incubator. For imaging, µ-Slide 4-Well Ph+ Glass Bottom
slides (Ibidi) were coated with 2 µg/mL FN and incubated
for 30 min 37 ºC. Slides were blocked in 1 % BSA in 1X
PBS for 30min at 37 ºC. Cells were plated at 6 000 cells cm2
and incubated overnight. Before imaging, cell-permeable
Hoechst (0.05 nM) (Thermo Scientific) and HEPES (10 mM)
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(Gibco) were added to the media.

Immunostaining Immunofluorescence staining was per-
formed as described (38) with minor modifications. Briefly,
cells on µ-slides were fixed and permeabilized with 4 %
PFA, 0.5 % Triton X-100 and Alexa Flour 647 Phalloidin
(Thermo Scientific) in cytoskeleton buffer (CT; 10 mM
2-(N-morpholino)ethanesulfonic acid, pH 6.1, 138 mM
KCl, 3 mM MgCl, 2mM EGTA) for 15 min at 37 ºC. Free
aldehydes were reacted with 10 mM glycine for 15 min at
room temperature (RT) and cells were washed with TBS at
RT. Cells were incubated with primary antibodies (Mouse
anti-paxillin; 1:350, BD biosciences) in a blocking solution
(2 % BSA in TBS-T) supplemented with phalloidin (1:500)
overnight and then washed and incubated with secondary
antibodies (Alexa Flour 488 conjugated goat anti-mouse;
1:500, Invitrogen) in blocking solution and phalloidin
(1:500) for 1h at RT. Cells were washed with TBS-T and
blocked in blocking solution (2 % BSA in TBS-T) before
imaging.

Live fluorescence microscopy Images were acquired using
an inverted Nikon Ti2-E wide-field fluorescence microscope
with a Nikon Plan Apo l 10x 0.45 numerical aperture (NA)
objective lens and Perfect Focus System (PFS) for mainte-
nance of focus over time. Excitation and emission light were
passed through DAPI (Exc. 379-405nm, Em. 414-480nm),
FITC (Exc. 457-487nm, Em. 503-538nm), TRITC (Exc.
543-566nm, Em. 582-636nm) and Cy5 (Exc. 590-645nm,
Em. 659-736nm) filter cubes, all from Semrock. Samples
were kept in a humidified atmosphere at 37 ºC and 5 % CO2
using an environmental chamber (Okolab). Images were
acquired on a Nikon DS-Qi2 CMOS camera. The imaging
of the samples was automated by generating stage positions
covering the sample area using JOBS (NIS-Elements ex-
tension; Nikon) and a Nikon TI-S-ER motorized stage with
an encoder. For time-lapse imaging, images were collected
every 10 min for 100 min. The same system was also used
with a Nikon CFI SR Plan Apo IR 60XAC WI / 1.27NA with
a software-driven TI2-N-WID Water Immersion Dispenser
for imaging of fixed samples or time-lapse imaging of live
cell migration every 3 min for 3 hours.

TIRF microscopy TIRF microscopy was performed on an
inverted TIRF microscope (Ti-E; Nikon) using a Nikon CFI
Apo TIRF 100X Oil / 1.49 NA. Excitation and emission light
was passed through Continuous Storm (Nikon; Exc. 387-
417nm and 557-570nm Em. 422-478nm and 581-625nm),
FITC/TRITC ET (Exc. 450-490nm, Em. 500-530nm) filter
cubes. Images were acquired on a Prime 95B 22mm sCMOS
camera (Teledyne photometrics).

N-SIM microscopy SIM microscopy was performed on an
inverted N-SIM microscope (Ti-E; Nikon) using a Nikon
CFI SR APO TIRF 100X Oil / 1.49 NA excited by a
Nikon LU-N3-SIM 488/561/640 laser unit. Excitation and
emission light was passed through SIM 405/488/581/640

(Exc.484-496nm, 557-567nm and 629-645nm) filter cubes
and N-SIM 488 BA (Em. 500-545nm), N-SIM 561 BA
(Em. 570-640nm) and N-SIM 640 BA (Em.663-738nm)
emission filters, all from Nikon. Images were acquired on
an ORCA-Flash 4.0 sCMOS camera (Hamamatsu Photonics
K.K) and the images were reconstructed with Nikon’s SIM
software on NIS-Elements Ar (NIS-A 6D and N-SIM Anal-
ysis). Standard fluorescence microscopy was also performed
on both the SIM and the TIRF systems with a Nikon CFI
Plan Apochromat l 10X / 0.45NA objective by generating
stage-positions in the corners of the sample area using JOBS
and a TI-S-ER motorized stage with encoder. For wide-field
excitation, a SPECTRA X light engine ® (Lumencore inc)
was used. All systems were controlled using NIS-Elements
(v. 5.21.02 or later).

DDM Framework A lightweight framework was developed
in Julia (v.1.6.0) and deployed on a local server to handle im-
age analysis and data informatics. Image analysis packages
with a shared schema were developed (see image analysis)
and loaded into the framework. For each experiment,
the corresponding analysis package was initiated with an
experiment-specific configuration. Images were transferred
to the server using an in-house developed command line
interface (CLI; available on Github) for analysis. NIS
Elements JOBS was used to query the server through the
CLI for analysis output. See Supplementary Fig. 1 and
Supplementary Note 1 - 4.

Image analysis All described image analyses were written
in Julia (version 1.6.0) and are available on Github. See
Supplementary Note 1.

Transfection plugin Low magnification (10X) images of
multi-labeled fixed HeLa cells were acquired as described
above. Image background segmentation was performed
on the DAPI channel (cell nuclei). Using the foreground
segments as seeds, a local thresholding (Otsu’s thresholding)
window was used to generate segments of the cell fluores-
cence in each channel. Segments overlapping the seeds were
selected and intensity features (i.e. mean, median, standard
deviation) were measured and normalized to the mean
sample background. Cells were sampled for data-dependent
imaging based on the local relative intensity for every label.
See Supplementary Note 5.

Migration plugin Low magnification time-lapse images
of stable mKate-paxillin expressing H1299 cells were
acquired as described above. Background segmentation
was performed on the DAPI channel (cell nuclei). Features
describing cell migration (e.g. mean speed, meandering
index) were obtained by tracking the coordinates of the
nuclei and finding the optimal assignment of coordinates,
in terms of least total Euclidean distance, between each
pair of frames using the Munkres algorithm (39). Back-
ground segmentation was performed on the TRITC channel
(paxillin) to obtain intensity features (i.e. mean, median,
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standard deviation). Cells sampled from the top and bottom
10th quantiles in terms of mean speed were selected for
data-dependent imaging. See Supplementary Note 5.

Correlative imaging plugin Low magnification time-lapse
images of H1299 WT cells were acquired as described above
(see live fluorescence microscopy). Prior to imaging the last
frame of the time-lapse, the fixation and permeabilization
solution (described under immunostaining) was added to
samples to stop cell migration and record the last known
relative stage coordinate of each cell. For the analysis: cell
migration was analyzed as described above. On a secondary
system (i.e. SIM or TIRF), JOBS was programmed to image
randomly generated points in each corner of the sample in
widefield (see TIRF/N-SIM microscopy). The cell nuclei
were segmented for each image and the triangle between the
coordinates of each nucleus and its 2 closest neighboring
nuclei were calculated and normalized to a set of rotation
and scale invariant measurements. Each set of measurements
was then compared to the same measurements made on the
last time point of the migration data. A RANSAC algorithm
sampled the measurements based on the similarity between
the two datasets (migration data and sampled image) and
calculated an affine transformation matrix. If sufficient cells
(>30 %) in the sampled image could be mapped onto the
migration data, each matched cell pair was stored, and the
process was repeated until 3 corners of the sample were
matched. A final affine transformation matrix was calculated
using matched pairs of all 3 corners (see Supplementary Fig.
5) and applied to the migration dataset. Cells were sampled
as described above (see migration module) for TIRF and
SIM imaging. Background segmentation was performed on
the DAPI channel (cell nuclei). The foreground segments
were then retouched manually to segment and separate the
complete cells. The FITC channel (paxillin) was tophat
transformed with a circular kernel with a radius of 6 pixels
after which Otsu’s thresholding was performed to obtain
morphometrics of the focal adhesions. Cell morphometrics
(e.g. area) was obtained by background segmenting the
TRITC channel (cell actin). See Supplementary Note 5.

Automated data-dependent microscopy Image features
extracted from each experiment (e.g. cell morphometrics,
fluorescence signal) were stored in a database and the
recorded stage position of each data point was accessed
through a query using the CLI. Each stage position was
recorded to a local file on the microscope station and loaded
into NIS-Elements for imaging using JOBS. The stage posi-
tions were imaged differently depending on the microscope:
(a) for the live-fluorescence microscopy, the JOBS was
programmed to switch to the Nikon CFI SR Plan Apo IR
60XAC WI / 1.27NA objective, apply water using the water
dispenser, perform autofocus and subsequently image each
point, (b) for the TIRF and SIM microscope, the JOBS was
programmed to let the user switch to the respective Nikon
CFI Apo TIRF 100X Oil / 1.49 NA objective, manually
apply immersion oil and calibrate the sample to its original

position, perform autofocus and image each point

Statistical analysis Statistical analyses were performed
using Prism (GraphPad).
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